
Stroustrup,	Dos	Reis	 Smart	References	 P0416	

1	
	

WG21-P0416	

2016-9-10	
	

Follow-up	to	WG21-N4477	
2014-10-11	

	

Operator	Dot	(R3)	

Bjarne	Stroustrup	(bs@ms.com)	

Gabriel	Dos	Reis	(gdr@microsoft.com)	

What’s	new?	
This	is	an	update	on	N4477	primarily	based	on	CWG	feedback:		

• Clarifies	the	meaning	of	smart	references	(i.e.,	a	class	with	an	operator.()	defined):	"A	smart	
reference	automatically	dereferences	by	calling	an	operator.()	when	an	operation	that	is	not	
defined	for	it	is	applied	to	it.”	

• Confirms	that	smart	references	can	be	passed	by	copying,	rather	than	always	decaying	to	the	
referred-to	type.	

• Confirms	that	an	initializer	for	an	auto	object	and	a	template	argument	are	deduced	to	the	

smart	reference	itself,	rather	than	to	the	referred-to	type.	
• Clarifies	overloading	issues.	
• Clarifies	what	happens	when	a	class	declares	both	an	operator.()	and	a	conversion	operator.	

• Clarifies	the	effects	of	inheritance:	there	are	no	new	lookup	rules.	
• Clarifies	that	(unlike	built-in	references)	smart	references	are	objects.	In	particular,	we	can	have	

arrays	of	smart	references	and	sizeof(Ref)	is	the	size	of	the	Ref.	

• Changes	the	meaning	of	smart	reference	assignment:	by	default	assignment	copies	the	handle	
rather	than	the	value.	To	get	assignment	to	copy	the	referred-to	value	(like	built-in	references	

do),	you	need	to	define	the	copy	assignment.	
• A	smart	reference	follows	the	usual	rules	for	generating	default	operations.	
• We	eliminated	discussions	related	to	earlier	versions	of	the	design.	

Remember,	this	is	a	design	document	listing	the	major	design	decisions	and	giving	rationale.	The	

Wording	for	the	earlier	variant	of	the	proposal	is	found	in	P0252R1;	this	needs	to	be	updated	based	on	
CWG	feedback.	

	

Stroustrup,	Dos	Reis	 Smart	References	 P0416	

2	
	

Abstract	
This	 is	 a	 proposal	 to	 allow	 user-defined	 operator	 dot	 (operator.())	 so	 that	 we	 can	 provide	 “smart	
references”	 similar	 to	 the	 way	 we	 provide	 “smart	 pointers.”	 The	 gist	 of	 the	 proposal	 is	 that	 if	 an	
operator.()	is	defined	for	a	class	Ref	then	Ref	is	a	smart	reference	and	every	operation	not	declared	for	

Ref	 is	 forwarded	 to	 the	 result	 of	 operator.().	 Roughly,	 operator.()	 is	 to	 a	 smart	 reference	 what	
dereferencing	is	to	a	built-in	reference.	Note	that	by	default	a	class	has	a	copy	constructor	so	pass-by-
smart-reference	is	defined.	

1	Introduction	
There	has	been	several	suggestions	and	proposals	for	allowing	programmers	to	define	operator.()	so	as	

to	 be	 able	 to	 provide	 “smart	 references”	 similar	 to	 the	 way	 we	 provide	 “smart	 pointers”	 (e.g.,	
[Adcock,1990],	 [Koenig&Stroustrup,1991],	 [Stroustrup,1994],	 and	 [Powell,2004]).	 Consider	 how	 that	
idea	might	work:	

template<class	X>	
class	Ref	{	
public:	
	 Ref(X&	x)	:p{&x}	{}		//	refer	to	x	
	 X&	operator.()	{	/*	maybe	some	code	here	*/	return	*p;	}	
	 void	rebind(X&	x)	{	p=&pp;	}		//	refer	to	x	

//	…	
private:	
	 X*	p;	
};	
	
X	xvar	{77};	
Ref<X>	r	{xvar};		 //	make	r	refer	to	xvar	
	
r.f();	 	 	 //	means	(r.operator.()).f()	means	(*r.p).f()	
++r;	 	 	 //	means	++r.operator.()	
Ref<X>	r2	=	r;	 	 //	r2	refers	to	the	same	X	as	r	(copy	constructed)	
	

Now	Ref<X>	is	a	proxy	for	an	X	object:	The	Ref<X>	behaves	like	an	X	object,	yet	does	not	expose	

pointer-like	behavior	to	its	users.	This	Ref<X>	does	not	manage	the	lifetime	of	“its”	X	(see	also	§4.7).	

However,	is	that	++r	right?	There	is	no	mention	of	dot.	Is	it	right	to	apply	operator	dot	when	the	dot	is	
not	explicitly	mentioned?	This	has	been	one	sticking	point	 for	earlier	proposals.	On	 the	one	hand,	we	
want	to	apply	operator	dot	for	“all	uses”	so	that	we	can	get	operators,	such	as	=,	+,	and	++	to	work	for	

“smart	references”	to	objects	of	classes	with	such	operators	(like	for	built-in	references).	On	the	other	
hand,	we	also	want	to	be	able	to	operate	on	the	state	of	the	smart	reference	itself	(a	smart	reference	

really	is	an	object).	For	example:	

X	xvar2	{99};	
r.rebind(xvar2);		 //	means	r.p=&xvar2	

Stroustrup,	Dos	Reis	 Smart	References	 P0416	

3	
	

	
This	 proposal	 is	 to	 apply	 operator	 dot	 everywhere,	 except	when	we	 “say	 otherwise.”	 So	 how	 do	we	
specify	an	exception	to	the	forwarding	to	the	referred-to	object?	Many	alternatives	have	been	discussed	

in	the	various	proposals,	including:	

1. Separate	operators	(e.g.,	:-	for	assignment	to	the	reference	object,	like	Simula)	
2. Explicit	use	of	->	
3. Preference	to	members	of	the	smart	reference	over	members	of	the	referred-to	object	

4. Define	operator	.*	
5. Use	inheritance	
6. Use	template	metaprogramming	

7. Use	overload	resolution	across	the	reference/referred-to	scopes	
8. Mark	handle	member	functions	as	forwarded	or	not	

None	of	 the	suggestions	are	perfect	and	we	will	not	 repeat	 those	discussions.	 If	every	operation	on	a	
reference	 is	 forwarded	 to	 the	 referred-to	 object	 (as	 for	 a	 built-in	 reference),	 no	 trickery	 within	 the	

current	language	will	give	us	a	perfect	solution:	For	example,	we	could	not	implement	rebind().	On	the	
other	hand,	 if	 an	operation	 is	 not	 forwarded,	 then	we	 can’t	 invoke	 that	 operation	on	 the	 referred-to	
object.	For	example,	we	cannot	define	rebind()	on	the	smart	reference	and	also	have	a	call	to	rebind()	

automatically	forwarded	to	the	referred-to	object.	Something	has	to	give.		

2	Why	do	we	want	to	“overload	dot”?	
Part	of	the	problem	of	designing	an	operator.()	mechanism	is	that	different	people	have	different	views	
of	what	problem	it	 is	supposed	to	solve.	Another	 is	that	since	overloading	of	dot	doesn’t	exist,	people	
imagine	it	might	be	tweaked	to	solve	an	amazing	variety	of	problems.	Here	is	a	list	of	some	suggested	

problems/solutions	(not	necessarily	compatible,	orthogonal,	general,	reasonable,	or	well-specified):	

1. Smart	 references:	 This	 is	 the	most	 commonly	mentioned	need.	That	 is,	 a	 class	 that	acts	 like	a	
reference,	but	provides	some	extra	service,	such	as	rebinding,	 loading	from	persistent	storage,	
or	pre-	and	post-actions.	In	particular,	=	should	apply	to	the	referred-to	object,	not	the	handle.	

