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1. Introduction

This paper shows the experience gained from a heterogeneous device programming model that
is designed to work with C++ templates, that has been in production compilers for a consumer
domain of a wide variety of devices.

SYCL™'[6] was designed as an enhancement to Khronos’s OpenCL™?[9] specification
specifically to focus on enabling C++ developers to dispatch work to massively parallel cores,
and expose the performance capability of OpenCL devices such as GPUs, FPGA, DSPs and
other accelerators. This paper describes some of the main design considerations and how we
came to the decisions in the final spec.

SYCL is a specification which defines a single source C++ programming layer that is built on top
of OpenCL. This allows developers to leverage C++ features on the range of heterogeneous
devices supported by OpenCL, providing a foundation for creating efficient, portable and
reusable middleware libraries and applications. The SYCL specification consists of two tightly
coupled components: a C++ runtime library and a SYCL device compiler. The runtime library
contains an abstraction layer built on top of the core OpenCL runtime APIs and interoperable
data structures for sharing data between host and device code.

It uses modern C++14 and allows us to separate the “what” from the “how”, similar to current
thinking in the C++ community. Specifically, it allows us to separate what the user wants to do,
such as science, computer vision, or Al from how it is to be run, which could include one or
more OpenCL devices.

The design aim of SYCL was to enable a complete C++ ecosystem for OpenCL, which was
previously based on top of the C99 specification. It enables C++ libraries to work with OpenCL.
As such, it must run on many devices such as GPUs, FPGAs, DSPs, but also CPUs. SYCL also
requires code to work with C++ template libraries to best support compile-time polymorphism,
and embedded devices on which dynamic runtime compilation is not possible. One of the
purposes of defining an open standard is to enable an ecosystem with full support for the entire
development toolchain such as compilers, debuggers and IDE’s. In the long-term, SYCL aims to
continue to support the features of OpenCL as it develops.

When designing SYCL, we decided we would not change, or extend, the C++ language. , There
already exists established ways to map C++ to parallel processors (for example, using the
existing Parallelism TS proposal). Therefore, SYCL followed established approaches as much
as possible. We also worked to enable building the C++ Parallel STL [3] on top of SYCL by
adding no more than what was needed.

1 SYCL and the SYCL logo are trademarks of the Khronos Group Inc
2 OpenCL and the OpenCL logo are trademarks of Apple Inc.



One of the major benefits that SYCL provides is to enable developers to write OpenCL kernels
using a subset of C++ features. As SYCL 1.2 [5] is built on top of OpenCL 1.2, the subset of
C++ features supported by SYCL is defined by the set of features supported by OpenCL 1.x
devices. SYCL can be built on top of SPIR™3[7], however the specification does not mandate it.
(Standard Portable Intermediate Representation (SPIR™) is an intermediate language for
parallel compute and graphics by the Khronos Group, originally developed for use with OpenCL.)
Any binary format supported by an OpenCL implementation can be targeted by a SYCL
implementation.

Examples of C++ features supported in the current SYCL 1.2 specification are: templates,
classes, operator overloading, static polymorphism and lambdas.

Examples of features that cannot be supported (on device) in the current SYCL 1.2 specification
are: function pointers, dynamic memory allocation, dynamic polymorphism, pointer struct
members, runtime type information, exception handling and static variables.

It is royalty-free to implement, and its design and implementation serves as a basis for building
support for massive parallelism in C++ in several key domains. However, future considerations
should not be constrained by its design.

2. Compare SYCL to other programming models

SYCL is designed to align with the future direction of the C++ Standard, but also aims to ensure
future OpenCL devices can be supported. By adding no language extensions to C++ we enable
a CPU-only implementation of SYCL to be implementable on any C++ compiler. Apart from
some very minor special cases, there are no macros or extensions that would break language
compatibility. It does not add ‘restrict’, which means all code can compile also for the host as
well as on the device. It provides the full OpenCL feature set in C++ which means anything you
can do with OpenCL can now be done through C++ . Figure 1 shows how SYCL fits within the
OpenCL environment. SYCL has a C++ compiler that can output SPIR as an Intermediate
Representation for accessing OpenCL devices, as well as an OpenCL runtime. This means the
same C++ Template library on top of SYCL can be compiled both for the host CPU, or a custom
processor, or SYCL to access target devices through a single source.

