
P0098R1: Towards Implementation and Use of

memory order consume

Doc. No.: WG21/P0098R1
Date: 2016-01-04

Reply to: Paul E. McKenney, Torvald Riegel, Jeff Preshing,
Hans Boehm, Clark Nelson, Olivier Giroux, and Lawrence Crowl

Email: paulmck@linux.vnet.ibm.com, triegel@redhat.com, jeff@preshing.com
boehm@acm.org, clark.nelson@intel.com, OGiroux@nvidia.com, and Lawrence@Crowl.org

Other contributors: Alec Teal, David Howells, David Lang, George Spelvin,
Jeff Law, Joseph S. Myers, Linus Torvalds, Mark Batty, Michael Matz, Peter Sewell,

Peter Zijlstra, Ramana Radhakrishnan, Richard Biener, Will Deacon, Faisal Vali,
Behan Webster, Tony Tye, JF Bastien, Thomas Koeppe, Jens Maurer, ...

October 16, 2016

This document is a revision of WG21/P0098R0,
based on email discussion and on discussions at
the 2015 meeting at Kona. This is the final ver-
sion of this document, which is being released for
archival purposes. There will be a follow-on doc-
ument containing a specific proposal for memory

order consume. WG21/P0098R0 is itself turn a re-
vision of WG21/N4321, based on email discusssions
and including two more proposals in Sections 7.9
and 7.11. This proposal has been further refined by
discussions on various email reflectors. WG21/N4321
is itself a revision of WG21/N4215, based on feed-
back at the 2014 UIUC meeeting and on the various
email reflectors. WG21/N4215 is in turn a revision
of WG21/N4036, based on feedback at the 2014 Rap-
perswil meeting, at the 2014 Redmond SG1 meeting,
and on the various email reflectors.

A detailed change log appears starting on page 44.

1 Introduction

The most obscure member of the C11 and C++11
memory order enum seems to be memory order

consume [29]. The purpose of memory order

consume is to allow reading threads to correctly tra-
verse linked data structures without the need for
locks, atomic instructions, or (with the exception of
DEC Alpha) memory-fence instructions, even though
new elements are being inserted into these linked
structures before, during, and after the traversal.
Without memory order consume, both the compiler
and (again, in the case of DEC Alpha) the CPU
would be within their rights to carry out aggres-
sive data-speculation optimizations that would per-
mit readers to see pre-initialization values in the
newly added data elements. The purpose of memory
order consume is to prevent these optimizations.

Of course, memory order acquire may be used as
a substitute for memory order consume, however do-
ing so results in costly explicit memory-fence instruc-
tions (or, where available, load-acquire instructions)

1

WG21/P0098R1 2

on weakly ordered systems such as ARM, Itanium,
and PowerPC [3, 9, 12, 13]. These systems enforce
dependency ordering in hardware, in other words, if
the address used by one memory-reference instruction
depends on the value from a preceding load instruc-
tion, the hardware forces that earlier load to com-
plete before the later memory-reference instruction
commences.1 Similarly, if the data to be stored by a
given store instruction depends on the value from a
preceding load instruction, the hardware again forces
that earlier load to complete before the later store in-
struction commences. Recent software tools for ARM
and PowerPC can help explicate their memory mod-
els [1, 2, 19, 25]. Note that strongly ordered systems
like x86, IBM mainframe, and SPARC TSO enforce
dependency ordering as a side effect of the fact that
they do not reorder loads with subsequent memory
references. Therefore, memory order consume is ben-
eficial on hot code paths, removing the need for hard-
ware ordering instructions for weakly ordered systems
and permitting additional compiler optimizations on
strongly ordered systems.

When implementing concurrent insertion-only
data structures, a few of which are found in the Linux
kernel, memory order consume is all that is required.
However, most data structures also require removal
of data elements. Such removal requires that the
thread removing the data element wait for all read-
ers to release their references to it before reclaim-
ing that element. The traditional way to do this is
via garbage collectors (GCs), which have been avail-
able for more than half a century [15] and which are
now available even for C and C++ [4]. Another
way to wait for readers is to use read-copy update
(RCU) [21, 24], which explicitly marks read-side re-
gions of code and provides primitives that wait for
all pre-existing readers to complete. RCU is gaining
significant use both within the Linux kernel [16] and
outside of it [5, 6, 8, 14, 30].

Despite the growing number of memory order

consume use cases, there are no known high-
performance implementations of memory order

consume loads in any C11 or C++11 environments.

1 But please note that hardware can and does take advan-
tage of the as-if rule, just as compilers do.

This situation suggests that some change is in or-
der: After all, if implementations do not support
the standard’s memory order consume facility, users
can be expected to continue to exploit whatever
implementation-specific facilities allow them to get
their jobs done. This document therefore provides
a brief overview of RCU in Section 2 and surveys
memory order consume use cases within the Linux
kernel in Section 3. Section 4 looks at how depen-
dency ordering is currently supported in pre-C11 im-
plementations, and then Section 5 looks at possible
ways to support those use cases in existing C11 and
C++11 implementations, followed by some thoughts
on incremental paths towards official support of these
use cases in the standards. Section 6 lists some weak-
nesses in the current C11 and C++11 specification of
dependency ordering, and finally Section 7 outlines a
few possible alternative dependency-ordering specifi-
cations.

Note: SC22/WG14 liason issue.

2 Introduction to RCU

The RCU synchronization mechanism is often used as
a replacement for reader-writer locking because RCU
avoids the high-overhead cache thrashing that is char-
acteristic of many common reader-writer-locking im-
plementations. RCU is based on three fundamental
concepts:

1. Light-weight in-memory publish-subscribe oper-
ation.

2. Operation that waits for pre-existing readers.

3. Maintaining multiple versions of data to avoid
disrupting old readers that are still referencing
old versions.

These three concepts taken together allow readers
and updaters to make forward progress concurrently.

We would like to use C11’s and C++11’s memory

order consume to implement RCU’s lightweight sub-
scribe operation, rcu dereference(). We assume
that rcu dereference() is a good example of how
developers would exploit the dependency-ordering

WG21/P0098R1 3

 0

 2000

 4000

 6000

 8000

 10000

 12000
 2

00
2

 2
00

4

 2
00

6

 2
00

8

 2
01

0

 2
01

2

 2
01

4

 2
01

6

R

C
U

 A
P

I U
se

s

Year

Figure 1: Growth of RCU Usage

feature of weakly ordered systems, so we look to rcu

dereference() as an indication of the semantics that
memory order consume should have.

In one typical RCU use case, updaters publish
new versions of a data structure while readers con-
currently subscribe to whatever version is current
at the time a given reader starts. Once all pre-
existing readers complete, old versions can be re-
claimed. This sort of use case may be a bit unfa-
miliar to many, but it is extremely effective in many
situations, offering excellent performance, scalability,
real-time latency, deadlock avoidance, and read-side
composability. More details on RCU are readily avail-
able [8, 17, 18, 20, 21, 23, 26].

Figure 1 shows the growth of RCU usage over time
within the Linux kernel, which is strong evidence of
RCU’s effectiveness. However, RCU is a specialized
mechanism, so its use is much smaller than general-
purpose techniques such as locking, as can be seen in
Figure 2. It is unlikely that RCU’s usage will ever
approach that of locking because RCU coordinates
only between readers and updaters, which means
that some other mechanism is required to coordinate
among concurrent updates. In the Linux kernel, that

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 2
00

2

 2
00

4

 2
00

6

 2
00

8

 2
01

0

 2
01

2

 2
01

4

 2
01

6

R

C
U

/lo
ck

in
g

A
P

I U
se

s
Year

locking

RCU
rwlock

Figure 2: Growth of RCU Usage vs. Locking

update-side mechanism is normally locking, although
pretty much any synchronization mechanism may be
used, including transactional memory [10, 11, 28].

However RCU is now being used in many situa-
tions where reader-writer locking would be used. Fig-
ure 3 shows that the use of reader-writer locking has
changed little since RCU was introduced. This data
suggests that RCU is at least as important to parallel
software as is reader-writer locking.

In more recent years, a user-level library implemen-
tation of RCU has been available [7]. This library is
now available for many platforms and has been in-
cluded in a number of Linux distributions. It has
been pressed into service for a number of open-source
software projects, proprietary products, and research
efforts.

Fully and fully performant C11/C++11 support
for memory order consume is therefore quite impor-
tant. However, good progress can often be made in
the short term by focusing on the cases that are com-
monly used in practice rather than on the general
case. The next section therefore takes a rough census
of the Linux kernel’s use of the rcu dereference()

family of primitives, which memory order consume is

WG21/P0098R1 4

 0

 2000

 4000

 6000

 8000

 10000

 12000
 2

00
2

 2
00

4

 2
00

6

 2
00

8

 2
01

0

 2
01

2

 2
01

4

 2
01

6

R

C
U

/r
w

lo
ck

in
g

A
P

I U
se

s

Year

RCU

rwlock

Figure 3: Growth of RCU Usage vs. Reader-Writer
Locking

intended to implement.

3 Linux-Kernel Use Cases

Section 3.1 lists types of dependency chains in the
Linux kernel, Section 3.2 lists operators used within
these dependency chains, Section 3.3 lists operators
that are considered to terminate dependency chains,
Section 3.4 lists operator that often act as the last link
in a dependency chain, and finally Section 3.5 surveys
a longer-than-average (but by no means maximal)
dependency chain that appears in the Linux kernel.

It is worth reviewing the relationship between
memory order acquire and memory order consume

loads, both of which interact with memory order

release stores.

A memory order release store is said to synchro-
nize with a memory order acquire load if that load
returns the value stored or in some special cases, some
later value [29, 1.10p9-1.10p10]. When a memory

order release store synchronizes with a memory

order acquire load, any memory reference preced-

1 void new_element(struct foo **pp, int a)
2 {
3 struct foo *p = malloc(sizeof(*p));
4
5 if (!p)
6 abort();
7 p->a = a;
8 atomic_store_explicit(pp, p, memory_order_release);
9 }

10
11 int traverse(struct foo_head *ph)
12 {
13 int a = -1;
14 struct foo *p;
15
16 p = atomic_load_explicit(&ph->h, memory_order_acquire);
17 while (p != NULL) {
18 a = p->a;
19 p = atomic_load_explicit(&p->n, memory_order_acquire);
20 }
21 return a;
22 }
23

24

Figure 4: Release/Acquire Linked Structure Traver-
sal

ing the memory order release store will happen be-
fore any memory reference following the memory

order acquire load [29, 1.10p13-1.10p14]. This
property allows a linked structure to be locklessly tra-
versed by using memory order release stores when
updating pointers to reference new data elements and
by using memory order acquire loads when loading
pointers while locklessly traversing the data struc-
ture, as shown in Figure 4.

Unfortunately, a memory order acquire load re-
quires expensive special load instructions or memory-
fence instructions on weakly ordered systems such
as ARM, Itanium, and PowerPC. Furthermore, in
traverse(), the address of each memory order

acquire load within the while loop depends on the
value of the previous memory order acquire load.2

Therefore, in this case, most weakly ordered systems
don’t really need the special load instructions or the
memory-fence instructions, as these systems can in-
stead rely on the hardware-enforced dependency or-

2 The initial load on line 16 might well depend on an earlier
load, but for simplicity, this example assumes that the initial
foo head structure is statically allocated, and thus not subject
to updates.