2. Smart	pointer	work-alikes:	That	is,	something	that	acts	like	an	overloaded	->,	but	doesn’t	have	
pointer	semantics.	So	.	(dot)	should	work	like	->	does	for	smart	pointers.	In	particular,	=	should	
apply	to	the	handle.	

3. Proxies:	 That	 is,	 something	 that	 acts	 just	 as	 an	 object	 (like	 a	 reference),	 but	 requires	
computation	on	access.	A	proxy	is	not	necessarily	a	handle	to	some	other	object.	

4. Interface	 refinement:	That	 is,	provide	an	 interface	 that	adds	and/or	 subtracts	operations	 from	

the	 interface	provided	by	a	 class.	 Such	an	 interface	 is	not	necessarily	 a	handle	 to	 some	other	
object.	

5. Pimpl:	That	is,	providing	access	to	an	object	through	an	interface	that	provides	a	stable	ABI.	For	
example,	changing	the	objects	layout	doesn’t	affect	a	user.	

6. Handles:	That	is,	anything	that	provides	indirect	access	to	something	else.		

Stroustrup,	Dos	Reis	 Smart	References	 P0416	

4	
	

Sometimes,	an	 idea	 is	described	 in	very	general	 terms	and	sometimes	 just	as	a	 single	use	case.	Some	
examples	are	shown	below	(e.g.,	§5).	

So	operator.()	refers	to	a	language	mechanism	supposed	to	help	writing	classes.	One	common	theme	is	

“but	what	I	have	(want	to	have)	is	not	conceptually	a	pointer	so	I	don’t	want	to	use	the	->	or	*	notation	
to	access	values.”	What	is	also	common	is	the	idea	to	have	an	operation	applied	to	a	“handle”	actually	
be	applied	to	a	“value	object”	without	actually	listing	every	possible	operation	from	the	value’s	type	in	

the	 definition	 of	 the	 handle’s	 type.	 Not	 all	 such	 handle/value	 ideas	 can	 be	 supported	 by	 a	 single	
operator.()	mechanism.	From	now	on,	we	will	use	“handle”	to	refer	to	a	type	with	operator.()	defined	
and	“value”	to	the	type	that	operator.()	forwards	to	(and	to	objects	of	those	types).	

On	the	other	hand,	a	smart	reference	(the	handle)	is	an	object	(unlike	a	built-in	reference),	so	that	we	

can	have	an	array	of	smart	references	and	so	that	a	smart	reference	can	have	a	modifiable	state	(e.g.,	
for	rebinding).	A	smart	reference	is	typically	not	just	a	conversion	to	the	value	to	which	it	refers.	

2.1	Why	now?	(again)	
With	that	many	proposals	and	suggestions,	why	raise	the	issue	again?	After	all,	if	it	was	easy	to	come	up	
with	 a	 widely	 acceptable	 design	 it	 would	 have	 been	 accepted	 long	 ago.	 When	 something	 that	 is	

frequently	requested,	is	frequently	commented	on	as	a	flaw	in	the	C++	design,	and	is	widely	considered	
fundamentally	a	good	idea	fails,	we	should	try	to	learn	from	the	failures	and	try	again.	Furthermore,	the	
importance	of	non-indirection	(proxies)	has	increased	over	the	years,	as	has	the	importance	of	limiting	

raw	pointer	 use.	Operator.()	 is	 the	 last	 piece	 of	 the	 puzzle	 of	 how	 to	 control	 the	 lifetime	 and	use	 of	
objects	without	relying	on	application	users	being	well-behaved.	Also,	 this	design	 includes	a	couple	of	

new	ideas.	

3	An	operator.()	design	
We	conjecture	that	the	key	to	an	operator.()	design	is	just	six	operations:	

• operator.()	–	defines	the	meaning	of	forwarding.	We	need	to	decide	whether	it	applies	only	to	
explicit	uses	of	dot	(.)	or	also	to	implicit	ones.	This	design	forwards	in	both	cases.	

• &	–	does	it	apply	to	the	handle	or	the	value?	Does	a	programmer	have	a	choice?	Can	it	be	used	

to	gain	access	to	the	address	of	the	value	object?	Some	consider	that	most	undesirable.	Can	it	
be	used	to	return	a	“smart	pointer”	to	the	object	referenced	by	a	“smart	reference?”		

• =	–	does	 it	assign	handles	or	values?	Does	a	programmer	have	a	choice?	This	design	gives	the	

programmer	 a	 choice.	 By	 default,	 =	 applies	 to	 the	 handle,	 but	 we	 can	 define	 the	 handle’s	
assignment	to	apply	to	the	value.	

• rebind()	–	does	a	named	function	apply	to	the	handle	or	the	value?	This	design	makes	a	handle	

member	functions	apply	to	the	handle	and	all	others	apply	to	the	value.	
• Initialization	–	do	initialization	of	a	handle	use	the	handle’s	constructors	(in	particular,	the	copy	

constructor)	even	if	they	are	not	explicitly	declared?	It	does,	so	we	can	pass-by-smart-reference	

similar	to	the	way	we	pass-by-reference	(the	default	copy	constructor	copies).		

Stroustrup,	Dos	Reis	 Smart	References	 P0416	

5	
	

• Type	deduction	–	does	a	smart	reference	deduce	to	the	reference	itself	or	the	value	to	which	it	
refers	when	passed	as	a	template	argument	or	used	to	 initialize	and	auto?	 It	deduces	to	 itself	

(the	handle)	since	there	is	no	operation	to	forward	to.	

So,	the	Ref<T>	example	works	exactly	as	written.	

4	Design	points	
This	section	considers	the	proposed	design	and	a	few	alternatives.	

4.1	Implicit	dot	
Why	do	we	want	forwarding	(application	of	operator.())	to	expressions	that	do	not	use	dot?	Consider:	
	
	 void	f(X&	x,	X&	y)	
	 {	

If	(x!=y)	
x=++y;	

	 }	
	
For	ordinary	references	x	and	y,	the	comparison,	assignment,	and	increment	applies	to	the	referred-to	
objects.	The	claim	is	that	we	want	the	same	for		
	

void	f(Ref<X>	x,	Ref<X>	y)	
	 {	

If	(x!=y)	
x=++y;	

	 }	
	
For	every	Ref<X>	that	we	can	think	of	where	X	has	!=,	=,	and	++,	etc.,	we	do	not	want	to	have	to	write:	
	

void	f(Ref<X>	x,	Ref<X>	y)	 //	explicit	forwarding	
	 {	

if	(x.operator.()!=y.operator.())		 //	ugly!	
x.operator.()=	++y.operator.();	

	 }	
	
However,	we	want	the	original	code	(above)	to	mean	that.	
	
Why	do	we	ever	want	 to	apply	operations	 to	 the	 “smart	 reference”	 itself?	That	 is,	why	don’t	we	 just	
forward	every	operation?	One	 reason	 for	wanting	 smart	 references	 is	 to	 be	 able	 to	 have	 them	more	
flexible	than	built-in	references.	The	rebind()	operation	is	a	common	example.	
	