The SPIR IR is in binary format and allows the user to put other languages on top of OpenCL. It
is an OpenCL extension for OpenCL v1.2, to be superseded by SPIR-V[8], a new IR, which is
part of the core OpenCL 2.1 specification. SPIR prior to the 2015 SPIR-V release was based on
the LLVM Intermediate Representation. SPIR-V is a high-level intermediate language, exchanged in
binary form. Functions are represented by a control flow graph of basic blocks, using static single
assignment(SSA) form. Data structures retain high-level hierarchical representation. It is not lossy

3 SPIR and the SPIR logo are trademarks of the Khronos Group Inc



like previous byte-code or virtual machine-like intermediate representations that is used for graphical
shaders. This allows higher performance lowering to target devices

OpenCL / SYCL Stack

User application code

C++ template libraries C++ template libraries

Other technologies

Q‘_i%- J—-}?
~ 4
CPU Custom Processor

Figure 1: how SYCL fits within the OpenCL environment

3. Design Considerations of Massive Parallelism
languages

To design language support for massive parallelism, there is a spectrum of possible language
choices. We can contrast between :
1. Language style which selects between
a. Embedded DSLs,
b. Kernel Languages,
c. Single-source
2. Parallelism can be exposed to compilers using
a. Directive-based approach
b. Thread-based approach
c. Explicit parallelism approach
3. Different platforms and devices have different memory models that vary between:
a. Cache-coherent single-address space
b. Non-coherent single address space
c. Multiple-address spaces



By examining a history of such designs, for which there is now a large sample of previous
attempts, we can formulate a basis for how massive parallelism in C++ can best take advantage
from their learning.

3.1 Language Style

This describes the various styles of adding massive parallelism to C++ through Domain-specific
language usually as a library, a separately-compiled Kernel language, or a Single-source that
combines both CPU and device language. There have been experiments both commercially and
in research to support such efforts. We list many of their benefits and disadvantages.

3.1.1 C++ Embedded DSL

A domain-specific language (DSL) is a computer language specialized to a particular application
domain. This is in contrast to a general-purpose language (GPL), which is broadly applicable across
domains, and lacks specialized features for a particular domain. An embedded (or internal)
domain-specific language is implemented as libraries which exploit the syntax of their host general
purpose language or a subset thereof, while adding domain-specific language elements (data types,
routines, methods, macros etc.). (e.g. RapidMind, Halide, Embedded SQL, LINQ).

Vector<fleoat> a, b;
auteo expr = a + b;
Vector<float> r = expr.eval (}:

Figure 2: A simplified example of what a C++ DSL might look like

This is convenient and fast to implement and can work with existing C++ compilers, but it is hard to
express control flow, or be composable. One Example is Sh/RapidMind, which is exposed as a set
of C++ libraries, that provide types and operations used to express parallel computations. The
programming model is primarily data parallel, although it is sufficiently generic to express
task-parallel operations. The platform targeted multi-core x86 processors, GPUs (via OpenCL), and
the Cell processor. Another example is Halide, a computer programming language designed for
writing image processing code that takes advantage of memory locality, vectorized computation and
multi-core CPUs and GPUs. The problem with such compile-time approaches is that it is limited in
expressibility as you have no way to build up control-flow-trees in C++ using overloading and each
data type you define needs to be output in the runtime-generated code. In Figure 2, a C++ template
library would use overloading to build up an expression tree to compile at runtime. Such code can
still be implemented and compiled on CPU, or on a full single-source C++ platform like SYCL,
without the control-flow or user-defined-type complications of dynamic code generating
implementations of a DSL.


https://en.wikipedia.org/wiki/C%2B%2B

3.1.2 C++ Kernel languages

A C++ Kernel language uses separate source for host code and device code. The host (CPU) code
loads and compiles kernels for specific devices, while setting arguments and dispatching the
execution. One Example is GLSL, a high-level shading language based on the syntax of the C
programming language. Shader languages are very widely used in graphics, where the separate
source nature enable a separation between the graphics engine and the specific shading, or lighting,
of individual triangles being drawn on screen. Another kernel language is the OpenCL C and C++
kernel languages. This is the normal OpenCL approach, where kernels are loaded and compiled
separately from the host CPU source code.