WG21/P0098R1 5

1 void new_element(struct foo **pp, int a)
2 {
3 struct foo *p = malloc(sizeof(*p));
4
5 if (!p)
6 abort();
7 p->a = a;
8 atomic_store_explicit(pp, p, memory_order_release);
9 }

10
11 int traverse(struct foo_head *ph)
12 {
13 int a = -1;
14 struct foo *p;
15
16 p = atomic_load_explicit(&ph->h, memory_order_consume);
17 while (p != NULL) {
18 a = p->a;
19 p = atomic_load_explicit(&p->n, memory_order_consume);
20 }
21 return a;
22 }
23

24

Figure 5: Release/Consume Linked Structure Traver-
sal

dering. On strongly ordered systems, memory order

acquire needlessly suppresses memory-movement
compiler optimizations.

This is the use case for memory order consume,
which can be substituted for memory order acquire

in cases where hardware dependency ordering applies.
One such case is the preceding example, and Figure 5
shows that same example recast in terms of memory
order consume. A memory order release store is
dependency ordered before a memory order consume

load when that load returns the value stored, or in
some special cases, some later value [29, 1.10p12].
Then, if the load carries a dependency to some later
memory reference [29, 1.10p11], any memory ref-
erence preceding the memory order release store
will happen before that later memory reference [29,
1.10p11-1.10p14]. This means that when there is de-
pendency ordering, memory order consume gives the
same guarantees that memory order acquire does,
but at lower cost.

On the other hand, memory order consume re-
quires the compiler to track the carries-a-dependency
relationships, with the set of such relationships
headed by a given memory order consume load be-

ing called that load’s dependency chains. It is quite
possible that the complexity of implementing this ca-
pability has thus far prevented high-quality memory

order consume implementations from appearing. It
is therefore worthwhile to review use of dependency
chains in practice in order to determine what types
of operations typically appear in dependency chains,
which might result in guidance to implementations
or perhaps even modifications to the definition of
memory order consume.

3.1 Types of Linux-Kernel Depen-
dency Chains

One goal for memory order consume is to implement
rcu dereference(), which heads a Linux-kernel
dependency-ordering tree. There is a number of
variants of rcu dereference() in the Linux kernel
in order to implement the four flavors of RCU and
also to enable RCU usage diagnositics for code
that is shared by readers and updaters. These
additional variants are rcu dereference(), rcu

dereference bh(), rcu dereference bh check(),
rcu dereference bh check(), rcu dereference

check(), rcu dereference index check() (now
removed), rcu dereference protected(),
rcu dereference raw(), rcu dereference

sched(), rcu dereference sched check(), srcu

dereference(), and srcu dereference check().
Taken together, there are about 1300 uses of these
functions in version 3.13 of the Linux kernel.
However, about 250 of those are rcu dereference

protected(), which is used only in update-side code
and thus does not head up read-side dependency
chains, which leaves about 1000 uses to be inspected
for dependency-ordering usage.

3.2 Operators in Linux-Kernel De-
pendency Chains

A surprisingly small fraction of the possible C opera-
tors appear in dependency chains in the Linux kernel,
namely ->, infix =, casts, prefix &, prefix *, [], infix
+, infix -, ternary ?:, and infix (bitwise) &.

By far the two most common operators are the
-> pointer field selector and the = assignment oper-

WG21/P0098R1 6

1 struct foo {
2 int a;
3 };
4 struct foo *fp;
5 struct foo default_foo;
6
7 int bar()
8 {
9 struct foo *p;

10
11 p = rcu_dereference(fp);
12 return p ? p->a : default_foo.a;
13 }

Figure 6: Default Value For RCU-Protected Pointer,
Linux Kernel

1 struct foo {
2 int a;
3 };
4 std::atomic<foo *> fp;
5 foo default_foo;
6
7 int bar()
8 {
9 foo *p;

10
11 p = fp.load(memory_order_consume);
12 return p ? std::kill_dependency(p->a) : default_foo.a;
13 }

Figure 7: Default Value For RCU-Protected Pointer,
C++11

ator. Enabling the carries-dependency relationship
through only these two operators would likely cover
better than 90% of the Linux-kernel use cases.

Casts, the prefix * indirection operator, and the
prefix & address-of operator are used to implement
Linux’s list primitives, which translate from list
pointers embedded in a structure to the structure it-
self. These operators are also used to get some of the
effects of C++ subtyping in the C language.

The [] array-indexing operator, and the infix +

and - arithmetic operators are used to manipulate
RCU-protected arrays, as well as to index into arrays
contained within RCU-protected structures. RCU-
protected arrays are becoming less common because
they are being converted into more complex data
structures, such as trees. However, RCU-protected
structures containing arrays are still fairly common.

The ternary ?: if-then-else operator is used to han-
dle default values for RCU-protected pointers, for

example, as shown in Figure 6, or in C++11 form
in Figure 7. Note that the dependency is carried
only through the rightmost two operands of ?:, never
through the leftmost one.

The infix & operator is used to mask low-order bits
from RCU pointers. These bits are used by some
algorithms as markers. Such markers, though not
common in the Linux kernel, are well-known in the
art, with hazard pointers being but one example [27].
This operator is also sometimes used to locate the
beginning of an aligned structure, for example, if p
references a field within a data structure that is 4096
bytes in size (or smaller), and that is also aligned to a
4096-byte boundary, then p & ~0xfff will, with the
addition of appropriate casting, produce a pointer to
the beginning of the structure. Note that it is ex-
pected that both operands of infix & are expected to
have some non-zero bits, because otherwise a NULL

pointer will result, and NULL pointers cannot reason-
ably be said to carry much of anything, let alone a
dependency.

Although I did not find any infix | operators in
my census of Linux-kernel dependency chains, sym-
metry considerations argue for also including it, for
example, for read-side pointer tagging, or, for another
example, locating the beginning of the next in an ar-
ray of aligned structures. Presumably both of the
operands of infix | must have at least one zero bit.

To recap, the operators appearing in Linux-kernel
dependency chains are: ->, infix =, casts, prefix &,
prefix *, [], infix +, infix -, ternary ?:, infix (bitwise)
&, and probably also |.

3.3 Operators Terminating Linux-
Kernel Dependency Chains

Although C++11 has the std::kill dependency()

function to terminate a dependency chain, no such
function exists in the Linux kernel. Instead, Linux-
kernel dependency chains are judged to have ter-
minated upon exit from the outermost RCU read-
side critical section,3 when existence guarantees are

3 The beginning of a given RCU read-side critical section is
marked with rcu read lock(), rcu read lock bh(), rcu read

lock sched(), or srcu read lock(), and the end by the cor-
responding primitive from the list rcu read unlock(), rcu

WG21/P0098R1 7

handed off from RCU to some other synchronization
mechanism (usually locking or reference counting), or
when the variable carrying the dependency goes out
of scope.

That said, it is possible to analyze Linux-kernel
dependency chains to see what part of the chain is
actually required by the algorithm in question. We
can therefore define the essential subset of a depen-
dency chain to be that subset within which ordering
is required by the algorithm. In the 3.13 version of
the Linux kernel, the following operators always mark
the end of the essential subset of a dependency chain:
(), !, ==, !=, &&, ||, infix *, /, and %.

The postfix () function-invocation operator is an
interesting special case in the Linux kernel. In theory,
RCU could be used to protect JITed function bodies,
but in current practice RCU is instead used to wait
for all pre-existing callers to the function referenced
by the previous pointer. The functions are all com-
piled into the kernel, and the dependency chains are
therefore irrelevant to the () operator. Hence, in ver-
sion 3.13 of the Linux kernel, the () operator marks
the end of the essential subset of any dependency
chain that it resides in.

The !, ==, !=, &&, and || operators are used ex-
clusively in “if” statements to make control-flow de-
cisions, and therefore also mark the end of the essen-
tial subset of any dependency chains that they reside
in. In theory, these relational and boolean operators
could be used to form array indexes, but in practice
the Linux kernel does not yet do this in RCU de-
pendency chains, and furthermore, as of version 4.2
of the Linux kernel, integers are no longer allowed
to carry dependencies except in very restricted situ-
ations. The other relational operators (>, <, >=, and
<=) should probably also be added to this list.

The infix *, /, and % arithmetic operators could
potentially be used for construct array addresses, but
they are not yet used that way in the Linux kernel.
Instead, they are used to do computation on values
fetched as the last operation in an essential subset of
a dependency chain.

read unlock bh(), rcu read unlock sched(), or srcu read

unlock(). There is currently no C++11 counterpart for an
RCU read-side critical section.

In short, in the current Linux kernel, (), !, ==,
!=, &&, ||, infix *, /, and % all mark the end of the
essential subset of a dependency chain. That said,
there is potential for them to be used as part of the
essential subset of dependency changes in future ver-
sions of the Linux kernel. And the same is of course
true of the remaining C-language operators, which
did not appear within any of the dependency chains
in version 3.13 of the Linux kernel.

3.4 Operators Acting as Last Link in
Linux-Kernel Dependency Chains

Although the -> operator is frequently used as part of
a Linux-kernel dependency chain, it often is intended
to be the last link in that chain. Therefore, the uses
cases for the -> operator deserve special mention.

The first use case involves fetching non-pointer
data from an RCU-protected data structure. For
example, in the DRDB subsystem in Linux, -> is
used to fetch a timeout value. This code requires
that dependency ordering apply to this fetch, but it
does not require a dependency chain extending be-
yond that point. This sort of case would require a
std::kill dependency() for implementations based
on the C++11 and C11 standards.

The second use case involves linked data struc-
tures where an RCU update might be applied on
any pointer in the chain, for example, the stan-
dard Linux-kernel linked list. The -> operator pro-
vides dependency ordering for the fetch of the ->next
pointer, but that fetch must itself be a memory order

consume load in order to provide the required depen-
dency ordering for the fields in the next structure
in the list. Thus, a linked-list traversal consists of
a series of back-to-back non-overlapping dependency
chains.

These two use cases raise the question of whether
a dependency chain can continue beyond a -> oper-
ator. The answer is “yes”, and this occurs when a
linked structure is made visible to RCU readers as a
unit. For example, consider a linked list where each
list element links to a constant binary search tree.
If this tree is in place when the element is added to
the list, then a memory order consume load is needed
only when fetching the pointer to the element. The

WG21/P0098R1 8

1 void new_element(struct foo **pp, int a)
2 {
3 struct foo *p = malloc(sizeof(*p));
4
5 if (!p)
6 abort();
7 p->a = a;
8 atomic_store_explicit(pp, p, memory_order_release);
9 }

10
11 int traverse(struct foo_head *ph)
12 {
13 int a = -1;
14 struct foo *p;
15
16 p = atomic_load_explicit(&field_dep(ph, h),
17 memory_order_consume);
18 while (p != NULL) {
19 a = field_dep(p, a);
20 p = atomic_load_explicit(&field_dep(p, n),
21 memory_order_consume);
22 }
23 return a;
24 }

Figure 8: Decorated Linked Structure Traversal

dependency chain headed by this fetch suffices to or-
der accesses to the binary search tree.