Operator	dot	is	not	invoked	for	explicit	uses	on	the	->	operator	on	a	pointer.	For	example:	the	compiler	
will	 not	 rewrite	 p->x	 to	 (*p).x	 and	 then	 to	 (*p).operator.().x	 if	 *p	 is	 of	 a	 type	 that	 has	 a	 defined	
operator.().	 This	 rule	 is	 needed	 to	 allow	 us	 to	 define	operator.()	 and	operator->()	 separately	 and	 to	
allow	 us	 to	 use	 pointers	 in	 the	 definition	 of	 an	 operator.().	 This	 is	 the	 same	 rule	 as	 for	 other	 user-
defined	 operators.	 For	 example	 defining	 +	 and	 =	 does	 not	 implicitly	 give	 us	 +=.	 It	 is	 up	 to	 the	

Stroustrup,	Dos	Reis	 Smart	References	 P0416	

6	
	

programmer	to	define	consistent	sets	of	operators.	It	is	also	the	rule	we	use	for	operator->():	when	b	is	
a	smart	pointer,	p->m	is	not	rewritten	to	(*p).m	so	that	operator	is	never	called.	
	

4.2	Pass	by	smart	reference	and	type	deduction	
By	default	a	class	has	a	copy	constructor.	Consider:	
	

void	g(Ref<X>	r)	
	 {	

X	x1	=	r;	 //	X	x1	=	r.operator.();	
X&	rx	=	r;	 //	X&	rx	=	r.operator.();	
Ref<X>	r2	=	r;	 //	rx1	refers	to	the	same	X	as	x	(use	Ref<X>’s	default	copy	constructor)	
//	…	

	 }	
	
	 X	xvar	{	99	};	
	 g(xvar);		 	 //	construct	a	Ref<X>	from	xvar	and	pass	it	to	g()	
	
	 Ref<x>	rr	{xvar};	 //	construct	a	Ref<X>	from	xvar	
	 g(rr);	 	 	 //	call	(rr);	pass-by-smart-reference	
	
Consider	further:	
	

template<typename	T>	
void	fct(T	x1,	T&	x2,	Ref<T>	x3)	

	 {	
T	xx1	=	x1;	 //	T	xx1	=	whatever	x	is	
T	xx2	=	x2;	 //	T	xx2	=	whatever	x2	refers	to	
T	xx3	=	x3;	 //	T	xx3	=	whatever	x3	refers	to:	x3.operator.()	

	 }	
	
	 X	x	{9};	

X&	r	=	x;	
Ref<X>	rr	=	x;	
	
fct(x,x,x);	 //	fct<X>:	pass-by-value,	pass-by-reference,	pass-by-smart-reference	
fct(r,r,r);	 //	fct<X>	
fct(rr,rr,rr);	 //	fct<X>	

	
In	each	case,	the	references	are	dereferenced	and	the	X	arguments	are	passed	by-value,	by-reference,	
and	by-smart-reference.	
	
Note	 that	we	 deduce	T	 in	Ref<T>	 to	 be	X	 from	 an	 argument	 of	 type	X.	 That’s	 a	 C++17	 feature	 from	
P0091R1.	
	
But	what	does	it	mean	to	pass	to	a	smart	reference?	That	depends	on	what	is	the	meaning	of	initializing	
a	Ref<X>	with	an	X.	The	designer	of	Ref	has	a	choice	to	make:	
	

Stroustrup,	Dos	Reis	 Smart	References	 P0416	

7	
	

• Assume	 that	 Ref<X>	 doesn’t	 own	 the	 object	 (like	 X&),	 so	 that	 Ref<X>’s	 destructor	 does	 not	
delete	the	X.	That	is	what	Ref<X>	as	defined	above	does.		

• Assume	that	Ref<X>	owns	its	X	(and	must	delete	it).	Most	likely,	Ref<X>‘s	copy	constructor	must	
clone	 an	 X	 argument,	 but	 that	 is	 quite	 different	 from	 what	 an	 X&	 does	 for	 initialization	
(including	argument	passing).	That	semantics	is	usually	associated	with	things	called	something	
like	Proxy<X>.	

• Assume	shared	ownership	and	use	a	use	count	(manipulated	in	Ref’s	copy	constructor).	
• Don’t	support	construction	of	an	Ref<X>	from	an	X.		

	
This	design	choice	 is	quite	similar	 to	what	we	have	to	make	for	smart	pointers	 (no	ownership,	unique	
ownership,	or	shared	ownership).	This	is	to	be	expected.	

4.3	Type	deduction	
When	we	pass	a	smart	reference	as	a	template	argument	or	 initialize	an	auto	object,	we	must	decide	
which	type	to	deduce	to:	the	handle	or	the	value?	We	deduce	to	the	handle.	For	example:	
	

template<typename	T>	
void	fct(T	x1,	T&	x2,	Ref<T>	x3)	

	 {	
T	xx1	=	x1;	 //	T	xx1	=	whatever	x	is	
auto	r1	=	x1;	 //	r1	is	a	T	
	
T	xx2	=	x2;	 //	T	xx2	=	whatever	x2	refers	to	
auto	r2	=	x2;	 //	r2	is	a	T	
	
T	xx3=	x3;	 //	T	xx3	=	whatever	x3	refers	to:	x3.operator.()	
auto	r3	=	x3;	 //	r3	is	a	Ref<T>	as	for	any	other	clas	

	 }	
	
	 X	x	{9};	

X&	r	=	x;	
Ref<X>	rr	=	x;	
	
fct(x,x,x);	
fct(r,r,r);	 //	fct<X>	
fct(rr,rr,rr);	 //	fct<X>	

	
Why	should	a	smart	reference	differ	from	a	built-in	reference	for	auto	deduction?	It	does	so	because	the	
use	 of	 operator.()	 is	 triggered	 by	 a	 use	 that	 must	 be	 forwarded,	 but	 there	 is	 no	 use	 until	 after	 the	
deduction.	This	is	a	design	point	for	which	argument	can	be	made	either	way;	see	§5.6	for	an	example	
and	further	discussion.	

4.4	Who	is	in	control?	
The	control	of	whether	a	function	f()	is	applied	to	the	handle	or	to	the	value	can	be	vested	in	the	handle	
or	 left	 to	 the	user.	 This	 design	 vests	 the	 control	 in	 the	handle.	 	A	handle	without	 an	operation	 could	
make	 sense,	but	 its	behavior	would	be	 fixed	at	 constructions	 time.	However,	 like	Ref,	most	examples	
need	operations	on	the	handle.	The	question	is	then	how	to	define	and	apply	them.	
	

Stroustrup,	Dos	Reis	 Smart	References	 P0416	

8	
	

This	design	took	what	seems	the	simplest	approach:	an	operation	defined	as	a	member	of	the	handle	is	
an	operation	on	the	handle.		Otherwise,	the	operation	is	forwarded.	This	also	seems	to	lead	to	the	
simplest	and	“most	natural”	code.	
	
Note	 that	every	name	“reserved”	by	declaring	 it	 in	 the	handle,	 takes	away	 that	name	 for	 some	value	
type.	 In	 particular,	 by	 declaring	 rebind()	 for	 a	 handle	Ref<T>,	 we	 cannot	 access	 that	 function	 in	 the	
Ref<X>	of	a	Ref<Ref<X>>.	
	
We	 considered	 the	 alternative	 of	 always	 forwarding	 except	 when	 a	 function	 was	 applied	 through	 a	
pointer.	However,	unless	more	rules	are	invented,	&	is	also	forwarded	to	the	value,	so	how	do	we	get	a	
pointer	 to	 the	 handle?	 Also,	 having	 x.f()	 potentially	 mean	 something	 different	 in	 different	 contexts	
would	 be	 quite	 confusing	 to	 users.	 We	 propose	 to	 use	 the	 access-through-pointer	 trick	 in	 the	
implementation	of	handles,	though.	

4.5	Why	give	priority?	
Why	give	priority	to	members	of	the	handle?	We	could	

1. Give	priority	to	members	of	the	handle	
2. Give	priority	to	members	of	the	value	

3. Give	an	error	if	a	name	is	declared	in	both	the	handle	and	the	value	
4. Apply	overload	resolution	to	choose	between	members	of	the	handle	and	the	value	
5. Provide	a	syntax	for	access	to	the	handle	

We	 consider	 option	 1	 (“handle	 priority”)	 the	 right	 choice	 in	 most	 cases,	 and	 the	 simplest	 solution.	

