Document number: PO361R0

Date: 2016-05-30

Project: Programming Language C++, SG14, SG1, Library Evolution WG

Authors: Hartmut Kaiser, Thomas Heller, Michael Wong

Emails: hartmut.kaiser@gmail.com, thomas.heller@cs.fau.de, michael@codeplay.com
Reply to: hartmut.kaiser@gmail.com

Invoking Algorithms Asynchronously

1. Introduction

3.1 Task modifier tag type for execution policies

3.2 Task modifier instance for execution policies

3.3 Asynchronous execution policy type trait

3.4 Sequential asynchronous execution policy

3.5 Parallel asynchronous execution policy

3.6 Parallel+Vector asynchronous execution policy

3.7 Generator function operators added to existing execution policies
References

1. Introduction

This paper describes new execution policies enabling the asynchronous execution of the parallel
algorithms as defined by the Parallelism TS (N4507) [1]. This paper is part of an effort to design and
propose uniform parallelism APIs in C++ with the goal to make the language independent from any
external solutions (such as OpenMP or OpenACC). There have been several discussions in SG1 and
SG14 during the recent committee meetings in Kona and Jacksonville expressing interest in enabling
asynchronous execution of parallel algorithms.

This paper also continues the specific features and needs towards supporting Heterogeneous Devices
which was discussed in an evening session at Jacksonville 2016 [2]. In that evening session, Michael
Wong presented the motivation to support Heterogeneous devices and how it has been done in
OpenMP, and was followed by two C++-specific designs. Hartmut Kaiser presented the HPX design
which caters more to a high-performance computing viewpoint. Lee Howes presented the Khronos
SYCL/OpenCL design which caters more to a consumer device viewpoint. The discussion that followed,
indicated enthusiastic support to move C++ towards full support for Heterogeneous computing by
2020, likely through an initial TS.

In general, all parallel algorithms as defined in N4507 are synchronous. This means that the execution
of an algorithm returns only after its operation has completely finished. It is well known, that this

mailto:hartmut.kaiser@gmail.com
mailto:thomas.heller@cs.fau.de
mailto:michael@codeplay.com
mailto:hartmut.kaiser@gmail.com

form of fork-join parallelism imposes an implicit barrier onto the parallel execution flow. This is also
currently the case in OpenMP parallel regions. This barrier impedes parallel efficiency and efficient
resource utilization of the used processing units as the execution has to ‘wait’ for the thread of
execution which performs the necessary join operation at the end of the execution of the algorithm.
The user has no means of controlling how and when this barrier is imposed and also has no means of
avoiding the resource starvation associated with it.

A possible remedy for this problem is to allow for the algorithms to be executed asynchronously.
While this does not remove the implicit barrier at the end of the execution of any of the algorithms, it
allows to reduce the resource starvation by allowing to perform other, unrelated tasks while the
join-operation (and the associated tapering of parallel work) is being executed.

This paper proposes to enable such an asynchronous execution of all algorithms as defined by N4507
by introducing special execution policies which essentially launch the execution of the algorithm on a
new thread of execution while the algorithm invocation itself now returns a std: : future
representing the result of its execution.

Returning a Future object from the algorithm has the additional advantage of being able to integrate
the parallel algorithms with other asynchronous codes which also rely on representing their results
through std::future. This is especially important in light of the proposed additions to std::future as
described by the Concurrency TS (4501) [3].

The proposed extensions have been implemented in HPX [4] which has an implementation of N4507.
They are in use in production codes for some time.

2. Summary of the Proposed Functionality

An asynchronous execution policy is an object which fulfills the concept of an execution policy as
defined in N4507. Additionally it instructs a parallel algorithm to launch its execution on a new thread
of execution and changes the algorithm to return a Future object representing the result of the
execution of the original algorithm.

We propose that every one of the already specified execution policies (seq, par, and par_vec) has a
corresponding asynchronous execution policy which is generated by seq(task), par(task), and
par_vec(task).