These cases need to be differentiated. The third
use case appears to be the least frequent, which sug-
gests that the -> operator (or a sequence of -> oper-
ators) always be the last link of a dependency chain.
Another alternative is to differentiate on type, so
that only pointer-like types (including intptr t and
uintptr t) carry dependencies.

3.5 Linux-Kernel Dependency Chain
Length

Many Linux-kernel dependency chains are very short
and contained, with a fair number living within the
confines of a single C statement. If there were only
a few short dependency chains in the Linux kernel,
one could imagine decorating all the operators in each
dependency chain, for example, replacing the -> op-
erator with something like the mythical field dep()

operator shown on lines 16, 19, and 20 of Figure 8.

However, there are a great many dependency
chains that extend across multiple functions. One
relatively modest example is in the Linux network
stack, in the arp process() function. This depen-

dency chain extends as follows, with deeper nesting
indicating deeper function-call levels:

• The arp process() function invokes in dev

get rcu(), which returns an RCU-protected
pointer. The head of the dependency chain is
therefore within the in dev get rcu() func-
tion.

• The arp process() function invokes the follow-
ing macros and functions:

– IN DEV ROUTE LOCALNET(), which expands
to the ipv4 devconf get() function.

– arp ignore(), which in turn calls:

∗ IN DEV ARP IGNORE(), which expands
to the ipv4 devconf get() function.

∗ inet confirm addr(), which calls:

· dev net(), which in turn calls
read pnet().

– IN DEV ARPFILTER(), which expands to
ipv4 devconf get().

– IN DEV CONF GET(), which also expands to
ipv4 devconf get().

– arp fwd proxy(), which calls:

∗ IN DEV PROXY ARP(), which expands
to ipv4 devconf get().

∗ IN DEV MEDIUM ID(), which also ex-
pands to ipv4 devconf get().

– arp fwd pvlan(), which calls:

∗ IN DEV PROXY ARP PVLAN(), which ex-
pands to ipv4 devconf get().

– pneigh enqueue().

Again, although a great many dependency chains
in the Linux kernel are quite short, there are quite a
few that spread both widely and deeply. We therefore
cannot expect Linux kernel hackers to look fondly
on any mechanism that requires them to decorate
each and every operator in each and every depen-
dency chain as was shown in Figure 8. In fact, even
std::kill dependency() will likely be an extremely
difficult sell.

WG21/P0098R1 9

4 Dependency Ordering in Pre-
C11 Implementations

Pre-C11 implementations of the C language do not
have any formal notion of dependency ordering, but
these implementations are nevertheless used to build
the Linux kernel—and most likely all other software
using RCU. This section lays out a few straightfor-
ward rules for both implementers (Section 4.2) and
users of these pre-C11 C-language implementations
(Section 4.1).

4.1 Rules for C-Language RCU Users

The rules for C-language RCU users have evolved
over time, so this section will present them in reverse
chronological order.

4.1.1 Rules for 2014 GCC Implementations

The primary rule for developers implementing RCU-
based algorithms is to avoid letting the compiler de-
terming the value of any variable in any dependency
chain. This primary rule implies a number of sec-
ondary rules:

1. Use only intrinsic operators on basic types. If
you are making use of C++ template metapro-
gramming or operator overloading, more elabo-
rate rules apply, and those rules are outside the
scope of this document.

2. Use a volatile load to head the dependency chain.
This is necessary to avoid the compiler repeating
the load or making use of (possibly erroneous)
prior knowledge of the contents of the memory
location, each of which can break dependency
chains.

3. Avoid use of single-element RCU-protected ar-
rays. The compiler is within its right to assume
that the value of an index into such an array
must necessarily evaluate to zero. The com-
piler could then substitute the constant zero for
the computation, breaking the dependency chain
and introducing misordering. That said, recent

experience indicates that it is even better to sim-
ply avoid carrying dependencies through integer
types.

4. Avoid cancellation when using the + and - infix
arithmetic operators. For example, for a given
variable x, avoid (x−x). The compiler is within
its rights to substitute zero for any such cancel-
lation, breaking the dependency chain and again
introducing misordering. Similar arithmetic pit-
falls must be avoided if the infix *, /, or % oper-
ators appear in the essential subset of a depen-
dency chain. Again, recent experience indicates
that it is even better to make sure that one of
the operands of these arithmetic operators is a
pointer-like type.

5. Avoid all-zero operands to the bitwise & opera-
tor, and similarly avoid all-ones operands to the
bitwise | operator. If the compiler is able to
deduce the value of such operands, it is within
its rights to substitute the corresponding con-
stant for the bitwise operation. Once again, this
breaks the dependency chain, introducing mis-
ordering.

Please note that single-bit operands to bitwise &

can be dangerous because the compiler requires
only a small amount of additional information to
deduce the exact value, which could again result
in constant substitution. Operands to bitwise |

that have only one zero bit are similarly danger-
ous.

6. If you are using RCU to protect JITed functions,
so that the () function-invocation operator is a
member of the essential subset of the dependency
tree, you may need to interact directly with the
hardware to flush instruction caches. This issue
arises on some systems when a newly JITed func-
tion is using the same memory that was used by
an earlier JITed function.

7. Do not use the boolean && and || operators in
essential dependency chains. The reason for this
prohibition is that they are often compiled using
branches. Weak-memory machines such as ARM
or PowerPC order stores after such branches, but

WG21/P0098R1 10

can speculate loads, which can break data depen-
dency chains.

8. Do not use relational operators (==, !=, >, >=,
<, or <=) in the essential subset of a dependency
chain. The reason for this prohibition is that, as
for boolean operators, relational operators are
often compiled using branches. Weak-memory
machines such as ARM or PowerPC order stores
after such branches, but can speculate loads,
which can break dependency chains.

9. Be very careful about comparing pointers in the
essential subset of a dependency chain. As Linus
Torvalds explained, if the two pointers are equal,
the compiler could substitute the pointer you are
comparing against for the pointer in the essen-
tial subset of the dependency chain. On ARM
and Power hardware, it might be that only the
original value carried a hardware dependency, so
this substitution would break the chain, in turn
permitting misordering. Such comparisons are
OK in the following cases:

(a) The pointer references memory that was
initialized at boot time, or otherwise long
enough ago that readers cannot still have
pre-initialized data cached. Examples in-
clude module-init time for module code, be-
fore kthread creation for code running in a
kthread, while the update-side lock is held,
and so on.

(b) The pointer is never dereferenced after
being compared. This exception applies
when comparing against the NULL pointer
or when scanning RCU-protected circular
linked lists.

(c) The pointer being compared against is part
of the essential subset of a dependency
chain. This can be a different dependency
chain, but only as long as that chain stems
from a pointer that was modified after any
initialization of interest. This exception can
apply when carrying out RCU-protected
traversals from different entry points that
converged on the same data structure.

1 struct foo {
2 int a;
3 };
4 struct foo *fp;
5 struct foo default_foo;
6
7 int bar()
8 {
9 struct foo *p;

10
11 p = fp;
12 smp_read_barrier_depends();
13 return p ? p->a : default_foo.a;
14 }

Figure 9: Default Value For RCU-Protected Pointer,
Old Linux Kernel

(d) The pointer being compared against is
fetched using rcu access pointer() and
all subsequent dereferences are stores.

(e) The pointers compared not-equal and the
compiler does not have enough information
to deduce the value of the pointer. (For
example, if the compiler can see that the
pointer will only ever take on one of two
values, then it will be able to deduce the
exact value based on a not-equals compar-
ison.)

The same issue arises when a sequence of in-
equality comparison operators narrow to a single
value.

10. Disable any value-speculation optimizations that
your compiler might provide, especially if you are
making use of feedback-based optimizations that
take data collected from prior runs.

4.1.2 Rules for 2003 GCC Implementations

Prior to the 2.6.9 version of the Linux kernel, there
was neither rcu dereference() nor rcu assign

pointer(). Instead, explicit memory barriers were
used, smp read barrier depends() by readers and
smp wmb() by updaters. For example, the code shown
for current Linux kernels in Figure 6 would be as
shown in Figure 9 for 2.6.8 and earlier versions of the
Linux kernel. A similar transformation relates the

WG21/P0098R1 11

older use of smp wmb() and the more recent use of
rcu assign pointer().

This older API was clearly much more vulnerable
to compiler optimizations than is the current API,
but the real motivation for this change was read-
ability and maintainability, as can be seen from the
commit log for the mid-2004 patch introducing rcu

dereference():

This patch introduced an rcu

dereference() macro that replaces most
uses of smp read barrier depends().
The new macro has the advantage of
explicitly documenting which pointers
are protected by RCU – in contrast, it
is sometimes difficult to figure out which
pointer is being protected by a given
smp read barrier depends() call.

The commit log for the mid-2004 patch introducing
rcu assign pointer() justifies the change in terms
of eliminating hard-to-use explicit memory barriers:

Attached is a patch that adds an rcu

assign pointer() that allows a number of
explicit smp wmb() memory barriers to be
dispensed with, improving readability.

The importance of suppressing compiler optimiza-
tions did not become apparent until much later. In
fact, a volatile cast was not added to the implementa-
tion of rcu dereference() until 2.6.24 in early 2008.

4.1.3 Rules for 1990s Sequent C Implemen-
tations

1990s systems featured far slower CPUs and much
less memory that is commonly provisioned to-
day, and the compilers were correspondingly less
sophisticated. Therefore, at that time, a sim-
ple C-language field selector was used instead of
any sort of rcu dereference() or memory order

consume operation. Not only was there no
volatile cast, there also was nothing resembling smp

read barrier depends(). The lack of smp read

barrier depends() is not too surprising, given that
DYNIX/ptx did not run on DEC Alpha.

1 void new_element(struct foo **pp, int a)
2 {
3 struct foo *p = malloc(sizeof(*p));
4
5 if (!p)
6 abort();
7 p->a = a;
8 rcu_assign_pointer(pp, p);
9 }

10
11 int traverse(struct foo_head *ph)
12 {
13 int a = -1;
14 struct foo *p;
15
16 p = rcu_dereference(&ph->h);
17 while (p != NULL) {
18 if (p == (struct foo *)0xbadfab1e)
19 a = ((struct foo *)0xbadfab1e)->a;
20 else
21 a = p->a;
22 p = rcu_dereference(&p->n);
23 }
24 return a;
25 }

Figure 10: Dangerous Optimizations: Hardware
Branch Predictions

This approach was nevertheless quite reliable be-
cause the use cases within the DYNIX/ptx kernel
were both few and straightforward, and provided lit-
tle or no opportunity for optimizations that might
break dependency chains.

4.2 Rules for C-Language Imple-
menters

The main rule for C-language implementers is to
avoid any sort of value speculation, or, at the very
least, provide means for the user to disable such
speculation. An example of a value-speculation op-
timization that can be carried out with the help of
hardware branch prediction is shown in Figure 10,
which is an optimized version of the code in Fig-
ure 5. This sort of transformation might result from
feedback-directed optimization, where profiling runs
determined that the value loaded from ph was almost
alway 0xbadfab1e. Although this transformation is
correct in a single-threaded environment, in a concur-
rent environment, nothing stops the compiler or the
CPU from speculating the load on line 19 before it
executes the rcu dereference() on line 16, which

WG21/P0098R1 12

could result in line 19 executing before the corre-
sponding store on line 7, resulting in a garbage value
in variable a.4

There are some situations where this sort of opti-
mization would be safe, including:

1. The value speculated is a numeric value rather
than a pointer, so that if the guess proves correct
after the fact, the computation will be appropri-
ate after the fact.