Choosing	 this	 option	 implies	 that	 nothing	 can	 be	 done	 to	 access	 the	 handle	 unless	 an	 operation	 has	
been	 declared	 (explicitly	 or	 by	 default)	 in	 the	 handle	 type	 (except	 through	 a	 pointer).	 This	 way,	 the	
writer	of	the	handle	(and	its	users)	can	easily	know	which	operations	are	offered	by	the	handle	–	there	is	

no	need	to	examine	the	value	to	determine	the	set	of	operators	on	the	handle.	

Option	 2	 (“value	 priority”)	 simply	 does	 not	 make	 sense	 because	 the	 purpose	 of	 the	 rule	 is	 to	 allow	
handle	members	to	be	invoked;	value	member	access	is	the	default.	

Option	 3	 (“either	 or”)	 would	 be	 brittle	 and	 confusing.	 Also,	 in	 general	 a	 class	 author	 or	 a	 class	 user	
would	not	know	if	a	construct	was	correct	until	template	instantiation	time	because	the	value	type	will	

often	be	a	template	argument.		

Option	4	(“overload	resolution”)	is	technically	not	too	bad:	The	compiler	simply	considers	the	union	of	
overload	sets	from	two	scopes.	However,	it	can	be	hard	for	the	programmer	to	know	which	overload	is	

chosen	(the	details	of	the	value	and	handle	types	may	not	be	known	to	a	user	and	are	in	separate	in	the	
code),	it	opens	the	field	for	all	sorts	of	cleverness,	and	suffers	from	the	problem	of	potentially	delaying	
answers	until	 template	 instantiation	 time.	Also,	 for	 a	 templatized	handle,	 the	operations	 available	on	

the	handle	could	easily	differ	from	instantiation	to	instantiation	depending	on	the	operations	provided	
by	the	template	arguments.	

The	choice	between	(1)	and	(4)	is	fundamental	from	a	language-technical	perspective,	but	unlikely	to	be	
important	in	real	code.		

Stroustrup,	Dos	Reis	 Smart	References	 P0416	

9	
	

Option	5	(“access	syntax”)	would	allow	us	to	define	operations	on	the	handle	without	hiding	operations	
on	the	value.	But	how?	Consider	what	we	might	do	if	we	did	not	give	priority	to	members	of	the	handle:	

void	f(Ref<X>	r,	X&	x)	
{	
	 adderssof(r)->bind(x);	 //	go	through	pointer	(one	alternative)	
	 	
	 Ref<X>::r.bind(x);	 //	explicit	qualification	(another	alternative)	
	
	 r..bind(x);	 	 //	..	handle	access	operator	(a	third	alternative)	
	 r	.=	r2	 	 	 //	.=	might	make	bind()	redundant	
}	
	

We	could	
1. go	through	a	pointer.	Like	all	operations,	&	is	forwarded	to	the	value	through	operator.(),	so	

getting	into	the	handle	through	a	pointer	requires	std::addressof(),	which	exists	specifically	to	
defeat	smart	pointers.	

2. use	explicit	qualification	(with	::)to	defeat	forwarding	through	operator.(),	just	as	we	use	it	to	
defeat	virtual	calls,	but	that’s	rather	verbose	and	ugly.	

3. introduce	some	new	syntax	to	distinguish	operations	on	the	handle	from	operations	on	the	
value.	Here	I	have	used	a	suffix	dot	followed	by	whatever	would	normally	have	been	written.	

	
The	“addressof()	trick”	will	work	whatever	else	we	choose	to	do.	
	
Note	 that	 the	 priority	 is	 simply	 “has	 a	member	 of	 that	 name	 been	 declared	 in	 the	 handle?”	 Like	 for	

access	control,	we	don’t	distinguish	based	on	the	type	of	the	member	(e.g.,	function	vs.	data	member)	
or	try	to	do	overload	resolution	between	scopes.	Thus	an	“obviously	irrelevant”	member	of	the	handle	
(e.g.,	a	private	member	or	a	type	name)	can	hide	a	member	of	the	value.	This	problem	would	also	affect	

the	overload	resolution	solution	(4).	This	problem	could	be	solved	by	a	change	in	the	lookup	rules.	The	
same	problem	surfaces	in	the	context	of	modules,	and	will	almost	certainly	have	to	be	addressed	by	any	
module	proposal.	Our	assumption	is	that	the	problem	is	manageable	and	is	likely	to	be	eliminated	in	the	

context	of	a	module	proposal.	So	here,	we	don’t	propose	a	solution.	

4.6	Inheritance	
“Has	been	declared	in	the	handle”	includes	names	found	in	the	handle	through	Inheritance.	Consider:	

struct	Base	{	
	 X	operator.();	
};	
	
struct	Derived	:	Base	{	
	 //	…	
};	
	

Here,	Derived	has	an	operator.().	
	

Stroustrup,	Dos	Reis	 Smart	References	 P0416	

10	
	

Similarly,	there	are	no	new	lookup	rules	when	determining	if	a	smart	reference	has	a	function	declared.	
For	example:	

struct	Base	{	
	 void	f();	
};	
	
struct	Derived	:	Base	{	

X	operator.();	
	 //	…	
};	

	
	 Derived	d	=	…;	
	 d.f();	 //	call	Derived’s	f();	that	is	Base::f()	
	
Here,	Derived	“has	an	f()”	and	we	would	not	call	an	f()	declared	in	X.	

4.7	Smart	references	are	objects	
A	built-in	reference	is	not	an	object.	That	is,	when	you	take	its	address,	you	get	a	pointer	to	the	referred-
to	object,	when	you	take	its	size,	you	get	the	size	of	the	referred	to	object,	and	you	cannot	have	an	array	
of	references.	In	contrast	a	smart	reference	is	an	object	by	virtue	of	being	a	class	type:	
	

Ref<X>	r	=	x;	
auto	s	=	sizeof(r);	 	 //	the	size	of	the	handle	
assert(s	==	sizeof(Ref<X>));	 //	OK	
Ref<X>	a[10];	 	 	 //	OK	
auto	addr	=	&x;		 	 //	by	default	a	X*,	but	you	can	overload	&	for	the	handle	
	

People	have	expressed	a	desire	for	having	arrays	of	smart	references,	and	that	seems	to	be	the	right	
choice.	If	we	(like	for	built-in	references)	decided	to	have	sizeof(r)	return	the	size	of	the	value,	this	
would	not	be	possible.	

4.8	Constructors	and	destructors	
A	constructor	invocation	does	not	forward	(invoke	operator.())	because	there	isn’t	an	object	to	forward	
from/through	until	the	constructor	completes.	
	
A	destructor	invocation	does	not	forward	(invoke	operator.())	because	a	destructor	reverses	the	action	
of	a	constructor	and	the	constructor	does	not	forward.	

