Document Number: P0366R0
Date: 2016-05-30
Authors: Victor Luchangco, victor.luchangco@oracle.com
Michael Spear, spear@cse.lehigh.edu
Michael Wong, michael@codeplay.com
with other members of the transactional memory study group (SGS),
including:
Hans Boehm, hans.boehm@hp.com
Brett Hall, bretthall@fastmail.fm

Jens Maurer, jens.maurer@gmzx.net
Maged Michael, magedm@us.ibm.com
Torvald Riegel, triegel@redhat.com
Michael Scott, scott@cs.rochester.edu

Tatiana Shpeisman, tatiana.shpeisman@intel.com

Project: Programming Language C++, SG5 Transactional Memory
Reply to: Michael Wong, michael@codeplay.com(Chair of SGS5)
Revision: 1

Extending the Transactional Memory Technical
Specification with an in_transaction Statement

Abstract

Changes from previous versions
Introduction

Motivation

Alternatives

Discussion of Alternatives
Synchronized Blocks
Experience

Conclusion and Recommendation
Acknowledgements

References

Abstract

This paper explores various ways to extend The Technical Specification for C++ Extensions for
Transactional Memory (TM TS) [1] proposed by Study Group 5 (SGS5): Transactional Memory
to allow code to dynamically determine and exploit whether it is executed within a transaction.


mailto:victor.luchangco@oracle.com
mailto:victor.luchangco@oracle.com
mailto:spear@cse.lehigh.edu
mailto:fraggamuffin@gmail.com
mailto:hans.boehm@hp.com
mailto:hans.boehm@hp.com
mailto:bretthall@fastmail.fm
mailto:bretthall@fastmail.fm
mailto:jens.maurer@gmx.net
mailto:magedm@us.ibm.com
mailto:magedm@us.ibm.com
mailto:triegel@redhat.com
mailto:triegel@redhat.com
mailto:scott@cs.rochester.edu
mailto:tatiana.shpeisman@intel.com

Changes from previous versions

N/A

1. Introduction

One of the challenges of exploiting transactional memory (TM) is that certain operations are
impossible or expensive to execute within a transaction. The Technical Specification for C++
Extensions for Transactional Memory (TM TS) [1] addresses this issue by designating such
operations as transaction-unsafe and forbidding these operations from being executed within (the
dynamic extent of) an atomic block. To enable static checking of this restriction, the TM TS also
requires that functions called within an atomic block by declared transaction-safe. Such
functions must not execute any transaction-unsafe operations, and must not call any functions
that are not transaction-safe.

Sometimes, a programmer may want a function that executes different code depending on
whether it is called from within a transaction. The TM TS does not provide any mechanism for a
function to determine whether it is called from within a transaction. In this paper, we describe
some motivating examples for such functionality, propose a few different ways to provide it, and
discuss some issues raised by providing this functionality and the different ways of providing it.
For now, we say that code is executed within a transaction if it is executed within the dynamic
extent of an atomic or synchronized block, but this is one of the issues we discuss later.

2. Motivation

One motivation for executing different code within a transaction than outside any transaction is
to preserve the performance of nontransactional code, without restricting the programmer. For
example, consider the memcpy () function, which performs reads and writes of memory, and
hence ought to be safe to use within transactions. However, nontransactional implementations
typically exploit in-line assembly to efficiently do mathematical (SAXPY computations), bitwise
(population count), and memory (memcmp) operations, among others. Because these operations
are typically not transaction-safe, we must use another (presumably less efficient)
implementation when executing within a transaction. By allowing a function to execute different
code paths for transactional and nontransactional contexts, we can deliver peak performance for
nontransactional code, without sacrificing transaction safety.

A second motivation is to explicitly alter the behavior of a function when it is called
transactionally. One use case we have identified is exceptional behavior: Within the context of



an atomic cancel block, instead of calling std: : terminate or std: :abort, we may
wish to throw an exception that causes the transaction to abort and catch this exception outside
the transaction, exploiting the “failure atomicity” semantics specified by the TM TS. Another
example is to elide (transaction-unsafe) diagnostic messages when executing within a
transaction.

A third motivation is to facilitate the eventual migration of legacy code (to include user code, as
well as the STL and portions of the C Standard Library) to an optimal transaction-safe
implementation. In this setting, a programmer might initially create a naive transaction-safe
implementation, to enable broad use of transactions, and then optimize those components
piecemeal, as the need arises.