2. The value speculated is a pointer to invariant
data, then reasonable values will be produced
by dereferencing, even if the guess proves to have
been correct only after the fact.

3. As above, but where any updates result in data
that produces appropriate computations at any
and all phases of the update.

However, this list does not contain the general case
of memory order consume loads.

Pure hardware implementations of value specula-
tion can avoid this problem because they monitor
cache-coherence protocol events that would result
from some other CPU invalidating the guess.

In short, compiler writers must provide means to
disable all forms of value speculation, unless the spec-
ulation is accompanied by some means of detecting
the race condition that Figure 10 is subject to.

Are there other dependency-breaking optimizations
that should be called out separately?

5 Dependency Ordering in C11
and C++11 Implementations

The simplest way to avoid dependency-ordering is-
sues is to strengthen all memory order consume oper-
ations to memory order acquire. This functions cor-
rectly, but may result in unacceptable performance
due to memory-barrier instructions on weakly or-
dered systems such as ARM and PowerPC,5 and may

4 Kudos to Olivier Giroux for pointing out use of branch
prediction to enable value speculation.

5 From a Linux-kernel community viewpoint, that should
read “will result in unacceptable performance”.

1 int a(struct foo *p [[carries_dependency]])
2 {
3 return std::kill_dependency(p->a != 0);
4 }
5
6 int b(int x)
7 {
8 return x;
9 }

10
11 foo *c()
12 {
13 return fp.load(memory_order_consume);
14 /* return rcu_dereference(fp) in Linux kernel. */
15 }
16
17 int d()
18 {
19 int a;
20 foo *p;
21
22 rcu_read_lock();
23 p = c();
24 a = p->a;
25 rcu_read_unlock();
26 return a;
27 }

Figure 11: Example Functions for Dependency Or-
dering, Part 1

further unnecessarily suppress code-motion optimiza-
tions.

Another straightforward approach is to avoid value
speculation and other dependency-breaking opti-
mizations. This might result in missed opportu-
nities for optimization, but avoids any need for
dependency-chain annotations and also all issues
that might otherwise arise from use of dependency-
breaking optimizations. This approach is fully com-
patible with the Linux kernel community’s current
approach to dependency chains. Unfortunately, there
are any number of valuable optimizations that break
dependency chains, so this approach seems impracti-
cal.

A third approach is to avoid value speculation
and other dependency-breaking optimizations in any
function containing either a memory order consume

load or a [[carries dependency]] attribute. For
example, the hardware-branch-predition optimiza-
tion shown in Figure 10 would be prohibited in such
functions, as would cancellation optimizations such
as optimizing a = b + c - c into a = b. This too

WG21/P0098R1 13

1 [[carries_dependency]] struct foo *e()
2 {
3 return fp.load(memory_order_consume);
4 /* return rcu_dereference(fp) in Linux kernel. */
5 }
6
7 int f()
8 {
9 int a;

10 foo *p;
11
12 rcu_read_lock();
13 p = e();
14 a = p->a;
15 rcu_read_unlock();
16 return std::kill_dependency(a);
17 }
18
19 int g()
20 {
21 int a;
22 foo *p;
23
24 rcu_read_lock();
25 p = e();
26 a = p->a;
27 rcu_read_unlock();
28 return b(a);
29 }

Figure 12: Example Functions for Dependency Or-
dering, Part 2

can result in missed opportunities for optimization,
though very probably many fewer than the previous
approach. This approach can also result in issues due
to dependency-breaking optimizations in functions
lacking [[carries dependency]] attributes, for ex-
ample, function d() in Figure 11. It can also result
in spurious memory-barrier instructions when a de-
pendency chain goes out of scope, for example, with
the return statement of function g() in Figure 12.

A fourth approach is to add a compile-time op-
eration corresponding to the beginning and end of
RCU read-side critical section. These would need to
be evaluated at compile time, taking into account
the fact that these critical sections can nest and can
be conditionally entered and exited. Note that the
exit from an outermost RCU read-side critical section
should imply a std::kill dependency() operation
on each variable that is live at that point in the code.6

6 What if a given rcu read unlock() sometimes marked the
end of an outermost RCU read-side critical section, but other
times was nested in some other RCU read-side critical section?

Although it is probably impossible to precisely de-
termine the bounds of a given RCU read-side critical
section in the general case, conservative approaches
that might overestimate the extent of a given sec-
tion should be acceptable in almost all cases. This
approach would make functions c() and d() in Fig-
ure 11 handle dependency chains in a natural manner,
but avoiding whole-program analysis would require
something similar to the [[carries dependency]]

annotations called out in the C11 and C++11 stan-
dards.

A fifth approach would be to require that all op-
erations on the essential subset of any dependency
chain be annotated. This would greatly ease imple-
mentation, but would not be likely to be accepted by
the Linux kernel community.

A sixth approach is to track dependencies as called
out in the C11 and C++11 standards. However, in-
stead of emitting a memory-barrier instruction when
a dependency chain flows into or out of a function
without the benefit of [[carries dependency]], in-
sert an implicit std::kill dependency() invoca-
tion. Implementation should also optionally is-
sue a diagnostic in this case. The motivation
for this approach is that it is expected that
many more kill dependencies() than [[carries

dependency]] would be required to convert the
Linux kernel’s RCU code to C11. In the exam-
ple in Figure 12, this approach would allow func-
tion g() to avoid emitting an unnecessary memory-
barrier instruction, but without function f()’s ex-
plicit std::kill dependency(). Both functions are
in Figure 12.

A seventh and final approach is to track dependen-
cies as called out in in the C11 and C++11 standards.
With this approach, functions e() and f() properly
preserve the required amount of dependency order-
ing.

In that case, there should be no std::kill dependency().

WG21/P0098R1 14

1 p = atomic_load_explicit(gp, memory_order_consume);
2 if (p == ptr_a)
3 a = p->special_a;
4 else
5 a = p->normal_a;

Figure 13: Dependency-Ordering Value-Narrowing
Hazard

6 Weaknesses in C11 and
C++11 Dependency Or-
dering

Experience has shown several weaknesses in the de-
pendency ordering specified in the C11 and C++11
standards:

1. The C11 standard does not provide attributes,
and in particular, does not provide the
[[carries dependency]] attribute. This pre-
vents the developer from specifying that a given
dependency chain passes into or out of a given
function. The usual C-language response to this
situation is to introduce a new keyword.

2. The implementation complexity of the
dependency-chain tracking required by both
standard can be quite onerous on the one hand,
and the overhead of unconditionally promoting
memory order consume loads to memory order

acquire can be excessive on weakly ordered
implementations on the other. There is therefore
no easy way out for a memory order consume

implementation on a weakly ordered system.

3. The function-level granularity of [[carries

dependency]] seems too coarse. One problem
is that points-to analysis is non-trivial, so that
compilers are likely to have difficulty determin-
ing whether or not a given pointer carries a de-
pendency. For example, the current wording of
the standard (intentionally!) does not disallow
dependency chaining through stores and loads.
Therefore, if a dependency-carrying value might
ever be written to a given variable, an implemen-
tation might reasonably assume that any load

from that variable must be assumed to carry a
dependency.

4. The rules set out in the standard [29, 1.10p11]
do not align well with the rules that develop-
ers must currently adhere to in order to main-
tain dependency chains when using pre-C11 and
pre-C++11 compilers (see Section 4.1). For ex-
ample, the standard requires (x-x) to carry a
dependency, and providing this guarantee would
at the very least require the compiler to also
turn off optimizations that remove (x-x) (and
similar patterns) if x might possibly be carry-
ing a dependency. For another example, con-
sider the value-speculation-like code shown in
Figure 13 that is sometimes written by devel-
opers, and that was described in bullet 9 of
Section 4.1. In this example, the standard re-
quires dependency ordering between the memory
order consume load on line 1 and the sub-
sequent dereference on line 3, but a typical
compiler would not be expected to differenti-
ate between these two apparently identical val-
ues. These two examples show that a compiler
would need to detect and carefully handle these
cases either by artificially inserting dependen-
cies, omitting optimizations, differentiating be-
tween apparently identical values, or even by
emitting memory order acquire fences.

5. The whole point of memory order consume and
the resulting dependency chains is to allow de-
velopers to optimize their code. Such optimiza-
tion attempts can be completely defeated by the
memory order acquire fences that the standard
currently requires when a dependency chain goes
out of scope without the benefit of a [[carries

dependency]] attribute. Preventing the com-
piler from emitting these fences requires liberal
use of std::kill dependency(), which clutters
code, requires large developer effort, and fur-
ther requires that the developer know quite a bit
about which code patterns a given version of a
given compiler can optimize (thus avoiding need-
less fences) and which it cannot (thus requiring
manual insertion of std::kill dependency().

WG21/P0098R1 15

As of this writing, no known implementations fully
support C11 or C++11 dependency ordering.

It is worth asking why Paul didn’t anticipate these
weaknesses. There are several reasons for this:

1. Compiler optimizations have become more ag-
gressive over the eight years since Paul started
working on standardization.

2. New dependency-ordering use cases have arisen
during that same time, in particular, there are
longer dependency chains and more of them,
including dependency chains spanning multiple
compilation units.

3. The number of dependency chains has increased
by more than an order of magnitude during that
time, so that changes in code style can be ex-
pected to face a commeasurate increase in resis-
tance from the Linux kernel community – unless
those changes bring some tangible benefit.

With that, let’s look at some potential alternatives
to dependency ordering as defined in the C11 and
C++11 standards.

7 Potential Alternatives to C11
and C++11 Dependency Or-
dering

Given the weaknesses in the current standard’s spec-
ification of dependency ordering, it is quite reason-
able to consider alternatives. To this end, Section 7.1
discusses ease-of-use issues involved with revisions to
the C11 and C++11 definitions of dependency or-
dering, Section 7.2 enlists help from the type system,
but also imposes value restrictions (thus revising the
C11 and C++11 semantics for dependencies), Sec-
tion 7.3 enlists help from the type system without
the value restrictions, and Section 7.4 describes a
whole-program approach to dependency chains (also
revising the C11 and C++11 semantics for depen-
dencies). Section 7.5 describes a post-Rapperswil
proposal that dependency chains be restricted to
function-scope local variables and temporaries, and

Section 7.6 describes a second post-Rapperswil pro-
posal that the [[carries dependency]] attribute
be used to label local-scope variables that carry de-
pendencies. Section 7.7 describes a proposal dis-
cussed verbally at Rapperswil that explicitly marks
the tails of dependency chains. Section 7.8 describes
the inverse, namely marking the heads of dependency
chains. Section 7.9 describes an approach that avoids
marking by sharply restricting the number and type
of operations permitted in dependency chains. Each
approach appears to have advantages and disadvan-
tages, so it is hoped that further discussion will either
help settle on one of these alternatives or generate
something better. To help initiate this discussion,
Section 7.11 uses a new Carries dependency stor-
age class to mark objects that carry dependencies.
Section 7.12 provides an initial comparative evalua-
tion.