4.8.1	Unsurprising	consequences	
To	explore	implications,	consider	again	Ref<X>	as	defined	in	§1.		
	

template<class	X>	
class	Ref	{	
public:	
	 Ref(X&	x)	:p{&x}	{}		//	refer	to	x	
	 X&	operator.()	{	/*	maybe	some	code	here	*/	return	*p;	}	
	 void	rebind(X&	x)	{	p=&pp;	}		//	refer	to	x	

//	…	

Stroustrup,	Dos	Reis	 Smart	References	 P0416	

11	
	

private:	
	 X*	p;	
};	

	
We	can	try	
	

void	f(Ref<X>	rr);	
	
X	x;	
Ref<X>	r	{x};	
	
f(x);			 //	OK:	use	constructor	(Remember	P0091R1)	
f(r);		 //	OK:	use	Ref’s	copy	constructor	
	

Now	consider	defining	a	Ref2	that	owns	its	value	object,	much	as	unique_ptr	owns	its	object:	
	

template<class	X>	
class	Ref2	{	
public:	
	 Ref2(X&	x)	:p{new	X{x}}	{	}		//	make	a	copy	of	x	
	 X&	operator.()	{	/*	maybe	some	code	here	*/	return	*p;	}	
	 void	rebind(X&	x)	{	auto	np	=	new	X{x};	delete	p;	p=np;	}		//	make	a	copy	of	x	
	 ~Ref2()	{	delete	p;	}	

//	…	
private:	
	 X*	p;	
};	

	
void	f(Ref2<X>	rr);	
	
Ref2<X>	r	{x};	
X	x;	
	
f(x);			 //	OK:	use	constructor	(Remember	P0091R1)	
f(r);		 //	OK:	no	copy	constructor,	but	r.operator.()	is	an	X	so	f(X{r.operator.()})	

	
Declaring	 a	 destructor	 suppresses	 the	 copy	 constructor	 so	 Ref2	 forwarded	 using	 operator.().	 An	
application	of	the	default	copy	constructor	in	this	case	would	have	led	to	a	memory	leak.	Since	the	use	
of	a	copy	constructor	here	is	only	deprecated,	rather	than	banned,	we	have	better	be	explicit:	
	

template<class	X>	
class	Ref2	{	 //	version	2	
public:	
	 Ref2(X&	x)	:p{new	X{x}}	{	}			 //	make	a	copy	of	x	
	 Ref2(const	Ref&)	=delete;	 //	no	copy	construction	
	 X&	operator.()	{	/*	maybe	some	code	here	*/	return	*p;	}	
	 void	rebind(X&	x)	{	auto	np	=	new	X{x};	delete	p;	p=np;	}		//	make	a	copy	of	x	
	 ~Ref2()	{	delete	p;	}	

Stroustrup,	Dos	Reis	 Smart	References	 P0416	

12	
	

//	…	
private:	
	 X*	p;	
};	

	
Had	Ref2	 not	 had	 a	 constructor	 that	 accepted	 an	 object	 returned	 by	 its	operator.(),	 f(r)	 would	 have	
failed.		
	
Alternatively,	we	might	have	defined	a	copy	constructor:	
	

template<class	X>	
class	Ref2	{	 //	version	3	
public:	
	 Ref2(X&	x)	:p{new	X{x}}	{	}			 //	make	a	copy	of	x	
	 Ref2(const	Ref&	r)	{	auto	np	=	new	X{r};	delete	p;	p=np;	}		//	copy	r.operator.()	
	 X&	operator.()	{	/*	maybe	some	code	here	*/	return	*p;	}	
	 void	rebind(X&	x)	{	auto	np	=	new	X{x};	delete	p;	p=np;	}		//	make	a	copy	of	x	
	 ~Ref2()	{	delete	p;	}	

//	…	
private:	
	 X*	p;	
};	

	
An	alternative	implementation	would	make	p	a	unique_ptr.	
	
Similarly,	we	could	define	a	Shared_ref	(use	counted	shared	object):	
	

template<class	X>	
class	Shared_ref	{	
public:	
	 Shared_ref(const	X&	r)	:p{new	X{r}}	{}	
	 X&	operator.()	{	/*	maybe	some	code	here	*/	return	*p;	}	
	 //	…	
private:	
	 shared_ptr<X>	p;	
};	

	
It	will	probably	be	wise	to	follow	the	rule	that	if	a	copy	operation,	a	move	operation,	or	a	destructor	is	
explicitly	declared,	all	should	be.	We	considered	having	the	rule	that	if	operator.()	is	declared,	no	special	
functions	are	declared,	but	that	seemed	too	Draconian.		
	
Note	that	to	get	assignment	to	apply	to	the	value,	rather	than	the	handle,	we	need	to	define	operator=()	
on	the	handle	to	do	that	(see	§5.6).	

4.9	Recursive	use	of	operator.()	
Is	Ref<X>::operator.()	applied	to	uses	of	a	Ref<X>	within	members	of	class	Ref<X>?	Consider	a	Ref	that	
owns	it	X	so	that	it	must	implement	copy	and	move	operations:	

	

Stroustrup,	Dos	Reis	 Smart	References	 P0416	

13	
	

template<class	X>	
class	Ref	{	
public:	
	 Ref(const	X&	x)	:p{new	X{x}}	{}	
	 X&	operator.()	{	/*	…	*/	return	*p;	}	
	 Ref(const	Ref&	a);		 //	copy	constructor:	clone	*a.p	
	 Ref(Ref&&	a)		 	 //	move	constructor:	replace	p	with	a.p	

:p{a.p}	{	a.p=nullptr;	}	//	error:	p=	a.operator.().p	?	that	is,	p=a.p.p	
	 //	…	
private:	
	 X*	p;	
};	
	

This	design	has	no	special	rules	for	handle	members,	so	the	answer	is	“yes,	operator.()	will	be	called,”	so	

the	 definition	 of	 the	move	 constructor	 is	 an	 error:	a.p	 is	 interpreted	 as	a.operator.().p	 which	means	
a.p.p	which	is	a	compile-time	error.	The	reasons	for	this	design	decision	are	that	

• a	context-dependent	rule	could	be	surprising	and	difficult	to	implement	
• a	context-dependent	rule	would	be	as	surprising	to	some	as	the	lack	of	one	would	be	for	others	

• it	 is	 unlikely	 that	 Ref<X>	 objects	 will	 be	 common	 in	 Ref<X>	 definitions	 (the	 copy	 and	 move	
operations	are	likely	to	be	the	most	common	cases)	

• like	for	smart	pointers,	the	implementers	of	“smart	reference”	classes	are	likely	to	be	relatively	

few	and	relatively	expert	compared	to	the	enormous	number	of	users	
• errors	from	forgetting	to	use	pointers	to	access	the	value	are	most	often	caught	by	the	compiler	
• “no	rule”	is	the	simplest	rule	

This	(lack	of	a	rule)	implies	the	need	to	use	pointers	in	many	handle	implementations.	For	example:	

template<class	X>	
class	Ref	{	
public:	
	 explicit	Ref(int	a)	:p{new	X{a}}	{}	
	 X&	operator.()	{	/*	…	*/	return	*p;	}	
	 Ref(const	Ref&	a)	{	p	=	(&a)->clone();	}			//	clone	the	value:	(&(a.operator.()))->clone();	
	 Ref(Ref&&	a)		:	p{(&a)->p}	{		(&a)->p=nullptr;	}	
	 //	…	
private:	
	 X*	p;	
};	
	

Even	if	the	handle	defined	operator&(),	say	to	return	a	“smart	pointer”	and/or	to	prevent	the	pointer	to	
the	value	to	leak	into	the	surrounding	program,	we	must	use	std::addressof().	For	example:	

template<class	X>	
class	Ref	{	
public:	
	 explicit	Ref(int	a)	:p{new	X{a}}	{}	

Stroustrup,	Dos	Reis	 Smart	References	 P0416	

14	
	

	 X&	operator.()	{	/*	…	*/	return	*p;	}	
	 Ref(const	Ref&	a)	{	p	=	addressof(a)->clone();	}	
	 Ref(Ref&&	a)		:	p{addressof(a)->p}	{	addressof(a)->p=nullptr;	}	
	 //	…	
private:	
	 X*	p;	
};	

	
The	standard	library	addressof()	 is	guaranteed	to	return	a	built-in	pointer	rather	than	a	smart	pointer.	
Note	that	the	compiler	will	not	implicitly	transform	p->x	 into	(*p).x	and	allow	a	further	transformation	
to	 (*p).operator.().x	 (§4.1).	 That	way,	we	do	not	 get	 into	 a	 recursive	mess.	When	naming	 a	member	
(such	as	Ref<T>::p)	from	within	the	class	(as		in	*p	in	operator.())	the	name	is	interpreted	as	prefixed	by	
this->	 (here,	*(this->p)).	 To	 avoid	 a	 recursive	mess,	we	must	 not	 reduce	 that	 this->p	 to	 (*this).p	 and	
further	to	(*this).operator.().p.		
	