3. Alternatives

We now propose six variant ways to provide this functionality. In lieu of a formal specification,
we illustrate these alternatives by showing how to implement a transaction-safe memcpy ()
function given the two functions memcpy safe () and memcpy asm (), which respectively
implement memcpy () using only basic memory operations, and using in-line assembly and
vector instructions. (All that is relevant is that memcpy safe () is transaction-safe and
memcpy asm () is not, and that we want to execute the latter when possible, i.e., when not
within a transaction.) Most of these alternatives propose a new keyword or library function, and
the proposed names are intended only to be suggestive, not final.

First, we could use a new keyword in transaction to introduce a lexical structure with two
blocks providing the two alternative code paths. The memcpy () function could be written:

void* memcpy (void* dest, void* src, size t n) transaction safe ({
in transaction {
return memcpy safe(dest, src, n);
} else {
return memcpy asm(dest, src, n);

}

Second, we could provide a std: :in transaction () library function that returns true
when called from within a transaction, and false otherwise. Furthermore, when this function
is used as a condition, a code path in which it is guaranteed to return false is allowed to
contain transaction-unsafe code even if it appears within a transaction-safe function. Using this
function, we could write our memcpy() function as follows:

void* memcpy (void* dest, void* src, size t n) transaction safe ({
if (std::in transaction()) {
return memcpy safe (dest, src, n);



} else {
return memcpy asm(dest, src, n);

}

A third option provides the std: :in transaction () library function described above,
except that it does not allow transaction-safe code to appear within a protected branch of a
transaction-safe function. Instead, this functionality is provided by a block, introduced by a new
not in transaction keyword, that explicitly asserts that it is not within a transaction. If
such a block is executed within a transaction, std: : abort is called. With this alternative,
memcpy() looks as follows:

void* memcpy (void* dest, void* src, size t n) transaction safe ({
if (std::in_transaction()) {
return memcpy safe(dest, src, n);
} else {
not in transaction { return memcpy asm(dest, src, n); }

}

A fourth alternative is to provide a transaction-safe std: : transaction select () library
function that takes two function objects as arguments and call the first if within a transaction and
the second if not within a transaction. With this alternative, memcpy() looks as follows:

void* memcpy (void* dest, void* src, size t n) transaction safe ({
void *retval;
transaction select (
([10() { retval memcpy safe(dest, src, n); }),
([] () { retval = memcpy asm(dest, src, n); })
return retval;

A fifth alternative, already present in GCC, is based on an idea originally proposed by Intel [2].
This mechanism, called “transaction wrap”, indicates that some transaction safe
function should be used in place of the original function when that function is called from a
transaction. With this alternative, memcpy() can be written as follows:

void* memcpy (void* dest, void* src, size t n) {

return memcpy asm(dest, src, n);

void* memcpy safe(void*, void*, size t) transaction safe
[[transaction wrap (memcpy) ]];



The sixth alternative is similar, but uses overloading rather than the transaction wrap
keyword. That is, it allows a function to have overloaded definitions that differ only in whether
the function is declared transaction-safe. A transaction-safe definition is considered more
specific than one that is not transaction-safe, and it is applicable only when called from within a
transaction. Thus, memcpy() can be written as follows:

void* memcpy (void* dest, void* src, size t n) {
return memcpy asm(dest, src, n);

void* memcpy (void* dest, void* src, size t n) transaction safe ({
return memcpy safe(dest, src, n);

}

4. Discussion of Alternatives

We briefly enumerate the strengths and weaknesses of these mechanisms below.

In the case of transaction wrap, the main benefit is that the original (unsafe) code does not
require any modification. Instead, a compilation unit can include a header that declares that
certain transaction safe functions should wrap their unsafe counterparts, and within that
translation unit, the safe code will be called from any transaction or transaction safe
version of a function emitted by the compiler. This approach is also compatible with C. Its
weaknesses include that it operates at the granularity of functions, and that does not require those
functions to be co-located with the unsafe original. This can create maintenance problems for
programmers, since two versions of code, in two separate files, can be reached by the same call
site. Similarly, debuggers and profilers will need to be updated to understand the new
mechanism. From a verification standpoint, since the wrapping code cannot be proven to have
the same behavior as the original code, transaction wrap could pose problems for
verification.

The overloading variant shares these advantages and disadvantages with

transaction wrap, and it may be more natural both for programmers and to integrate tool
support. Although it requires a change to the type system, the basic TM proposal already
requires such a change to support the static checking of t ransaction safe functions, so
this additional change might not add too much more overhead. However, resolving the
overloading implied by this variant differs from existing overloading resolution in that it depends
on the context in which the call is made (i.e., whether it is within a transaction), not just the types
of its arguments. There are analogies to weak linking, which may be a problem on some
operating systems.