7.1 Revising C11 and C++11
Dependency-Ordering Definition

The following sections each describe a proposed revi-
sion of the dependency-ordering definition from that
in the current C11 and C++11 standards. In many
of these proposals, developers are required to follow
an additional rule in order to be able to rely on de-
pendency ordering: Subsequent execution must not
lead to a situation where there is only one possible
value for the variable that is intended to carry the
dependency.7 This is shown in Figure 17, where the
compiler is permitted to break dependency ordering
on line 6 because it knows that the value of p is equal
to that of q, which means that it could substitute
the latter value from the former, which would break
dependency ordering. In short, a dependency chain
breaks if it comes to a point where only a single value
is possible, regardless of the value of the memory

order consume load heading up the chain. At first
glance, this additional rule could be quite difficult to
live with, as dependency ordering could come and go

7 This restricted notion of dependence is sometimes called
semantic dependence, and the value at the end of a depen-
dence chain that does not represent a semantic dependence is
sometimes said to be independent of the value at the head of
the dependency chain.

WG21/P0098R1 16

1 int my_array[MY_ARRAY_SIZE];
2
3 i = atomic_load_explicit(gi, memory_order_consume);
4 r1 = my_array[i];

Figure 14: Single-Element Arrays and Dependency
Ordering

depending on small details of code far away from that
point in the dependency chain.

However, a review of the Linux-kernel operators in
Section 3.2 shows that the most commonly used op-
erators act identically under both definitions. The
problem-free operators include ->, infix =, casts, pre-
fix &, prefix *, and ternary ?:.

One example of a potentially troublesome opera-
tor, namely ==, is shown in Figure 17, where line 6
breaks dependency ordering because the value of p is
known to be equal to that of q, which is not part of a
dependency chain. This example could be addressed
through careful diagnostic design coupled with appro-
priate coding standards. For example, the compiler
could emit a warning on line 6, but remain silent for
the equivalent line substituting q for p, namely, do
something with(q->a).

Another example is the use of postfix [] that
is shown in Figure 14. If this code fragment was
compiled with MY ARRAY SIZE equal to one, there is
no dependency ordering between lines 3 and 4, but
that same code fragment compiled with MY ARRAY

SIZE equal to two or greater would be dependency-
ordered. Here a diagnostic for single-element arrays
might prove useful, and such a diagnostic can easily
be supplied in this case using #if and #error. Or,
better yet, don’t carry dependencies through through
integers for use as array indexes.

In the Linux kernel, infix + and - are used for
pointer and array computations. These are all safe
in that they operate on an integer and pointer, so
that any cancellation will not normally be detectable
at compile time. However, one big purpose of diag-
nostics is to detect abnormal conditions indicating
probable bugs. Therefore, in cases where the com-
piler can determine that two values from dependency
chains are annihilating each other via infix + and -,
a diagnostic would be appropriate.

1 struct liststackhead {
2 struct liststack __rcu *first;
3 };
4
5 struct liststack {
6 struct liststack __rcu *next;
7 void *t;
8 struct rcu_head rh;
9 };

10
11 _Carries_dependency
12 void *ls_front(struct liststackhead *head)
13 {
14 _Carries_dependency void *data;
15 struct liststack *lsp;
16
17 rcu_read_lock();
18 lsp = rcu_dereference(head->first);
19 if (lsp == NULL)
20 data = NULL;
21 else
22 data = rcu_dereference(lsp->t);
23 rcu_read_unlock();
24 return data;
25 }

Figure 15: List-Based-Stack Example Code, 1 of 2

Similarly, the Linux kernel uses infix (bitwise) & to
manipulate bits at the bottom of a pointer, where
again cancellation will not normally be detectable at
compile time—except in the case of operations on a
NULL pointer, for which dependency ordering is not
meaningful in any case. However, as with infix +

and -, if the compiler detects value annihilation, a
diagnostic would be appropriate.

Although issues with false positives and negatives
needs further investigation, there is reason to hope
that this revision of the definition of dependency or-
dering might avoid significant impacts on ease of use.
With this hope, we proceed to the specific propos-
als, using the code in Figures 15 and 16 to show
some sample code using Linux-kernel nomenclature
with the addition of a mythical C keyword Carries

dependency to annotate parameters, variables, and
return values that carry dependencies. Please note
that this code example in no way endorses the dubi-
ous practice of creating a parallel program with the
sort of choke point exemplified by the head of this
list. Note also that cmpxchg() heads a dependency
chain, which is completely reasonable within the con-
text of the Linux kernel due to its acquire semantics,
which of course might be argued to indicate that the

WG21/P0098R1 17

1 int ls_push(struct liststackhead *head, void *t)
2 {
3 struct liststack *lsp;
4 struct liststack *lsnp1;
5 struct liststack *lsnp2;
6 size_t sz;
7
8 sz = sizeof(*lsp);
9 sz = (sz + CACHE_LINE_SIZE - 1) / CACHE_LINE_SIZE;

10 sz *= CACHE_LINE_SIZE;
11 lsp = malloc(sz);
12 if (!lsp)
13 return -ENOMEM;
14 if (!t)
15 abort();
16 lsp->t = t;
17 rcu_read_lock();
18 lsnp2 = ACCESS_ONCE(head->first);
19 do {
20 lsnp1 = lsnp2;
21 lsp->next = lsnp1;
22 lsnp2 = cmpxchg(&head->first, lsnp1, lsp);
23 } while (lsnp1 != lsnp2);
24 rcu_read_unlock();
25 return 0;
26 }
27
28 static void ls_rcu_free_cb(struct rcu_head *rhp)
29 {
30 struct liststack *lsp;
31
32 lsp = container_of(rhp, struct liststack, rh);
33 free(lsp);
34 }
35
36 _Carries_dependency
37 void *ls_pop(struct liststackhead *head)
38 {
39 _Carries_dependency struct liststack *lsp;
40 struct liststack *lsnp1;
41 _Carries_dependency struct liststack *lsnp2;
42 _Carries_dependency void *data;
43
44 rcu_read_lock();
45 lsnp2 = rcu_dereference(head->first);
46 do {
47 lsnp1 = lsnp2;
48 if (lsnp1 == NULL) {
49 rcu_read_unlock();
50 return NULL;
51 }
52 lsp = rcu_dereference(lsnp1->next);
53 lsnp2 = cmpxchg(&head->first, lsnp1, lsp);
54 } while (lsnp1 != lsnp2);
55 data = rcu_dereference(lsnp2->t);
56 rcu_read_unlock();
57 call_rcu(&lsnp2->rh, ls_rcu_free_cb);
58 return data;
59 }

Figure 16: List-Based-Stack Example Code, 2 of 2

1 value_dep_preserving struct foo *p;
2
3 p = atomic_load_explicit(gp, memory_order_consume);
4 q = some_other_pointer;
5 if (p == q)
6 do_something_with(p->a);
7 else
8 do_something_else_with(p->b);

Figure 17: Single-Value Variables and Dependency
Ordering

annotations in ls pop() are unnecessary.

7.2 Type-Based Designation of De-
pendency Chains With Restric-
tions

This approach was formulated by Torvald Riegel in
response to Linus Torvalds’s spirited criticisms of the
current C11 and C++11 wording.

This approach introduces a new value dep

preserving type qualifier. Dependency ordering is
preserved only via variables having this type quali-
fier. This is meant to model the real scope of depen-
dencies, which is data flow, not execution at function-
level granularity. This approach should therefore give
developers much finer control of which dependencies
are tracked.

Assigning from a value dep preserving value to a
non-value dep preserving variable terminates the
tracking of dependencies in much the same way that
an explicit std::kill dependency() would. How-
ever, unlike an explicit std::kill dependency(),
compilers should be able to emit a suppressable warn-
ing on implicit conversions, so as to alert the devel-
oper about otherwise silent dropping of dependency
tracking.8

Next, we specify that memory order consume loads
return a value dep preserving type by default; the
compiler must assume such a load to be capable of
producing any value of the underlying type. In other
words, the implementation is not permitted to apply
any value-restriction knowledge it might gain from

8 Other choices are possible in this case, including emit-
ting a memory order acquire fence in order to conservatively
preserve a potentially intended ordering.

WG21/P0098R1 18

whole-program analysis. We call this a local seman-
tic dependency to distinguish not only from a pure
(syntactic) dependency, but also from a global seman-
tic dependency, where global information may be ap-
plied. Note that any global semantic dependency is
also a local semantic dependency, but that any local
semantic dependency which is headed by a variable
that can be proven to take on only a single value is not
a global semantic dependency. The term “semantic
dependency” should be interpreted to mean a global
semantic dependency unless otherwise stated.

This allows developers to start with a clean slate
for the additional rule that they must follow to be
able to rely on dependency ordering: Subsequent ex-
ecution must not lead to a situation there is only one
possible value for the value dep preserving expres-
sion, because otherwise the implementation is per-
mitted to break the dependency chain. As noted
earlier, this is shown in Figure 17, where the com-
piler is permitted to break dependency ordering on
line 6 because it knows that the value of p is equal
to that of q, which means that it could substitute
the latter value from the former, which would break
dependency ordering.

This approach has several advantages:

1. The implementation is simpler because no de-
pendency chains need to be traced. The imple-
mentation can instead drive optimization deci-
sions strictly from type information.

2. Use of the value dep preserving type modifier
allows the developer to limit the extent of the
dependency chains.

3. This type modifier can be used to mark a depen-
dency chain’s entry to and exit from a function
in a straightforward way, without the need for
attributes.

4. The value dep preserving type modifiers serve
as valuable documentation of the developer’s in-
tent.

5. This approach permits many additional opti-
mizations compared to those permitted by the
current standard on code that carries a depen-
dency. Expressions such as (x-x) no longer

require establishment of artificial dependencies
and the compiler is no longer required to detect
value-narrowing hazards like that shown in Fig-
ure 13. However, the compiler is still prohibited
from adding its own value-speculation optimiza-
tions.

6. Linus Torvalds seems to be OK with it, which
indicates that this set of rules might be practical
from the perspective of developers who currently
exploit dependency chains.

According to Peter Sewell, one disadvantage is that
this approach will be quite difficult to model, which in
turn will pose obstacles for the analysis tooling that
will be increasingly necessary for large-scale concur-
rent programming efforts. In particular, the concern
is that forcing the compiler to assume that a memory

order consume load could possibly return any value
permitted by its type might require program-analysis
tools to consider counterfactual hypothetical execu-
tions, which might complicate specification of seman-
tics and verification.

Figures 18 and 19 show how this approach plays
out with the list-based stack.

7.3 Type-Based Designation of De-
pendency Chains

Jeff Preshing made an off-list suggestion of using a
value dep preserving type modifier as suggested
by Torvald Riegel, but using this type modifier to
strictly enforce dependency ordering. For example,
consider the code fragment shown in Figure 17. The
scheme described in Section 7.2 would not necessar-
ily enforce dependency ordering between the load on
line 3 and the access one line 6, while the approach
described in this section would enforce dependency
ordering in this case.