If	we	need	a	pointer	repeatedly,	we	need	to	use	addressof	only	once:	
	
	 X*	q	=	addressof(a)->p;	

4.10	Return	type	of	operator.()	
The	return	type	of	operator->()	is	required	to	be	something	to	which	->	can	be	applied.	This	restriction	is	
not	 fundamental.	We	propose	not	to	 impose	the	equivalent	rule	 for	operator.()	 	 (and	propose	also	to	
relax	it	for	operator->()):	Allow	operator.()	to	return	a	value	of	a	type	for	which	dot	is	not	defined,	such	
as	an	int.	Consider:	

struct	S	{	
	 int&	operator.()	{	return	a;	}		
	 int	a;	
};	
	
S	s	{7};	
int	x	=	s;	 //	x	=	s.operator.();	that	is,	x	=	s.a		
s	=	9;	 	 //	s.operator.()	=	9;	that	is,	s.a	=	9	

	
This	can	come	in	handy.	However,	consider	the	proposals	to	allow	x.f()	to	invoke	f(x)	(Glassborow,2007],	
[Sutter,2014],	 [Stroustrup,2014],	 [Stroustrup&Sutter,2015]),	 generalizing	 what	 we	 already	 do	 for	
operators,	such	as	==,	and	for	begin()	in	a	range-for.	Should	such	a	proposal	ever	succeed,	we	would	be	
able	to	invoke	non-member	functions	through	operator.():	If	x.operator.().f()	does	not	correctly	resolve	
to	a	member	function	X::f(),	we	try	to	resolve	it	to	f(x.operator.()).	For	example:	
		

struct	S	{	
	 int&	operator.()	{	return	a;	}		
	 int	a;	
};	
	
S	s	{7};	
int	x	=	s.sqrt();		//	s.operator.().sqrt()	resolves	to		sqrt(s.operator.())	that	is	sqrt(s.a)	

	

Stroustrup,	Dos	Reis	 Smart	References	 P0416	

15	
	

Since	 int	 has	 no	member	 functions,	 s.operator.().sqrt()	makes	 no	 sense,	 so	we	 try	 sqrt(s.operator.())	
and	succeed.	
	
As	 for	 operator->(),	 errors	 relating	 to	 the	 return	 type	 should	 be	 diagnosed	 only	 if	 the	 operator.()	 is	
actually	used.	

4.11	The	definition	of	operator.()	
There	 are	no	 specific	 restrictions	on	 to	definition	of	operator.().	 For	 example,	we	might	 implement	 a	
version	of	the	“wrap-around”	pattern	[Stroustrup,2000]:	
	

template	<class	X>	
class	Ref	{	
public:	

struct	Wrap	{			
Wrap(X*	pp)		:	p	{pp}	{	before();	}	
~Wrap()		{	after();	}	
X&	operator.()	{	access(p);	return	*p;	}		
X*	p;	

};	
			 Ref(X*	pp)	:p{pp}		{}	
			 Wrap	operator.()	{	return	Wrap(p);	}	
	 //	…	
private:	

X*	p;	
};	
	
void	foo(Ref<X>&	x)	
{	

x.foo();		 	 //	x.operator.().foo()	
	 	 	 //	Wrap(x.p).foo()	

//	before();	acess(x.p);	(x.p)->foo();	after()	
auto	v	=	x.bar();	 //	auto	v	=	x.operator.().bar();	

//	auto	v	=	Wrap(x.p).bar();	
//	roughly:	before();	access(x.p);	auto	v	=	(x.p)->bar();	after()	

}	
	
The	usual	scope	rules	ensure	that	the	two	operator.()s	won’t	get	confused	(by	the	compiler).	

4.12	Overloading	operator.()	
Since	 operator.()	 doesn’t	 take	 an	 argument,	 overloading	 seems	 implausible.	 However,	 to	 cope	 with	
const,	we	must	at	least	be	able	to	overload	on	this.	For	example:	
	

struct	SS	{	
	 T&	operator.()	{	return	*p;	}		
	 const	T&	operator.()	const	{	return	*static_cast<const	T*>(p);	}	
	 //	…	
private:	
	 T*	p;	

Stroustrup,	Dos	Reis	 Smart	References	 P0416	

16	
	

};	
	
void	(SS&	a,	const	SS&	ca)	
{	
	 a.f();	 //	calls	non-const	member	T::f()	
	 ca.f();	 //	calls	const	member	T::f()	
}	
	

This	is	simply	the	usual	rules	applied,	as	for	operator->().	
	
Beyond	that,	we	can	allow	selection	based	on	how	a	set	of	operator.()	were	used.	Consider:	
	
	 struct	T1	{	
	 	 void	f1()	
	 	 void	f(int);	
	 	 void	g();	
	 	 int	m1;	
	 	 int	m;	
	 };	
	

struct	T2	{	
	 	 void	f2()	
	 	 void	f(const	string&);	
	 	 void	g();	
	 	 int	m2;	
	 	 int	m;	
	 };	
	
	

struct	S3	{	
	 T1&	operator.()	{	return	p;	}		//	use	if	the	name	after	.	is	a	member	of	T1	
	 T2&	operator.()	{	return	q;	}		//	use	if	the	name	after	.	is	a	member	of	T2	
	 //	…	
private:	
	 T1&	p;	
	 T2&	q;	
};	
	
void	(S3&	a)	
{	
	 a.g();	 	 //	error:	ambiguous	
	 a.f1();	 	 //	calls	a.p.f1()	
	 a.f2();	 	 //	call	a.q.f2()	
	 a.f(0);	 	 //	calls	a.p.f(0)	
	 a.f(“asdf”);	 //	call	a.q.f	string(“asdf”)	
	
	 auto	x0	=	a.m;	 	 //	error:	ambiguous	
	 auto	x1	=	a.m1;		 //	a.p.m1	

Stroustrup,	Dos	Reis	 Smart	References	 P0416	

17	
	

	 auto	x2	=	a.m2;		 //	a.q.m2	
}	
	

Here,	 the	 compiler	 looks	 into	 T1	 and	 T2	 (the	 return	 types	 of	 the	 two	 operator.()s,	 select	 the	 most	
appropriate	member	from	either	 (if	any)	 	and	then	use	the	appropriate	operator.()	 for	that	member’s	
class.	 Member	 selection	 is	 done	 by	 ordinary	 overload	 resolution	 between	 the	 results	 of	 the	 two	
operator.()s.	Note	that	we	look	into	T1	and	T2	individually,	rather	than	into	the	union	of	the	scopes	of	
T1	 and	 T2.	 This	 (among	 other	 things)	 allows	 us	 to	 have	 a	 simple	 proxy	 to	 an	 “object”	 composed	 of	
several	separately	allocated	parts.		
	
Resolving	an	expression	involving	a	smart	reference	can	involve	several	operations:	
	

1. When	we	look	for	an	operator.(),	we	may	find	it	in	a	base	class.	That’s	a	built-in	conversion.	
2. When	we	have	found	an	operator.(),	 it	may	return	a	type	with	operator.()	defined,	so	we	can	

find	a	sequence	of	operator.()s.	The	application	is	a	bit	like	a	conversion	(and	like	a	dereference	
of	a	built-in	reference)	but	we	don’t	count	it	as	a	conversion.	