Kernel myKernel;
myKernel.load (“myKernel”);
myKernel .compile ()
myKernel .setArg (0, a);
float r = myKernel.run ()}

Do

void myKernel (float *arg) {
return arg * 456.7f;

}
Figure 3: OpenCL Kernel Language (top part is CPU code, and bottom part is device Kernel)

The advantage of this approach is that it is very explicit what is running where. Also, there is a
clear independence between source code, compiler, and runtimes for each device and the host
CPU. Also, this approach enables code to be generated at runtime. The main problem is that it
is still hard to compose across multiple devices and hard to move code around and define
where the interface is. For example, it is not possible to define the C++ Parallel STL in a kernel
language environment, as Parallel STL assumes a single source file with shared data types
between host and device.

3.1.3 C++ single-source

Many of the most widely-used C++ programming models for accelerators (outside the graphics
domain) are single-source. One example is C++ AMP, which provides an easy way to write
programs that compile and execute on data-parallel hardware, such as graphics cards (GPUs). C++
AMP is a library implemented on DirectX 11 and an open specification from Microsoft for
implementing data parallelism directly in C++. CUDA is also a single-source C++ programming
model created by NVIDIA. The Thrust C++ library provides a modern single-source C++ style of
programming using CUDA. The OpenMP open-standard is also single-source, which uses pragmas
to support many form of accelerators with an HPC focus. OpenACC is similar to OpenMP and was
developed from a group of OpenMP members to bring to market an accelerator programming
standard earlier than OpenMP.



Such languages are easy to use, are composable and can be type-checked as everything is in one
source file. They enable offline compilation, so that code is shipped in binary format and checked at
compile time. This is the design chosen by SYCL, where a single source file can be compiled for
host CPU, with the kernels also being extracted from the source and compiled for one or more
OpenCL devices.

Single source is likely to be the future direction for the C++ Standard support for massive
parallelism, as it is consistent with the current design direction in C++, such as the Parallel STL.

Fire 4 below is a simplified example of what a single-source C++ parallelism model might look like:

Vector<flocat> a, b, r;
parallel for (a.range (), [&] (int id)
{
r: [ad] = a [3d] -+ b [1d]:
&

Figure 4. Example of SYCL single source

3.2 How Parallelism is Exposed

One of the most important areas in this design space is how massive parallelism is exposed in
code. This is important not just from an esthetic point of view, but more importantly what is
acceptable as elegant for the C++ community, and is in line with the future direction of the
upcoming Technical Specifications.

3.2.1 Directive-based Parallelism

This is the easiest way to expose parallelism to the compiler without disturbing the base
language and is the approach taken by OpenMP and OpenACC. This is achieved in C/C++ by
annotating code with pragmas (or in the case of Fortran by hijacking the Comment) to state
where parallelism exists. Its attractiveness is that it can add to the base language without
disturbing it, and gives a uniform appearance to all the base languages (in the case of OpenMP
or OpenACC which works on C, C++, and Fortran). This is ideal in HPC where code is often
formed from multiple legacy kernels (written in Fortran, C, and C++ for example) in different
languages. It also enables easy incremental parallelism by adding parallelism to hot regions in
steps, as opposed to planning parallelism from the ground up. It is simple to understand.

Vector<float> a, b, r;

for (int i=0; i< a.size():; itt)

{

#pragma parallel for

kil = 3 il Yo il
}




Figure 5: OpenMP C++ code using pragmas.

Its drawback is that it fits poorly with C++, especially with templates, is difficult to compose, and
the outlining that occurs for parallel regions leads to execution that is out of order with the
source code. An erroneous annotation can make code behave incorrectly or unpredictably and
compilers have a hard time associating error regions back to the pragma leading to weak error
messages.The major drawback for C++ is that pragmas are considered inelegant.