Furthermore, cancelling or value-destruction oper-
ations on value dep preserving values would not
disrupt dependency ordering. As with the cur-
rent C11 and C++11 standards, the implementation
would be required to emit a memory-barrier instruc-
tion or compute an artificial dependency for such op-
erations. (Note however that use of cancelling or

WG21/P0098R1 19

1 #define rcu_dereference(x) \
2 atomic_load_explicit((x), memory_order_consume);
3
4 struct liststackhead {
5 struct liststack value_dep_preserving *first;
6 };
7
8 struct liststack {
9 struct liststack value_dep_preserving *next;

10 void *t;
11 struct rcu_head rh;
12 };
13
14 value_dep_preserving
15 void *ls_front(struct liststackhead *head)
16 {
17 value_dep_preserving void *data;
18 value_dep_preserving struct liststack *lsp;
19
20 rcu_read_lock();
21 lsp = rcu_dereference(head->first);
22 if (lsp == NULL)
23 data = NULL;
24 else
25 data = rcu_dereference(lsp->t);
26 rcu_read_unlock();
27 return data;
28 }

Figure 18: List-Based-Stack Restricted Type-Based
Designation, 1 of 2

value-destruction operations on dependency chains
has proven quite rare in practice.)

This approach shares many of the advantages of
Torvald Riegel’s approach:

1. The implementation is simpler because no de-
pendency chains need be traced. The implemen-
tation can instead drive optimization decisions
strictly from type information.

2. Use of the value dep preserving type modifier
allows the developer to limit the extent of the
dependency chains.

3. This type modifier can be used to mark a depen-
dency chain’s entry to and exit from a function
in a straightforward way, without the need for
attributes.

4. The value dep preserving type modifiers serve
as valuable documentation of the developer’s in-
tent.

1 int ls_push(struct liststackhead *head, void *t)
2 {
3 struct liststack *lsp;
4 struct liststack *lsnp1;
5 struct liststack *lsnp2;
6 size_t sz;
7
8 sz = sizeof(*lsp);
9 sz = (sz + CACHE_LINE_SIZE - 1) / CACHE_LINE_SIZE;

10 sz *= CACHE_LINE_SIZE;
11 lsp = malloc(sz);
12 if (!lsp)
13 return -ENOMEM;
14 if (!t)
15 abort();
16 lsp->t = t;
17 rcu_read_lock();
18 lsnp2 = ACCESS_ONCE(head->first);
19 do {
20 lsnp1 = lsnp2;
21 lsp->next = lsnp1;
22 lsnp2 = cmpxchg(&head->first, lsnp1, lsp);
23 } while (lsnp1 != lsnp2);
24 rcu_read_unlock();
25 return 0;
26 }
27
28 static void ls_rcu_free_cb(struct rcu_head *rhp)
29 {
30 struct liststack *lsp;
31
32 lsp = container_of(rhp, struct liststack, rh);
33 free(lsp);
34 }
35
36 value_dep_preserving
37 void *ls_pop(struct liststackhead *head)
38 {
39 value_dep_preserving struct liststack *lsp;
40 struct liststack *lsnp1;
41 value_dep_preserving struct liststack *lsnp2;
42 value_dep_preserving void *data;
43
44 rcu_read_lock();
45 lsnp2 = rcu_dereference(head->first);
46 do {
47 lsnp1 = lsnp2;
48 if (lsnp1 == NULL) {
49 rcu_read_unlock();
50 return NULL;
51 }
52 lsp = rcu_dereference(lsnp1->next);
53 lsnp2 = cmpxchg(&head->first, lsnp1, lsp);
54 } while (lsnp1 != lsnp2);
55 data = rcu_dereference(lsnp2->t);
56 rcu_read_unlock();
57 call_rcu(&lsnp2->rh, ls_rcu_free_cb);
58 return data;
59 }

Figure 19: List-Based-Stack Restricted Type-Based
Designation, 2 of 2

WG21/P0098R1 20

5. Although optimizations on a dependency chain
are restricted just as in the current standard,
the use of value dep preserving restricts the
dependency chains to those intended by the de-
veloper.

6. Restricting dependency-breaking optimizations
on all dependency chains marked value dep

preserving, without exceptions for cases in
which the compiler knows too much, might make
this approach easier to learn and to use.

It is expected that modeling this approach should
be straightforward because the modeling tools would
be able to make use of the type information. This
approach results in the same code as shown in Fig-
ures 18 and 19 of the previous section.

7.4 Whole-Program Option

This approach, also suggested off-list by Jeff Presh-
ing, has the goal of reusing existing non-dependency-
ordered source code unchanged (albeit requiring re-
compilation in most cases).9 For example, this ap-
proach permits an instance of std::map to be refer-
enced by a pointer loaded via memory order consume

and to provide that std::map instance with the
benefits of dependency ordering without any code
changes whatsoever to std::map. It is important to
note that this protection will be provided only to a
read-only std::map that is referenced by a changing
pointer loaded via memory order consume, in partic-
ular, not to a concurrently updated std::map refer-
enced by a pointer (read-only or otherwise) loaded
via memory order consume. This latter case would
require changes to the underlying std:map implemen-
tation, at a minimum, changing some of the loads to
be memory order consume loads. Nevertheless, the
ability to provide dependency-ordering protection to
pre-existing linked data structures is valuable, even
with this read-only restriction.

This approach, which again does require full re-
compilation, can be implemented using two ap-
proaches:

9 A module or library that is known to never carry a de-
pendency need not be recompiled.

1. Promote all memory order consume loads to
memory order acquire, as may be done with
the current standard.

2. On architectures that respect memory order-
ing, prohibit all dependency-breaking optimiza-
tions throughout the entire program, but only
in cases where a change in the value returned
by a memory order consume load could cause a
change in the value computed later in that same
dependency chain, in other words, where there is
a global semantic dependency. Note again that
the possibility of storing a value obtained from
a memory order consume load, then loading it
later, means that normal loads as well as memory
order relaxed loads often must be considered
to head their own dependency chains, but only
when loaded by the same thread that did the
store.

Some implementations might allow the developer
to choose between these two approaches, for example,
by using a compiler switch provided for that purpose.

This approach also has the effect of permitting a
trivial implementation of a memory order consume

atomic thread fence(). When using the first im-
plementation approach, the atomic thread fence()

is simply promoted to memory order acquire. In-
terestingly enough, when using the second ap-
proach, the memory order consume atomic thread

fence() may simply be ignored. The reason for
this is that this approach has the effect of promot-
ing memory order relaxed loads to memory order

consume, which already globally enforces all the
ordering that the memory order consume atomic

thread fence() is required to provide locally.10

This approach has its own set of advantages and
disadvantages:

1. This approach dispenses with the [[carries

dependency]] attribute and the std::kill

dependency() primitive.

10 Of course, this presumed promotion from memory order

relaxed to memory order consume means that architectures
such as DEC Alpha that do not respect dependency order-
ing must continue to use the first option of emitting memory-
ordering instructions for memory order consume loads.

WG21/P0098R1 21

2. This approach better promotes reuse of existing
source code. In particular, it should require no
changes to the current Linux-kernel source base,
aside from changes to the rcu dereference()

family of primitives.

3. This approach allows implementations to carry
out dependency-breaking optimizations on de-
pendency chains as long as a change in the
value from the memory order consume load does
not change values further down the dependency
chain, both with and without the optimization.
Jeff conjectures that the set of dependency-
breaking optimizations used in practice apply
only outside of dependency chains, by the re-
vised definition in which single-value restrictions
break dependency chains.11 If this conjecture
holds, it also applies to Torvald’s approach de-
scribed in Section 7.2.

4. Code that follows the rules presented in Sec-
tion 4.1 (substituting memory order consume

loads for volatile loads) would have its depen-
dency ordering properly preserved.

It is unlikely that this approach could be modeled
reasonably given the current state of the art. The
requirement that any given memory order consume

load be able to generate at least two different val-
ues at the tail of the dependency chain is believed
to be a show-stopper, especially when coupled with
whole-program analysis, which might find that there
is only one value entering at the head of the depen-
dency chain.

This approach allows annotations to be discarded,
as shown in Figures 20 and 21. However, the memory
order consume loads are still required in order to
enable the promote-to-acquire implementation style.

7.5 Local-Variable Restriction

This approach, suggested off-list by Hans Boehm,
limits the extent of dependency trees to a local, which
includes local variables, temporaries, function argu-
ments, and return variables. Assigning a value from a

11 This is certainly the case for the usual optimizations ex-
emplified by replacing (x-x) with zero.

1 #define rcu_dereference(x) \
2 atomic_load_explicit((x), memory_order_consume);
3
4 struct liststackhead {
5 struct liststack *first;
6 };
7
8 struct liststack {
9 struct liststack *next;

10 void *t;
11 struct rcu_head rh;
12 };
13
14 void *ls_front(struct liststackhead *head)
15 {
16 void *data;
17 struct liststack *lsp;
18
19 rcu_read_lock();
20 lsp = rcu_dereference(head->first);
21 if (lsp == NULL)
22 data = NULL;
23 else
24 data = rcu_dereference(lsp->t);
25 rcu_read_unlock();
26 return data;
27 }

Figure 20: List-Based-Stack Whole-Program Ap-
proach, 1 of 2

memory order consume load to such an object begins
a dependency chain. Assigning a value loaded from
such a local to a global variable (including function-
local variables marked static) or to the heap im-
plies a std::kill dependency(), so that depen-
dency chains are confined to locals. However, if the
compiler is unable to see the full dependency chain,
for example, because it passes into a function in an-
other translation unit that is not marked [[carries

dependency]], the compiler should promote memory
order consume to memory order acquire.12

Section 3.2 indicates that the following operators
should transmit dependency status from one local
variable or temporary to another: ->, infix =, casts,
prefix &, prefix *, [], infix +, infix -, ternary ?:,
infix (bitwise) &, and probably also |. Similarly, Sec-
tion 3.3 indicates that the following operators should
imply a std::kill dependency(): (), !, ==, !=, &&,
||, infix *, /, and %.

12 Some implementations might provide means to allow the
user to specify that a diagnostic be generated if such promotion
is necessary.

WG21/P0098R1 22

1 int ls_push(struct liststackhead *head, void *t)
2 {
3 struct liststack *lsp;
4 struct liststack *lsnp1;
5 struct liststack *lsnp2;
6 size_t sz;
7
8 sz = sizeof(*lsp);
9 sz = (sz + CACHE_LINE_SIZE - 1) / CACHE_LINE_SIZE;

10 sz *= CACHE_LINE_SIZE;
11 lsp = malloc(sz);
12 if (!lsp)
13 return -ENOMEM;
14 if (!t)
15 abort();
16 lsp->t = t;
17 rcu_read_lock();
18 lsnp2 = ACCESS_ONCE(head->first);
19 do {
20 lsnp1 = lsnp2;
21 lsp->next = lsnp1;
22 lsnp2 = cmpxchg(&head->first, lsnp1, lsp);
23 } while (lsnp1 != lsnp2);
24 rcu_read_unlock();
25 return 0;
26 }
27
28 static void ls_rcu_free_cb(struct rcu_head *rhp)
29 {
30 struct liststack *lsp;
31
32 lsp = container_of(rhp, struct liststack, rh);
33 free(lsp);
34 }
35
36 void *ls_pop(struct liststackhead *head)
37 {
38 struct liststack *lsp;
39 struct liststack *lsnp1;
40 struct liststack *lsnp2;
41 void *data;
42
43 rcu_read_lock();
44 lsnp2 = rcu_dereference(head->first);
45 do {
46 lsnp1 = lsnp2;
47 if (lsnp1 == NULL) {
48 rcu_read_unlock();
49 return NULL;
50 }
51 lsp = rcu_dereference(lsnp1->next);
52 lsnp2 = cmpxchg(&head->first, lsnp1, lsp);
53 } while (lsnp1 != lsnp2);
54 data = rcu_dereference(lsnp2->t);
55 rcu_read_unlock();
56 call_rcu(&lsnp2->rh, ls_rcu_free_cb);
57 return data;
58 }

Figure 21: List-Based-Stack Whole-Program Ap-
proach, 2 of 2

It will also be necesary to check whether Linux-
kernel usage expects dependency chains to pass
through globals and heap objects that are in some
way thread-local. If there are such use cases, and if
they are sane and cannot easily be changed to use
local variables, should [[carries dependency]] be
used to flag dependency-carrying globals and heap
objects?