3. When	we	find	the	final	value,	a	conversion	may	be	needed	to	invoke	the	operation.	
	

We	don’t	propose	to	 impose	any	new	restrictions	on	the	number	of	conversions.	Following	a	chain	of	
operator.()s	is	a	recursive	application	of	the	rules	for	resolving	a	single	use	an	operator.().	

4.14	Conversions	
If	we	define	both	an	operator.()	returning	a	T	and	a	conversion	operator	to	T,	we	can	have	an	apparent	
ambiguity:	

struct	Ref	{	
	 Ref(X&);	
	 X	operator.();	
	 operator	X();	
	 //	…	
};	
	
X	x;	
Ref	r	{x};	
X	x	{r};		//	operator.()	or	operator	X()?	
	

Because	operator	X()	is	an	operation	declared	on	the	handle,	it	takes	priority	over	operator.():	
	
X	x	{r};		//	operator	X()!	

	
If	both	operations	are	defined	for	a	type	they	are	likely	to	be	identical.	

4.15	Member	Types	
In	 addition	 to	 data	 and	 function	 members,	 a	 class	 can	 have	 type	 members.	 Can	 these	 be	 accessed	

through	 operator.()?	 No.	 This	 proposal	 only	 applies	 to	 names	 that	 could	 be	 accessed	 using	 dot	 (.).	
Consider:	

	 struct	S	{	

Stroustrup,	Dos	Reis	 Smart	References	 P0416	

18	
	

	 	 using	T	=	int;	
	 	 //	…	
	 };	
	
	 S	s;	
	 s.T	x;	 //	error:	we	can’t	access	a	member	type	using	dot	
	
Adding	an	operator.()	to	S	would	make	no	different	to	that	example.	
	
As	usual,	we	can	use	types	in	combination	with	::	for	disambiguation.	For	example:	
	

struct	B1	{	int	a,	b1;	};	
	
struct	B2	{	int	a,	b2;	};	
	
struct	S	:	B1,	B2	{	};	
	
void	ff(S&	s)	 	 //	traditional	use	
{	
	 s.b1	=	7;	
	 s.b2	=	8;	
	 s.a	=	9;	 	 //	error:	ambiguous	
	 s.B1::a	=	10;	
	 s.B2::a	=	11;	
}	

	
The	rules	for	using	S	through	a	“smart	reference”	are	unchanged	from	those	for	using	it	through	a	built-
in	reference:	
	

void	ff(Ref<S>	s)	 //	use	through	“smart	reference”	
{	
	 s.b1	=	7;	
	 s.b2	=	8;	
	 s.a	=	9;	 	 //	error:	ambiguous	
	 s.B1::a	=	10;	 //	s.operator.().B1::a	=	10	
	 s.B2::a	=	11;	 //	s.operator.().B2::a	=	11	
}	

	
This	technique	achieves	for	composition	using	static	calls	what	multiple	inheritance	archives	with	virtual	
calls.	Smart	references	have	less	complexity	and	lower	run-time	overhead.	

56	Examples	
Here	are	a	few	examples	of	possible	uses	of	operator.().	

Stroustrup,	Dos	Reis	 Smart	References	 P0416	

19	
	

5.1	Pimpl	
This	pattern	separates	a	stable	interface	from	a	potentially	changing	implementation	in	a	way	that	does	
not	 require	 recompilation	when	 the	 implementation	 changes.	 There	 are	many	 variants	 of	 Pimpl.	 For	

example:	

Here	is	the	supposedly	stable	part:	
	

class	X	{	
public:	
	 int	foo();	 //	noninline	=>	rather	stable	
private:	
	 int	data;	 //	not	used	through	operator.()	
};	

	
Only	the	public	interface	(here	int	foo();)	is	used	through	the	handle:	

template<class	T>	
class	Handle	{	
public:	
	 Handle(T*	pp)	:p{	pp	}	{}	 //	access		the	T	exclusively	through	p	
	 T&	operator.()	{	return	*p;		}		 //	don’t	leak	p	
private:	
	 T*	p;	
};	

	
Here	is	the	potentially	less	stable	implementation:	
	

class	X	{	
public:	
	 int	foo();	 //	noninline	=>	rather	stable	
private:	
	 int	data;	 //	not	used	through	operator.()	
};	
	
int	X::foo()	{	return	data;		}	 //	uses	representation:	not	very	stable	

	
A	use	where	all	access	to	an	X	goes	through	Handle<X>’s	pointer:	
	

void	f(Handle<X>	h)	
{	
	 int	d	=	h.foo();	
}	

	
int	main()	
{	
	 Handle<X>	hx{	new	X{	7	}	};	
	 f(hx);	
}	

Stroustrup,	Dos	Reis	 Smart	References	 P0416	

20	
	

The	members	of	X	need	not	be	virtual,	but	could	be.	Virtual	functions,	or	other	trickery,	could	be	used	to	
eliminate	implementation	details	from	the	header	seen	by	operator.().	

5.2	Adding	operations	in	a	proxy	
Consider	how	we	might	provide	a	standard	interface	for	a	class.	We	can	provide	a	set	of	functions	as	an	

interface,	adding	it	to	whatever	else	a	class	might	offer:	 	

template<typename	T>		 //	T	must	have	a	<	
	 struct	totally_ordered	{	
	 	 totally_ordered(const	T&	t)	:	val{t}	{	}	
	 	 bool	operator<=(const	totally_ordered&	y)	const	{	return	not(y.val	<	val);	}	
	 	 bool	operator>(const	totally_ordered&	y)	const	{	return	y.val	<	val;	}	
	 	 bool	operator>=(const	totally_ordered&	y)	const	{	return	not	(val	<	y.val);	}	
	

T&	operator.()		{	return	val;	}	 //	don’t	leak	a	pointer	to	val	
	 private:	
	 	 T	val;	 //	here	is	the	value	(totally_ordered	is	not	a	reference	type)	
	 };	
	
	 struct	basic_ordinal	{	
	 	 BasicOrdinal(std::size_t	i)	:	val{i}	{	}	
	 	 bool	operator<(basoc_ordinal	y)	const	{	return	val	<	y.val;	}	
	 private:	
	 	 std::size_t	val;	
	 };	
	
	 using	Ordinal	=	totally_ordered<basic_ordinal>;	
	

It	 is	a	good	guess	that	a	simple	inline	operator.()	 ,	 like	the	one	above,	will	be	inlined.	Thus,	the	use	of	
totally_ordered	incurs	no	overhead	compared	to	handcrafted	code.	

Naturally,	 this	 could	 be	 done	 better	 with	 concepts,	 and	 be	 expressed	 far	 simpler	 with	 the	 proposed	
terse	 syntax	 for	 comparisons	 [Stroustrup,2014].	 However,	 this	 is	 an	 example	 of	 a	 general	 technique,	

rather	than	a	recommendation	of	how	to	do	operator	functions.	