3.2.2 Thread-based Parallelism

Explicit thread-based parallelism is required for situations where an application must respond to
asynchronous operations, such as a web server, but can also be used for acceleration
parallelism. Examples of libraries that provide this approach are the C++11 threads, pthreads,
boost.thread, or Threaded Building Blocks. They create explicit threads to break up tasks into
parallel sections. However, they assume an architecture which supports threads with shared
memory and independent forward progress, which is not a capability of many highly parallel
accelerators.

Vector<float> a, b, r;

Thread tl = createThread ([&] () {
sumFirstHalf (r, a, b):

e

Thread t2 = createThread [(E&]1() |
sumSecondHalf (r, a, b):

8

tl.wait (); E2-wait: ();

Figure 6: Example of Thread-based parallelism.

Threads can form the basic building blocks for more advanced parallel idioms, because they are
well understood, and can work with a variety of algorithms. However, requiring full thread
support for an accelerator model would make major restrictions on the types of accelerator that
can be supported. For example, vertical vectorization, of the type used in most GPGPU
programming models like OpenCL, blocks the independent forward progress guarantees
required in threading systems.

3.3.3 Explicit Parallelism

Parallelism can be expressed explicitly in a program in a way that is a natural fit with the C++
language. This is the basis on which the C++ Parallelism TS is formed, and is also the approach
SYCL and C++ AMP follow. A highly simplified form of C++ explicit parallelism is shown below:



Vector<float> a, b;
parallel for (a.range (), [&] (int id)
{
a [ad] =a [id] + b [1d]:
1)z

Figure 7: A SYCL parallel_for

The user does need to know where the parallelism is and what form it takes. The benefit is that
it enables working with a wide variety of architectures and so is ideal for heterogeneous
devices. We also believe that this approach is highly composable and easy to debug. In explicit
parallelism, the parallelism in the source code is the same as that when executed.

Different devices have different performance characteristics and parallel execution models.
OpenCL exposes this via queues, work groups, optional sub-groups and work items. Explicit
parallelism enables users to express the full complexity of their parallelism at a reasonably high
level and then allow that to be mapped to different devices. In particular, it allows developers to
express their own parallelism and then map it to devices, such as that shown by Parallel STL
from Parallelism TS.

We chose Explicit Parallelism for SYCL because it is inline with the Parallelism TS and believe it
alleviates the compiler of the burden while giving the code clarity and the elegance of
expression of C++ while working with templates and future expressions of the Concepts TS. It
also enables developers to write algorithms that take full advantage of the explicitly parallel
execution model of OpenCL.

3.4 Memory Model

This section describes the evolving technology of memory architecture and hierarchy, and how
it affects the design of massive parallelism languages. It is one of the most critical areas of
design for Accelerators to ensure high performance. The access to data has a huge
performance impact in modern systems and becomes a greater issue as the level of parallelism
scales up, or power consumption is scaled down. It is one of the central question that should be
answered for C++ to ensure it works for all domains. We describe three general memory models
representing existing and future memory hierarchy.

3.4.1 Cache coherent single virtual address space

In multi-core CPUs, HSA, OpenCL 2.0 System Sharing mode, this fully-coherent memory model
enables data to be shared just by passing pointers around, which is therefore very low latency
and is easy to express.



float *a = new float [size];

processCodeCnDevice (a, size);

Figure 8: Pointer passing in a cache coherent single virtual address space

In this mode, all memory accesses go through the virtual memory system and caches
communicate ownership across all cores. This makes communication and offloading very
low-cost with very little impact on the programming model. It is however, bandwidth limited, and
requires special OS support and thus costs power. For SYCL, we wanted to target a wide range
of devices and operating systems, as well as achieving very high performance and so requiring
a single address space or cache coherency was not a design decision we could require.

For Standard C++ to target highly parallel and power efficient architectures, it needs to consider
that a cache-coherent single-address space with virtual memory has a cost that is not
acceptable in a wide range of domains. We believe that alternative memory models should be
supported in standard C++ as well.

What a fully cache-coherent, single virtual address space allows is separation between
references to data (i.e. a pointer) and ownership of data (e.g. a mutex). This is well-understood
as a problem, but not easy to solve. Often, combining references to the data with ownership of
that data is a better solution as it allows abstraction of the complications of data ownership as
well as performance. This is the approach we take in SYCL.