With those extensions, the following use cases of the parallel algorithms library are possible:

using namespace std::experimental::parallel::vil;
std::vector<int> data = { ... };

// legacy standard sequential sort
std::sort(data.begin(), data.end());

// explicitly sequential sort
sort(seq, data.begin(), data.end());

// permitting parallel execution
sort(par, data.begin(), data.end());

// permitting vectorized execution as well
sort(par_vec, data.begin(), data.end());

// NEW: asynchronous, sequential execution

std: :future<void> fl1 = sort(seq(task), data.begin(), data.end());

// ... perform other work

fl.get(); // synchronize with the asynchronous sequential sort()

// NEW: asynchronous execution, allow for parallelization of the algorithm
std::future<void> f2 = sort(par(task), data.begin(), data.end());

// ... perform other work

f2.get(); // synchronize with the asynchronous parallel sort()

// NEW: asynchronous execution, allow for parallelization and vectorization
// of the algorithm

std: :future<void> f3 = sort(par_vec(task), data.begin(), data.end());

// ... perform other work

f3.get(); // synchronize with the asynchronous parallel vectorized
sort()

3. Specification
Header <experimental/execution_policy> synopsis
The following definitions are being proposed to be added to this header file.

namespace std {
namespace experimental {
namespace parallel {
inline namespace v1 {

// 3.1, Task modifier tag type for execution policies
class task_execution_policy tag {};

// 3.2, Task modifier instance for execution policies
constexpr task_execution_policy tag task {};

// 3.3, Asynchronous execution policy type trait

template<class T> struct is_task _execution_policy;

template<class T> constexpr

bool is_ task _execution_policy v = is_task _execution_policy<T>::value;

// 3.4, Sequential asynchronous execution policy
class sequential_task_execution_policy;

// 3.5, Parallel asynchronous execution policy
class parallel task execution policy;

// 3.6, Parallel+Vector asynchronous execution policy
class parallel_vector_task_execution_policy;

// 3.7, Generator function operators added to existing execution policies
sequential_ task_execution_policy
sequential_execution_policy: :operator()(

task_execution_policy tag) const;

parallel task_execution_policy
parallel execution policy::operator()(
task_execution_policy tag) const;

parallel vector_task_execution_policy
parallel vector_execution_ policy::operator()(
task_execution_policy tag) const;

[)

3.1 Task modifier tag type for execution policies

class task_execution_policy tag { unspecified };

'task_execution_policy_tagis a unique type used to generate an asynchronous execution
policy from its non-asynchronous counterpart
3.2 Task modifier instance for execution policies

constexpr task_execution_policy_ tag task{};

'The header <experimental/execution_policy> declares a global object for the task modifier tag type.

3.3 Asynchronous execution policy type trait

template<class T> struct is_task_execution_policy { see below };

'is task_execution_policy can be used to detect parallel execution policies for the purpose of
excluding function signatures from otherwise ambiguous overload resolution participation.

?is_task_execution_policy<T> shall be aUnaryTypeTrait with a BaseCharacteristic of
true_type if Tis the type of a standard or implementation-defined asynchronous execution policy,
otherwise false_type.

[Note: This provision reserves the privilege of creating non-standard asynchronous execution policies
to the library implementation. —end note]

*The behavior of a program that adds specializations for is_task_execution_policyis
undefined.

3.4 Sequential asynchronous execution policy

class sequential_task_execution_policy { unspecified };

'The class sequential_task_execution_policy is an asynchronous execution policy type used
as a unique type to disambiguate asynchronous parallel algorithm overloading and require that a
parallel algorithm's execution may not be parallelized, that the algorithm should be executed
asynchronously, and that the return type of the algorithm should be a future<T>, where T is the
type as returned by the non-asynchronous version of the same algorithm.

3.5 Parallel asynchronous execution policy

class parallel task _execution_policy { unspecified };

!The class parallel task_execution_policy is an asynchronous execution policy type used as a
unique type to disambiguate asynchronous parallel algorithm overloading and indicate that a parallel
algorithm's execution may be parallelized, that the algorithm should be executed asynchronously, and
that the return type of the algorithm should be a future<T>, where T is the type as returned by the
non-asynchronous version of the same algorithm.

3.6 Parallel+Vector asynchronous execution policy

class parallel_vector_task_execution_policy { unspecified };

!The class parallel vector task_execution_policy is an asynchronous execution policy type
used as a unique type to disambiguate asynchronous parallel algorithm overloading and indicate that
a parallel algorithm's execution may be vectorized and parallelized, that the algorithm should be
executed asynchronously, and that the return type of the algorithm should be a future<T>, where T
is the type as returned by the non-asynchronous version of the same algorithm.