This approach has the following advantages and
disadvantages:

1. This approach requires that the C language add
the [[carries dependency]] attribute if de-
pendency chains are to span multiple translation
units, as is the case in some parts of the Linux
kernel.

2. The implementation is likely to be some-
what simpler because only those dependency
chains passing through local variables, compiler-
generated temporaries, compiler-visible function
arguments, and compiler-visible return values
need be traced. One could also argue that func-
tion arguments and return values marked with
[[carries dependency]] attribute also need to
be traced.

3. Many irrelevant dependency chains are pruned
by default, thus fewer std::kill dependency()

calls are required.

4. Although optimizations on dependency chains
must be restricted, the restricted scope of de-
pendency chains reduces the impact of these re-
strictions.

5. Applying this approach to the Linux kernel
would only require the addition of markings on
function parameters and return values corre-
sponding to cross-translation-unit function calls.
However, there are a significant number of these,
so this approach can expect significant resistance
from the Linux community.

It is expected that modeling this approach should
be no more difficult than for the current C11 and
C++11 standards.

This approach allows local-variable annotations to
be dropped, as shown in Figure 22 and 23

WG21/P0098R1 23

1 #define rcu_dereference(x) \
2 atomic_load_explicit((x), memory_order_consume);
3
4 struct liststackhead {
5 struct liststack *first;
6 };
7
8 struct liststack {
9 struct liststack *next;

10 void *t;
11 struct rcu_head rh;
12 };
13
14 _Carries_dependency
15 void *ls_front(struct liststackhead *head)
16 {
17 void *data;
18 struct liststack *lsp;
19
20 rcu_read_lock();
21 lsp = rcu_dereference(head->first);
22 if (lsp == NULL)
23 data = NULL;
24 else
25 data = rcu_dereference(lsp->t);
26 rcu_read_unlock();
27 return data;
28 }

Figure 22: List-Based-Stack Local-Variable Restric-
tion, 1 of 2

7.6 Mark Dependency-Carrying Lo-
cal Variables

This approach, suggested offlist by Clark Nelson, uses
the [[carries dependency]] attribute to mark non-
static local-scope variables as carrying a dependency,
in addition to its current use marking function ar-
guments and return values as carrying dependen-
cies. It is not permissible to mark global variables
or structure members with this attribute. Assigning
from a [[carries dependency]] object to a non-
[[carries dependency]] object results in an im-
plicit std::kill dependency().

This approach is similar to that of Section 7.3, ex-
cept that it uses an attribute rather than a type mod-
ifier. As such, it has many of the advantages and dis-
advantages of that approach, however, some believe
that an attribute-based approach will be more ac-
ceptable to the committee than would a type-modifier
approach.13 However, this approach does require

13 Lawrence Crowl suggests a third approach, namely a vari-
able modifier.

1 int ls_push(struct liststackhead *head, void *t)
2 {
3 struct liststack *lsp;
4 struct liststack *lsnp1;
5 struct liststack *lsnp2;
6 size_t sz;
7
8 sz = sizeof(*lsp);
9 sz = (sz + CACHE_LINE_SIZE - 1) / CACHE_LINE_SIZE;

10 sz *= CACHE_LINE_SIZE;
11 lsp = malloc(sz);
12 if (!lsp)
13 return -ENOMEM;
14 if (!t)
15 abort();
16 lsp->t = t;
17 rcu_read_lock();
18 lsnp2 = ACCESS_ONCE(head->first);
19 do {
20 lsnp1 = lsnp2;
21 lsp->next = lsnp1;
22 lsnp2 = cmpxchg(&head->first, lsnp1, lsp);
23 } while (lsnp1 != lsnp2);
24 rcu_read_unlock();
25 return 0;
26 }
27
28 static void ls_rcu_free_cb(struct rcu_head *rhp)
29 {
30 struct liststack *lsp;
31
32 lsp = container_of(rhp, struct liststack, rh);
33 free(lsp);
34 }
35
36 _Carries_dependency
37 void *ls_pop(struct liststackhead *head)
38 {
39 struct liststack *lsp;
40 struct liststack *lsnp1;
41 struct liststack *lsnp2;
42 void *data;
43
44 rcu_read_lock();
45 lsnp2 = rcu_dereference(head->first);
46 do {
47 lsnp1 = lsnp2;
48 if (lsnp1 == NULL) {
49 rcu_read_unlock();
50 return NULL;
51 }
52 lsp = rcu_dereference(lsnp1->next);
53 lsnp2 = cmpxchg(&head->first, lsnp1, lsp);
54 } while (lsnp1 != lsnp2);
55 data = rcu_dereference(lsnp2->t);
56 rcu_read_unlock();
57 call_rcu(&lsnp2->rh, ls_rcu_free_cb);
58 return data;
59 }

Figure 23: List-Based-Stack Local-Variable Restric-
tion, 2 of 2

WG21/P0098R1 24

that C add attributes.
This leave the question of which operators

transmit dependency chains from one [[carries

dependency]] object to another. Section 3.2 indi-
cates that the following operators should transmit
dependency status from one local variable or tempo-
rary to another: ->, infix =, casts, prefix &, prefix *,
[], infix +, infix -, ternary ?:, infix (bitwise) &, and
probably also |. Similarly, Section 3.3 shows that
the following operators should imply a std::kill

dependency(): (), !, ==, !=, &&, ||, infix *, /, and
%.

This approach has the following advantages and
disadvantages:

1. This approach requires that the C language add
the [[carries dependency]] attribute.

2. The implementation is likely to be simpler be-
cause only those dependency chains passing
through variables marked with the [[carries

dependency]] attribute need be traced.

3. Many irrelevant dependency chains are pruned
by default, thus fewer std::kill dependency()

calls are required.

4. The [[carries dependency]] calls serve as
valuable documentation of the developer’s in-
tent.

5. Although optimizations on dependency chains
must be restricted, use of explicit [[carries

dependency]] greatly reduces unnecessary re-
striction of optimizations on unintentional de-
pendency chains.

6. Applying this to the Linux kernel would require
significant marking of variables carrying depen-
dencies, given that the Linux kernel currently
requires no such markings.

7. Common types of abstraction need to be han-
dled correctly. For example, there are more than
500 invocations of list for each entry rcu()

in the v4.1 Linux kernel, each of which heads
a distinct dependency chain. In addition, some

1 #define rcu_dereference(x) \
2 atomic_load_explicit((x), memory_order_consume);
3
4 struct liststackhead {
5 struct liststack *first;
6 };
7
8 struct liststack {
9 struct liststack *next;

10 void *t;
11 struct rcu_head rh;
12 };
13
14 _Carries_dependency
15 void *ls_front(struct liststackhead *head)
16 {
17 _Carries_dependency void *data;
18 _Carries_dependency struct liststack *lsp;
19
20 rcu_read_lock();
21 lsp = rcu_dereference(head->first);
22 if (lsp == NULL)
23 data = NULL;
24 else
25 data = rcu_dereference(lsp->t);
26 rcu_read_unlock();
27 return data;
28 }

Figure 24: List-Based-Stack Marked Local Variables,
1 of 2

of these distinct dependency chains invoke com-
mon functions and macros. It is not clear that
compile-time marking suffices for these cases.

It is expected that modeling this approach should
be no more difficult than for the current C11 and
C++11 standards.

This approach results in code as shown in Fig-
ures 24 and 25, where the [[carries dependency]]

attributes have been replaced with a mythical
Carries dependency C keyword.

7.7 Explicitly Tail-Marked Depen-
dency Chains

This approach, suggested at Rapperswil by Olivier
Giroux, can be thought of as the inverse of
std::kill dependency(). Instead of explicitly
marking where the dependency chains terminate,
Olivier’s proposal uses a std::dependency() prim-
itive to indicate the locations in the code that the
dependency chains are required to reach. The first ar-

WG21/P0098R1 25

1 int ls_push(struct liststackhead *head, void *t)
2 {
3 struct liststack *lsp;
4 struct liststack *lsnp1;
5 struct liststack *lsnp2;
6 size_t sz;
7
8 sz = sizeof(*lsp);
9 sz = (sz + CACHE_LINE_SIZE - 1) / CACHE_LINE_SIZE;

10 sz *= CACHE_LINE_SIZE;
11 lsp = malloc(sz);
12 if (!lsp)
13 return -ENOMEM;
14 if (!t)
15 abort();
16 lsp->t = t;
17 rcu_read_lock();
18 lsnp2 = ACCESS_ONCE(head->first);
19 do {
20 lsnp1 = lsnp2;
21 lsp->next = lsnp1;
22 lsnp2 = cmpxchg(&head->first, lsnp1, lsp);
23 } while (lsnp1 != lsnp2);
24 rcu_read_unlock();
25 return 0;
26 }
27
28 static void ls_rcu_free_cb(struct rcu_head *rhp)
29 {
30 struct liststack *lsp;
31
32 lsp = container_of(rhp, struct liststack, rh);
33 free(lsp);
34 }
35
36 _Carries_dependency
37 void *ls_pop(struct liststackhead *head)
38 {
39 _Carries_dependency struct liststack *lsp;
40 struct liststack *lsnp1;
41 _Carries_dependency struct liststack *lsnp2;
42 _Carries_dependency void *data;
43
44 rcu_read_lock();
45 lsnp2 = rcu_dereference(head->first);
46 do {
47 lsnp1 = lsnp2;
48 if (lsnp1 == NULL) {
49 rcu_read_unlock();
50 return NULL;
51 }
52 lsp = rcu_dereference(lsnp1->next);
53 lsnp2 = cmpxchg(&head->first, lsnp1, lsp);
54 } while (lsnp1 != lsnp2);
55 data = rcu_dereference(lsnp2->t);
56 rcu_read_unlock();
57 call_rcu(&lsnp2->rh, ls_rcu_free_cb);
58 return data;
59 }

Figure 25: List-Based-Stack Marked Local Variables,
2 of 2

1 p = atomic_load_explicit(&gp, memory_order_consume);
2 if (p != NULL)
3 do_it(atomic_dependency(p, gp));

Figure 26: Explicit Dependency Operations

1 void foo(struct bar *q [[carries_dependency]])
2 {
3 if (q != NULL)
4 do_it(atomic_dependency(q->b, q));
5 }
6
7 p = atomic_load_explicit(&gp, memory_order_consume);
8 foo(atomic_dependency(p, gp));

Figure 27: Explicit Dependency Operations and car-
ries dependency

gument to std::dependency() is the value to which
the dependency must be carried, and the second argu-
ment is the variable that heads the dependency chain,
in other words, the second argument is the variable
that was loaded from by a memory order consume

load. This proposal differs from the others in that
it is expected to be implemented not necessarily by
preserving the dependency, but instead by inserting
barriers in those cases where optimizations have elim-
inated any required dependencies. The goal here is to
impose minimal restrictions on optimizations of code
containing dependency chains.