Security concern is another issue with a single virtual address space. This is because an
operating system must give any accelerator access to any data within a process’s address
space on demand. This requires ensuring that code running on an accelerator be secure in its
data access according the source of that code.

Since this memory model is an optional feature of OpenCL 2.0, it is likely that a future SYCL
version will support this memory model on hardware with this capability.

There are strong benefits to this approach, as well as genuine concerns and costs. But it does
seem this is the future memory model. This will likely remain a continued area of significant
debate within SG14 and SG1 of the C++ Standard.

3.4.2 Non cache coherent single-address space

There are a variety of trade-offs between totally separate memory and totally coherent memory.
One useful tradeoff is to have a single address space, but with some level of user management
of sharing. In this case, all data is still referred to via shared pointers, but the user must manage
the memory ownership between different cores by passing ownership to device. Race-free

software requires control and transfer of ownership , so this is not necessarily a cost to the user.
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float *a = NewShared<float> (size);
a.passOwnershipTolevice (size);
processCodeOnDevice (a, size);

Figure 9: A simplified example of what this type of memory model might look like with ownership
transfer.

This is supported to varying levels by OpenCL 2.x core and HSA Coarse Grained. C++ already
enables users to manage ownership and it benefits from not requiring much OS or hardware
support as it assumes non cache-coherent memory.

The advantage of this memory model is that users can still pass around pointers and separately
control access to the data. This model actually has a range of different capabilities and tradeoffs
that impact programmability, performance and power consumption. Examples tradeoffs include:
do atomics work between different devices on pointers? What memory can be shared: all host
memory, or only specially-allocated memory? And, are there restrictions on when ownership can
be transferred, such as can ownership be transferred during the execution of a kernel or only
after a kernel has completed?

Because this is a required feature of OpenCL 2.x, a future version of SYCL is expected to
support this memory model. But there are still a variety of capabilities that vary by device and
platform that need to be handled. Specifying this is an issue.

3.4.3 Multiple-address spaces

In this model, which has been historically common with discrete GPUs, data cannot be
universally referenced by a single pointer but must instead be encapsulated using a
combination of a normal C style pointer and a separate address space which is part of the type.
As such, data needs to be encapsulated in new datatypes that are able to manage both physical
location as well as ownership between host CPU and different devices.

Shared«<float> a (size):
processCodeCnDevice (a) ;s

Figure 10: A very simplified view of what this addressing model looks like with passing explicitly
to device (note no pointers in this code as we use classes instead to abstract references to
data):

This is how C++ AMP, OpenCL 1.x, OpenAcc, OpenMP 4.x and SYCL 1.2 can offer high
performance and very efficient memory access with wide device support, often by just installing
the right driver. It has a negative impact on the programming model in the form of how pointers
are specially treated.
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The embedded C standard shows how cv-qualifiers can be extended to support address spaces
as part of a pointer type. This is also a C TR 18037, a proposed TR for the next C Standard.
This is the approach in OpenCL C, but in SYCL we decided this was a language extension and
so did not follow this approach. Instead, in SYCL, we define pointer classes (such as

global ptr<T>)which contain an address space within the type and a pointer value in the
class data. Pointer classes of different address spaces may be different sizes and are not
convertible.

One problem in this model is the handling of code which requires pointers. This is common in
C++, such as the ‘this’ pointer for member functions. In SYCL, we support a defined form of
type inference which enables member functions to be defined and called on objects in different
address spaces.

The problem of address spaces in accessing data is combined with the problem of specifying
ownership of data, along with the problem of defining a race-free schedule, along with the
problem of efficient movement of data, and combined into a single solution: the ‘buffer’ and
‘accessor’ abstraction. This enables us to make just one requirement on the programmer:
encapsulate data that will be accessed in parallel and then define the access to that data. The
SYCL system can then find an efficient race-free schedule, provide high performance access to
data and compile for a wide range of devices.

4. SYCL and OpenCL Overview

A requirement of SYCL is that it must be easy to write high-performance OpenCL code in C++.
This means SYCL code in C++ must use memory and execute kernels efficiently while providing
developers with all the optimization options from OpenCL.