In contrast, the other four variants (i.e., the first four variants) all require modifying legacy code:
To make a function transaction safe, one must edit the function to add an



in transaction block, oruse the in transactionor transaction select
function. On the other hand, code maintenance should be simplified, since both versions of a
function should be stored in the same file.

A weakness of the in transaction block variant is that it requires the addition of a new
keyword to the language. It may also require somewhat awkward or repetitive code, if, for
example, we want to use the transaction-safe code path in some cases when executing outside a
transaction.

Byusinga std::in transaction () function, the second variant avoids these issues.
However, this approach requires significantly more nuance in the compiler. Consider the
following example:

foo = std::in_transaction();
if (!compute (foo))
asm(...);

In this case, this code is safe if and only if compute (foo) is true whenever is foo is true (so
that asm (. . .) is not executed in that case). In general, determining this is undecidable, so we
must spell out a set of statically checkable restrictions that will allow the compiler to conclude
that this code is transaction-safe. This requirement seems onerous. (We also observed that if we
generate separate implementations of transaction-safe functions for executing within and outside
of transactions, then within those separate implementations, this function is fixed, so we might
be able to exploit the “constexpr if”” mechanism. However, it wasn’t clear how to do this, or if it
makes sense considering that some implementations make choose a different approach.)

The third variant avoids this issue by moving the responsibility to the programmer to indicate
that the code path is not within a transaction. However, it introduces a keyword.

The fourth variant removes the need for a keyword by using a library function that takes function
objects to mimic the in transaction block of the first variant. It doesn’t address the
possible repetitiveness of the code, and requiring the code in the two paths to be encapsulated in
function objects can make the code clunky, but the uses of this mechanism might be sufficiently
contained that this is not a serious issue. Another strength of this approach is that behavior will
be easier to verify, since the version of the function called from any context is known at compile
time. However, since lambdas are used, this approach may not be compatible with C.

5. Synchronized Blocks

One issue to consider that is relevant to all variants is whether code within a synchronized block
(but not an atomic block) should be considered as executing within a transaction. On one hand,
transaction-unsafe code is permitted within a synchronized block. On the other hand, executing
such code will likely rule out speculative implementations that are part of the motivation for



using synchronized blocks rather than traditional locking. One possibility is to leave it
undetermined, so that programmers using this mechanism within a synchronized block must be
prepared for either alternative.

There is some nuance to this situation. Consider the following:

void safe(...) transaction safe { ... }
volid unsafe(...) {
safe () ;

-7

synchronized {
safe(...);
unsafe(...);

In this example, a transaction-safe function (safe) is called twice from the same synchronized
block. In the first case, the transaction may be running speculatively. In the second, a call to an
unsafe (and uninstrumented) function (unsafe) is made, and it, in turn, calls safe.

Since unsafe is not instrumented, in the case of transaction wrap, it must call the
uninstrumented version of safe. Note that the function is not likely to be rewritten on account
of transactions, so it would not contain a t ransaction select call either. However, the
first call to safe might use the instrumented version. With transaction wrap, then, it
appears that the most reasonable semantics (all calls to a function made within a synchronized
block have the same behavior) can only be achieved by exclusively calling the uninstrumented
version of safe. That, however, is likely to lead to poor performance (unsafe calls often result
in serialization of transactions). It could be possible for programmers to avoid this behavior by
using a nested atomic block, and calling safe from it. Such an approach is cumbersome, to
say the least.

Note that the first four variants do not have this problem: whether in_transaction () is
defined as returning t rue or false when called in a synchronized block, the behavior will
still be consistent.

6. Experience

The transaction wrap mechanism has been available in the GCC TM implementation
since GCC 4.9. It has been used in a number of research projects, but we do not have evidence
of its use in production code.



In the Wyatt STM, a library implementation of TM, a function similar to
std::in transaction () was used to manage (unsafe) timing code in functions called
from within a transaction [3].

7. Conclusion and Recommendation

Further discussion and experience are required.

8. Acknowledgements

We wish to acknowledge and thank committee members and others who have given us valuable
feedback.

9. References

1. Wong (ed). “Technical Specification for C++ Extensions for Transactional Memory”.
N4514

2. Nietal. “Design and Implementation of Transactional Constructs for C/C++”. OOPSLA
2008.

3. Hall. “Industrial Experience with Transactional Memory at Wyatt Technology”. N4438.