3.7 Generator function operators added to existing execution
policies

Every of the non-asynchronous execution policies as defined by N4507 has an added function
operator used to generate a corresponding asynchronous execution policy.

sequential_ task execution_policy
sequential_execution_policy::
operator() (task_execution policy tag) const;

parallel task execution_policy
parallel execution_policy::
operator()(task_execution _policy tag) const;

parallel vector_task_execution_policy
parallel vector_ execution policy::
operator() (task_execution_policy tag) const;

4 Exception Handling

All behavior regarding generating exceptions is unchanged from the parallelism TS except that none of
the algorithms shall directly throw any of the generated exceptions if invoked with an asynchronous
execution policy but deliver the exception through the returned future object.

5 Example

Given a synchronous algorithm gather:

template <typename BiIter, typename Pred>

pair<Bilter, BiIter>
gather(BiIter f, BiIter 1, BiIter p, Pred pred)

{
BiIter itl = stable partition(f, p, notl(pred));
BiIter it2 = stable_partition(p, 1, pred);
return make_pair(itl, it2);

}

the following example demonstrates how the proposed features can be used to compose more
complex asynchronous algorithms. The gather algorithm is meant to collect all elements in a given
range [, 1) atthe given position p for which a given boolean predicate pred is true. The
implementation above achieves that by invoking stable_partition twice, once for all elements in
the range [, p) while using the inverted predicate, and once for the elements in the range [p, 1)
using the predicate as is. The algorithm gather returns a pair of iterators marking the range of the
newly inserted elements.

The asynchronous version of the same algorithm (here gather_async), is called using the same
arguments, it however returns a future to the pair of result iterators.

template <typename BiIter, typename Pred>

future<pair<BilIter, Bilter>>
gather_async(BiIter f, BiIter 1, BiIter p, Pred pred)

{
future<BiIter> f1 = stable partition(par(task), f, p, notl(pred));
future<BiIter> f2 = stable_partition(par(task), p, 1, pred);
return when_all(f1, f2).then(
[1(tuple<future<Bilter>, future<Bilter>> p)
{ return make_pair(get<o>(p).get(), get<i>(p).get()); }
)
}

The benefit of calling the asynchronous versions of the stable_partition algorithms is twofold: a) both
sub-regions can be handled concurrently, and b) the overall algorithm can be made asynchronous.
The only caveat of this implementation is the slightly complicated code necessary to convert the pair
of futures into a future of pairs usingwhen_all().then() (as proposed by the concurrency TS).

However, by using co_await (see PO0O57R3, [5]), this can be further simplified:

template <typename BiIter, typename Pred>

future<pair<Bilter, Bilter>>
gather_async(BiIter f, BiIter 1, Bilter p, Pred pred)

{
future<BiIter> f1 = stable partition(par(task), f, p, notl(pred));
future<BiIter> f2 = stable_partition(par(task), p, 1, pred);
return make_pair(co_await f1, co_await f2);

}

Please note, that the version using co_await is 100% semantically equivalent to the asynchronous
version using when_all().then().

References

[1] N4507, Technical Specification for C++ Extensions for Parallelism, (ed) J. Hoberock,
http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2015/n4507.pdf

[2] PO0234R0: Towards Massive Parallelism (aka Heterogeneous Devices/Accelerator/GPGPU) support
in C++ with HPX, Michael Wong, Hartmut Kaiser, Thomas Heller,
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0057r3.pdf

[3] N4501, Working Draft, Technical Specification for C++ Extensions for Concurrency, (ed) A.
Laksberg, http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2015/n4501.html

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0057r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4501.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4501.html

[4] HPX: A general purpose C++ runtime system for parallel and distributed applications of any scale,
https://github.com/STEIIAR-GROUP/hpx.

[5] PO0O57R3: Wording for Coroutines, Gor Nishanov, Jens Maurer, Richard Smith, Daveed
Vandevoorde, http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0057r3.pdf

https://github.com/STEllAR-GROUP/hpx
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0057r3.pdf