SYCL also enables all OpenCL features in C++. These include support for wide range of
OpenCL devices, high performance in data movement and access, as well as efficient data
placement on host and device. We must handle OpenCL parallelism through the support of
OpenCL ND ranges which are broken up into work-groups, and work-items with other entities
such as barriers, queues, and events.

Example SYCL source code:
#include <CL/sycl.hpp>

void func (float *array a, float *array b,
float *array c, float *array r, size_t count)

’

buffer<float, 1> buf a(array a, range<l>(count
buffer<float, 1> buf b
buffer<float, 1> buf c
buffer<float, 1> buf r(array r, range<l>(count

array b, range<l>(count));

array c, range<l>(count));

’

( ( ))
( ( ))
( ( ))
( ( ))
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queue myQueue (gpu_selector);

myQueue.submit ([&] (handler& cgh)
{

auto a = buf a.get access<access::read>(cgh);
auto b = buf b.get access<access::read>(cgh);
auto c = buf c.get access<access::read>(cgh);

h

auto r = buf r.get access<access::write>(cgh);
cgh.parallel for<eclass three way add>(count, [=] (id<1l> 1)
{

r{i] = a[i] + b[i] + c[i];
)i

4.1 Data Management in SYCL

In order to access data in OpenCL1.2, one must encapsulate data in a buffer or image object
that is bound to an OpenCL ‘context’, which in turn is bound to one or more OpenCL devices.
Access to that data in OpenCL C requires creating a kernel with pointer parameters that are
global or constant, or via image ‘samplers’.

In SYCL, we have C++ buffer and image classes, which abstract away the OpenCL buffer or
image objects underneath. There are no methods on buffers or images that give direct access
to the underlying data of the buffer or image classes, allowing the runtime to create one or more
efficient data storage objects to hold the data. The only way to access data on buffers or images
is via accessors, which are templated by the mode of access. This approach has several
benefits:

e |t allows the runtime to determine a race-free and efficient schedule for both the
execution of the kernels and also any data movement that may be required.

e Data movement and kernel execution can be scheduled to run in parallel where
possible. The task-graph built up using accessors can determine where data needs to be
moved or copied from and to in advance of a kernel being executed.

e It allows users to specify the kind of access to data that matches the best performance
on their device for a specific kernel.

e |t allows fully asynchronous operation, so that kernels are executing independently of the
host until a user specifically requests access to data on the host.

e Different kernels and devices can access the same data in ways that provide the best
performance and features for the specific kernel and device.

The lifetimes of buffers, images and accessors are defined via normal C++ RAIl semantics. This
makes the programming model natural and easy to use for C++ developers.

13



4.2 Parallelism in SYCL

In OpenCL, there are a series of levels of parallelism:

1. The host CPU executes code in serial (but can be multi-threaded) and can create
OpenCL objects and enqueue work to devices.

2. There are multiple platforms, devices, from which contexts can be created.

3. Data can be moved, copied or mapped asynchronously or on-demand between host and
individual devices

4. Work can be enqueued to queues.

5. Queues contain kernels which are executed over an nD-range

6. An nD-range is divided into a number of work-groups, which can be executed in parallel
or serial

7. Each work-group can be optionally divided into sub-groups (this is an OpenCL 2.x
feature only)

8. Work-groups or sub-groups are divided into work-items, which are defined to execute in
parallel. Synchronization within sub-groups and work-groups can occur via barriers.

This example SYCL code demonstrates the different levels of parallelism in SYCL v1.2:
buffer<int> my buffer(data, range<l>(10));

g.submit ([&] (handler& cgh)

{
auto in access = my buffer.get access<cl::sycl::access:read>(cgh);
auto out access = my buffer.get access<cl::sycl::access:write>(cgh);
cgh.parallel for workgroup<class hierarchical>

(range<l>(group size), range<l> (local size), [=] (group<l> grp)
{
parallel for workitem(grp, [=] (item<l> tile)
{
out access[tile] = in access[tile] * 2;