5.3	A	remote	object	proxy	
Here	is	a	simple	remote	object	proxy	that	reads	a	copy	of	a	symbolically-named	remote	object	into	main	
memory	upon	construction	and	back	again	upon	destruction:	

	
template<class	T>	
class	Cached	{	
public:	
	 Cached(const	string&	n);	 //	read	n	into	memory	and	bind	to	obj	
	 ~Cached();		 	 	 //	write	obj	back	into	s	(transaction	safe)	
	
	 void	flush();	 	 	 //	write	obj	back	into	s	(transaction	safe)	

Stroustrup,	Dos	Reis	 Smart	References	 P0416	

21	
	

	 void	read();	 	 	 //	read	name	into	obj	
	 //	…	
	
	 T&	operator.()	{	if	(!available)	read();	return	obj;	}	
private:	
	 T&	obj;	
	 bool	available;	 //	a	local	copy	is	available	through	obj	
	 string	name;	
};	

5.4	Optional	
Here	 is	 a	 simplified	Optional	 implementation	 (we	 capitalize	 to	 emphasize	 that	we	 are	 not	 aiming	 for	
compatibility	with	std::optional):	
	

template<typename	T>	
class	Optional	{		
public:	
	 T&	operator.()	{	if	(opt_empty())	throw	Empty_optional{};	return	obj;	}	
	
	 Optional()	:	dummy{true},	b{false}		{}	
	 Optional(T&&	xx)	:obj{xx},	b{true}	{	}	

//	…	
Optional&	operator=(const	T&	x)	

	{	if	(opt_empty())	new(&obj)	T{x};	else	obj=x;	b=true;	return	*this;	}	
	 	 //	…	

	 bool	opt_empty()	{	return	!b;	}	
	 T	value_or(T&&	v)	{	return	(opt_empty())	?	v	:	obj;	}	
	 template<typename	Fct>	

T	value_else(Fct	err)	{	return	(opt_empty())	?	err()	:	obj;	}	
private:	
	 union	{	

T	obj;		 	 //	only	valid/initialized	if	b==true	
bool	dummy;	 //	used	only	to	suppress	initialization	of	obj	

	 };	
	 bool	b;	
};	
	

Obviously,	 a	 lot	 of	 details	 are	missing,	 but	what	we	 are	 interested	 in	 here	 is	 the	 use	 and	 interaction	
between	the	handle	and	the	value.	
	
	 Optional<complex<double>>	oz0	{};	
	 Optional<complex<double>>	oz	{{1,2}};	
	
	 complex<double>>&	r0	=	oz0;	 //	throws:	oz0.operator.()	finds	oz0.b==false	
	 complex<double>>&		x1	=	oz2;	 //	x1	is	{1,2}	
	
	 auto	z0	=	oz0;	 	 	 //	z0	is	an	Optional	
	

Stroustrup,	Dos	Reis	 Smart	References	 P0416	

22	
	

	 if	(!oz0.opt_empty())	{	
//	use	oz0	

	}	
	 auto	x2	=	oz2.value_or({0,0});	
	 oz0	=	{3,4};	
	

auto	x3	=	oz0*oz1+{5,6};	 //	x3	is	complex<double>		
auto	x4	=	oz1.value_else([]	{	cerr	<<	“Hell	is	loose!”;	return	complex<double>{0,0};	})	

	
Using	Optional<X>	exactly	as	an	X	is	possible,	but	would	probably	lead	to	too	many	obj_empty()	tests,	
therefore	we	provide	obj_empty()	as	a	public	function.	This	is	an	example	of	where	the	“handle	priority”	
policy	matters.	We	chose	the	slightly	awkward	name	obj_empty,	rather	than	a	popular	name,	like	valid,	
to	make	name	clashes	between	the	handle	and	the	value	type	less	likely.	
	
It	would	have	been	nice	if	we	could	have	overloaded	operator.()	on	lvalue	vs.	rvalue.	Then,	we	could	
have	eliminated	the	operator=.	Note	that	we	are	relying	on	operator.()	being	used	on	all	accessed	not	
mashed	by	the	handle,	even	the	simple	read	of	an	Optional<X>.	
	

5.6	An	ordinary	reference	
Can	a	smart	reference	be	defined	to	do	what	a	built-in	reference	can	do?	Almost;	there	are	a	few	
“magic”	properties	of	a	built-in	reference	that	cannot	be	matched	exactly.	However,	seeing	how	close	
we	can	get	is	a	good	test	of	the	mechanism,	just	as	trying	to	define	a	class	Int	that	behaves	like	a	built-in	
int.	
	

template<class	X>	
class	Ref	{	
public:	
	 Ref(X&	r)	:p{&r}	{}		
	 X&	operator.()	{	return	*p;	}	
	 X&	operator=(Ref&	arg)	{	return	*p	=	*arg.p;	}	 //	assign	values!	
	 Ref(const	Ref&	arg)	:p{arg.p}	{}		 	 //	assign	handles	
	 //	…	
private:	
	 X*	p;	
};	
	
X	x	{111};	
Ref<X>	r	{x};	 //	smart	reference	to	x	
X&	rx	{x};	 //	built-in	reference	to	x	
	
auto	r2	=	r;	 //	r2	is	a	copy	of	x	
auto	rx2	=	rx;	 //	rx2	refers	to	x	(!!	Note)	
	
X&	rx3	=	rx;	 //	rx3	also	refers	to	x	
Ref<X>	r3	=	r;	 //	r3	also	refers	to	x	
	
R2	=	x;	 	 //	copy	values:	*r2.p	=	x	

Stroustrup,	Dos	Reis	 Smart	References	 P0416	

23	
	

R2	=	x;	 	 //	copy	values:	r2.operator=(Ref<X>{x});	that	is	*r2.p	=	*Ref<X>{x}.p	
	

Binding	to	a	Ref	doesn’t	extend	the	lifetime	of	an	X	the	way	binding	to	an	X&	does.	
	
We	decided	against	having	auto	deduce	the	value	type	(as	the	built-in	reference	does)	because	that	
would	have	caused	problems	for	common	use	cases	(§4.3).	Consider,	we	can:	
	

• have	auto	and	template	argument	deduction	be	the	same	for	smart	references	
• have	a	smart	reference	deduce	as	a	smart	reference	for	argument	passing	
• have	smart	references	and	built-in	references	behave	the	same	for	deduction	

	
We	don't	see	how	we	could	have	all	three.	If	anyone	has	a	conclusive	argument	either	way,	we	would	be	
most	responsive.	We	consider	it	essential	that	a	smart	reference	passed	as	a	template	argument	is	
passed	as	a	smart	reference	because	otherwise	template	functions	and	ordinary	functions	will	be	
dramatically	different.	

6.5	More	examples	
More	reasonably	terse	and	reasonably	real-world	examples	are	welcome.	

8	Acknowledgements	
Thanks	to	Herb	Sutter	and	Ville	Voutilainen	for	discussions	of	operator.()	ideas,	to	the	CWG	for	finding	
an	inconsistency,	and		to	Holger	Grund	and	Jeff	Zhuang	for	constructive	comments	on	a	draft	of	this	
paper.		

9	References	
[Adcock,1990]	 James	Adcock:	Request	for	Consideration	-	Overloadable	Unary	operator.().	

http://www.openstd.org/jtc1/sc22/wg21/docs/papers/1990/WG21%201990/X3
J16_90%20WG21%20Request%20for%20Consideration%20-
%20Overloadable%20Unary%20operator.pdf	

[K&S,1991]	 A.	Koenig	and	B.	Stroustrup:	Analysis	of	Overloaded	operator.().	

http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/1991/WG21%201991/X3J16_91-
0121%20WG21_N0054.pdf	

[Stroustrup,1994]	 B.	Stroustrup:	The	Design	and	Evolution	of	C++.	Addison-Wesley.	

[Powell,2004]	 	 G.	Powell,	D.	Gregor,	and	J.	Jarvi:	Overloading	Operator.()	&	Operator.*().	

		 	 	 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1671.pdf	

	

[Stroustrup,2000]	 B.	Stroustrup:	Wrapping	C++	Member	Function	Calls.	
The	C++	Report.	June	2000,	Vol	12/No	6.	

Stroustrup,	Dos	Reis	 Smart	References	 P0416	

24	
	

[Stroustrup,2014]		 B.	Stroustrup:	Default	Comparisons.	N4175.	