)i

At the outer level, the example submits work to a queue, which will be attached to a specific
device. The ‘work’ is called a ‘command group’ in SYCL and is defined via the handler object
passed to the command-group lambda. The command-group is added atomically to the queue
once the C++ lambda returns. Within the command-group, the accessors are created which
defines the data access of the command-group for determining a correct and efficient schedule.
Then, thereisaparallel for workgroup, which is a parallel iteration over all of the
work-groups in the nD-range. Inside the workgroup is @a parallel for workitem, whichis a
parallel iteration over all the work-items in the work group. In OpenCL terms, all code at the

14



workgroup level is compiled to execute once per work group and all code at the workitem
level is compiled to execute once per OpenCL work item. This execution model can be achieved
via looping, or vectorization, or some other parallelization technique. For OpenCL, this is
expected to use a compiler transformation which adds OpenCL barriers between different
parallel for workitem and adds predication to all code at the
parallel for workgroup scope to execute once per workgroup.

The advantage of this hierarchical parallelism approach is it matches the underlying hardware
capabilities, while enabling users to provide some level of performance portability.

4.3 Shared Source in SYCL o vt hose | | kevae opde
code for device

OpenCL targets a wide range of processors, each of which will

have different compilers. OpenCL v1.2 core deals with this by Host | | Device A | | Device B |
. . C++ | C++ | C++ |
having separate source code for the kernels and runtime compiler | | compiler | | compiler |

compilation of the kernel source code for the device the kernel will \ 4 \ 4 \ 4
run on as shown in the diagram on the right. This separate-source ’:::;‘p‘iizg
approach does not work for the single-source C++ programming object
model we wanted for SYCL.

Device B
compiled

binary
file

Device A
compiled
binary

file file

OpenCL separate-source approach

C++ Source file with host Another possible solution to

and device code single-source is the (optional) OpenCL 1.2 feature: SPIR, and the
new improved SPIR-V for OpenCL v2.1 (which is a required
feature of OpenCL 2.1). This would enable a single compiler to
compile the host (CPU) code, as well as output SPIR (or SPIR-V)
binary code for devices (see diagram to the left). However, this

} Single-source compiler |

o

'::::p‘i:lzg ?:;';ﬁeﬁ SPIR has a 32-bit and a 64-bit form, so a single-source compiler
object file binary file | might have to output both 32-bit and 64-bit SPIR code as well as

(e.0. SBIR host CPU code. And the SPIR solution does not work for devices

that do not support SPIR, although this is likely to become less of
an issue as vendors move to OpenCL 2.1.

Single-source approach

C++ Source file with host and

For the SYCL spec, we enable all the single-source solutions device codo

above, but we also enable another potential approach we call
“shared source”. In the shared source approach (see diagram to

the right), the same source code is compiled by multiple El:s: | Devlce Al . B |
compilers. A CPU host compiler outputs the CPU code which will compiler | | compiler l compiler l

call the host runtime for SYCL.One or more SYCL device
compilers will extract the kernel code and compile for different
devices. This approach has a range of benefits:
e Separate compilers can be optimized for different
architectures. For example, the host code can be Shared-source approach
compiled with OpenMP and parallelized.

Host CPU
compiled

object
file

Device B
compiled

binary
file

Device A
compiled

binary
file
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Users can use templates or macros to customize the same source code for different
devices.

Multiple device binaries (such as 32-bit and 64-bit SPIR) can be compiled for the same
source code.

However, one problem we face is that if the kernel is a C++11 lambda, then there is no way to
link between the host and device compiled code. For functors, this isn’t a problem, only for
anonymous lambda functions. For C++11 lambda kernels, we require a typename to name the
kernel. This is only for linking between different compilers for host and device(s).

5. Impact on the C++ Standard

Here are some features we would like to see in a future C++ standard that could benefit
acceleration. The following are very high-level ideas.

1.

The main problem with the SYCL shared-source approach is the requirement of naming
lambdas to provide kernel names. Using attributes would help on a device compiler that
generates SPIR binaries, but there is no way for the host compiler to understand which
lambda corresponds to which device binary. The current SYCL specification uses a type
declaration to name the lambda in both the device and the host compiler, enabling the
SYCL runtime to match the user-lambda with the device binary. However this is not
ideal, as it forces users to name every single lambda, making problematic the usage of
SYCL on deeply templated libraries or in generators. Although some workarounds could
be implemented, e.g using the _ COUNTER__ macro, they are not desirable. Some
potential solutions from the point of view of the C++ standard:
a. Standardize the naming of lambdas
b. Provide a standardized type reflection for lambdas that can enable the same
lambda compiled with different compilers to have the same reflection information.
c. Use an attribute for the kernel naming, but having reflection support from the C++
standard to read that attribute at runtime
d. Having a way of generate types that is common across multiple compilers
Having a mechanism to count the number of times a template has been
instantiated (not guaranteed to be reliable)
Executors can facilitate writing SYCL code assuming they allow a hierarchical execution
model that is composable: Some algorithms would like to use work-group/work-item,
others just work-item, others will need as well sub-groups. It is not feasible to assume
that executors will spawn threads that can do all sort of operations (like deleting pointers,
using thread local storage or doing system calls). Executors should be capable of
spawning threads that have some limited functionality similar to that proposed in
Light-Weight Execution Agents[1] and Integrating Executors with Parallel Algorithm
Execution [2].
Futures, promises and continuation can allow multiple device-tasks (command-groups in
SYCL) to synchronize and be executed in an orderly fashion. However, note that current

16



SYCL specification relies on “queues” to submit command groups (device-task) but also
uses memory dependency checking to ensure data running in different devices/queues
has the correct visibility of data. This is not a big problem when there is a unified view of
the memory and a single device, but when having multiple devices from multiple vendors
(e.g, a CPU, a GPU and a FPGA), synchronization of data needs to be done to ensure
all components view the same information. Futures/continuation allows users to express
the order of execution they want but the runtime must be aware of data dependencies in
tasks to ensure the information is provided in order.

4. The cost of data movement can often be higher than computation in a highly-parallel
system. In SYCL, data movement is abstracted via the buffer/accessor abstraction,
which exposes some of this requirement to the user, aiding in optimization and
understanding of performance. SYCL tries to minimize the effort required by users, but
not totally hide essential performance information. In the case of futures, promises and
continuations, this data-movement-cost should be considered, along with the different
ways of minimizing the data-movement-cost.

5. Also future/promises allows the synchronization of tasks that start and end. However,
some devices (e.g. FPGAs) will spawn tasks that will not end until the program finish,
and will communicate with the main program receiving and sending data. This cannot, by
definition, be expressed by continuation semantics (.then), and requires some
concurrent communication mechanism (e.g, a pipeline).

6. Using SYCL to implement C++17 features

It is possible to use SYCL today to implement features from the upcoming C++17 standard. The
SYCL working group has been working on an implementation of the Parallelism TS [3] that
allows STL algorithms to be executed on a wide range of heterogeneous platforms just by using
SYCL.

The development is public on the Khronos Group github [4].

The project implements a “sycl_execution_policy” that can be passed to the Parallel STL
algorithms and calls sycl-implementations of those. The implementations are straightforward to
read, customize or improve since they are pretty much C++ code using SYCL concepts.
Vendors can produce their own optimized implementations of some algorithms by using either
compile-time detection (via an specific vendor policy derived from the sycl one) or runtime
detection (by checking the available OpenCL platforms and using an specific implementation of
an algorithm).

This experimental project demonstrate how SYCL can be integrated on a C++ library without
major modifications to the library itself, and by following a modern C++ coding style.
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7. Goals and Conclusion

This paper shows the experience gained from a heterogeneous device programming model that
is designed to work with C++ templates, that has been in production compilers for a consumer
domain of a wide variety of devices.

It shows using the design considerations of a sample of programming languages how it is
important to consider style of programming, how parallelism is exposed, and the all important
data movement in the memory model.

It is our conclusion that C++ should aim to be single-sourced with explicit parallelism but that the
memory model needs to be adaptable to all devices, as future heterogeneous devices may not
necessarily converge to any one single memory model. This will remain a matter of debate
within SG14/SG1.

We hope this will form the basis of a massively parallel model for C++ in SG14/SG1 that works
across many domains and devices, making C++ the dominant language to express such
parallelism.
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