A C-language example is shown in Figure 26,
where std::dependency() is transliterated to the C-
language atomic dependency() function. On line 3,
atomic dependency() returns the value of its first
argument (p), while ensuring that the data depen-
dency from the memory order consume load from gp

is faithfully reflected in the assembly language imple-
menting this code fragment. The assembly-language
reflection of this dependency might be in terms of
an assembly-language dependency (for example, on
ARM or PowerPC), implicit memory ordering (for
example, on x86 or mainframe), or by an explicit
memory-barrier instruction. However, if there was no
atomic dependency() function, the compiler would
be under no obligation to preserve the dependency.14

14 Would it be better to have the second argument to atomic

dependency() be a label rather than an expression?

WG21/P0098R1 26

These explicitly specified dependencies may be
combined with [[carries dependency]] attributes
on function arguments, for example, as shown in Fig-
ure 27. Note the interplay of atomic dependency()

and [[carries dependency]], where line 8 estab-
lishes the dependency between the load from gp and
the [[carries dependency]] argument q of foo(),
and where line 4 establishes the further dependency
between argument q of foo() and do it()s argu-
ment.

This approach is not yet complete. One issue is
the possibility of a given operation being dependent
on multiple memory order consume loads. One ap-
proach is of course to omit this functionality, and an-
other is to allow atomic dependency() to allow an
expression as its first argument and a variable list of
memory order consume loaded variables.

Another issue is connecting [[carries

dependency]] return values to subsequent atomic

dependency() invocations. There are a number
of possible resolutions to this issue. One approach
would be to use [[carries dependency]] attribute
to mark the declaration of the variable to which
the function’s return value is assigned, bringing the
proposal from Section 7.6 to bear. In the special
case where the memory order consume load is in the
same function body as the atomic dependency()

that depends on it, the atomic dependency()

could reference the variable that was the source
of the original memory order consume load. An-
other approach would be to allow function-return
carries dependency]] attributes to define names
that could be used by later atomic dependency()

invocations.
A third issue arises when atomic dependency()

must be applied after the head of the dependency
chain has gone out of scope, for example, if the head
was contained in a variable defined in an inner scope
that has since been exited.

A fourth issue arises if optimizations along a
needed dependency chain allow ordering the depen-
dent operation to precede the head of the depen-
dency chain, in which case inserting barriers would
be ineffective. The current proposal for addressing
this issue is to suppress memory-movement optimiza-
tions across the atomic dependency(), perhaps us-

ing something like atomic signal fence() or the
Linux kernel’s barrier() macro. This approach al-
lows dependency checking and fence insertion to be
carried out as a final pass in the compilation process.

This approach has the following advantages and
disadvantages:

1. This approach requires that the C language add
the [[carries dependency]] attribute.

2. The implementation is likely to be simpler be-
cause only those dependency chains having ex-
plicit atomic dependency() calls (and, option-
ally, intermediate [[carries dependency]] at-
tributes) need be traced.

3. Irrelevant dependency chains are pruned by de-
fault, with no std::kill dependency() calls re-
quired.

4. The atomic dependency() calls serve as valu-
able documentation of the developer’s intent.

5. Although optimizations on dependency chains
must be restricted, use of explicit atomic

dependency() greatly reduces unnecessary re-
striction of optimizations on unintentional de-
pendency chains.

6. Applying this to the Linux kernel would require
significant marking of dependency chains, given
that the Linux kernel currently relies on implicit
ends of dependency chains.

7. Common types of abstraction need to be han-
dled correctly. For example, there are more than
500 invocations of list for each entry rcu()

in the v4.1 Linux kernel, each of which heads
a distinct dependency chain. In addition, some
of these distinct dependency chains invoke com-
mon functions and macros. It is not clear that
compile-time marking suffices for these cases.

It is not yet known whether this approach can be
reasonably modeled.

The result is shown in Figures 28 and 29.

WG21/P0098R1 27

1 #define rcu_dereference(x) \
2 atomic_load_explicit((x), memory_order_consume);
3
4 struct liststackhead {
5 struct liststack *first;
6 };
7
8 struct liststack {
9 struct liststack *next;

10 void *t;
11 struct rcu_head rh;
12 };
13
14 _Carries_dependency
15 void *ls_front(struct liststackhead *head)
16 {
17 void *data;
18 struct liststack *lsp;
19
20 rcu_read_lock();
21 lsp = rcu_dereference(head->first);
22 if (lsp == NULL)
23 data = NULL;
24 else
25 data =
26 rcu_dereference(atomic_dependency(lsp->t,
27 head->first));
28 rcu_read_unlock();
29 return atomic_dependency(data, lsp->t);
30 }

Figure 28: List-Based-Stack Tail-Marked Dependen-
cies, 1 of 2

1 int ls_push(struct liststackhead *head, void *t)
2 {
3 struct liststack *lsp;
4 struct liststack *lsnp1;
5 struct liststack *lsnp2;
6 size_t sz;
7
8 sz = sizeof(*lsp);
9 sz = (sz + CACHE_LINE_SIZE - 1) / CACHE_LINE_SIZE;

10 sz *= CACHE_LINE_SIZE;
11 lsp = malloc(sz);
12 if (!lsp)
13 return -ENOMEM;
14 if (!t)
15 abort();
16 lsp->t = t;
17 rcu_read_lock();
18 lsnp2 = ACCESS_ONCE(head->first);
19 do {
20 lsnp1 = lsnp2;
21 lsp->next = lsnp1;
22 lsnp2 = cmpxchg(&head->first, lsnp1, lsp);
23 } while (lsnp1 != lsnp2);
24 rcu_read_unlock();
25 return 0;
26 }
27
28 static void ls_rcu_free_cb(struct rcu_head *rhp)
29 {
30 struct liststack *lsp;
31
32 lsp = container_of(rhp, struct liststack, rh);
33 free(lsp);
34 }
35
36 _Carries_dependency
37 void *ls_pop(struct liststackhead *head)
38 {
39 struct liststack *lsp;
40 struct liststack *lsnp1;
41 struct liststack *lsnp2;
42 void *data;
43
44 rcu_read_lock();
45 lsnp2 = rcu_dereference(head->first);
46 do {
47 lsnp1 = lsnp2;
48 if (lsnp1 == NULL) {
49 rcu_read_unlock();
50 return NULL;
51 }
52 lsp = rcu_dereference(lsnp1->next);
53 lsnp2 = cmpxchg(&head->first, lsnp1, lsp);
54 } while (lsnp1 != lsnp2);
55 data = rcu_dereference(atomic_dependency(lsnp2->t, lsnp));
56 rcu_read_unlock();
57 call_rcu(&lsnp2->rh, ls_rcu_free_cb);
58 return atomic_dereference(data, lsnp2->t);
59 }

Figure 29: List-Based-Stack Tail-Marked Dependen-
cies, 2 of 2

WG21/P0098R1 28

1 struct foo {
2 struct foo *a;
3 struct foo *b;
4 struct foo *c;
5 int d;
6 };
7
8 p = atomic_load_explicit(&gp, memory_order_consume,
9 p->a, p->b);

10 qa = p->a; /* Dependency carried. */
11 qb = p->b; /* Dependency carried. */
12 qc = p->c; /* No dependency carried. */
13 d = p->d; /* No dependency carried. */

Figure 30: Explicit Dependency Operations and Aug-
mented Load

7.8 Explicitly Head-Marked Depen-
dency Chains

This approach, suggested via email by Olivier Giroux,
can be thought of as another inverse of std::kill
dependency(). In this case the heads of the de-
pendency chains are marked, indicating to which
pointed-to objects dependencies should be carried.
This description is an extrapolation of a very con-
cise proposal, and corrections are welcome.

The general idea is to provide an augmented
form of the load() member function that indicates
dependencies, for example, x.load(memory order

consume, x->next) would cause a dependency to
be carried through the ->next field, but through
no other field. This is shown in Figure 30, where
the explicit dependency information on line 9 causes
lines 10 and 11 to carry a dependency, but lines 12
and 13 not to do so.

Some open questions regarding this approach:

1. How does this interact with arguments and re-
turn values? Do the corresponding annotations
need to indicate to which fields dependencies
might be carried? Should mismatches be con-
sidered an error, and if so, which sorts of mis-
matches?

2. How are opaque types handled? For exam-
ple, consider the Linux kernel linked-list facil-
ity, which embeds a list head structure into
the enclosing object that is to be placed on the
list. The memory order consume load returns

a (struct list head *), but it may be nec-
essary to carry a dependency to one or more of
the fields in the enclosing object. Should this
be handled via something like x.load(memory

order consume, *x), but if so, doesn’t this
re-introduce the need for lots of std::kill

dependency() calls?

3. Larger structures might have quite a few fields
that need dependencies carried. Should there
be some sort of shorthand to make this easier
to code, for example, tagging the fields needing
dependency ordering in the declaration of the
struct or class?

4. Common types of abstraction need to be han-
dled correctly. For example, there are more than
500 invocations of list for each entry rcu()

in the v4.1 Linux kernel, each of which heads
a distinct dependency chain. In addition, some
of these distinct dependency chains invoke com-
mon functions and macros. It is not clear that
compile-time marking suffices for these cases.

7.9 Restricted Dependency Chains

This approach restricts dependency chains to opera-
tions for which compilers would naturally carry de-
pendencies. As such, this approach can be consid-
ered to be a refinement of the whole-program option
(Section 7.4), restricted as described in Section 4.1.2,
but also omitting control dependencies and RCU-
protected array indexes. It can also be thought of
as a refinement of the local-variable restriction (Sec-
tion 7.5). As always, a memory order consume load
heads a dependency chain, and as always, a memory

order consume load may be implemented with a sim-
ple load instruction on a wide variety of architectures,
including x86, ARM, and Power.

This results in a specific list of operations that ex-
tend dependency chains (Section 7.9.1) and a sep-
arate specific list of operations that terminate such
chains (Section 7.9.2). Section 7.9.3 looks at how
this approach relates to the Linux kernel, and Sec-
tion 7.9.4 lists this approach’s advantages and disad-
vantages.

WG21/P0098R1 29

1 #define rcu_dereference(x) \
2 atomic_load_explicit((x), memory_order_consume);
3
4 struct liststackhead {
5 struct liststack *first;
6 };
7
8 struct liststack {
9 struct liststack *next;

10 void *t;
11 struct rcu_head rh;
12 };
13
14 _Carries_dependency
15 void *ls_front(struct liststackhead *head)
16 {
17 void *data;
18 struct liststack *lsp;
19
20 rcu_read_lock();
21 lsp = rcu_dereference(head->first, head->first->t);
22 if (lsp == NULL)
23 data = NULL;
24 else
25 data =
26 rcu_dereference(lsp->t, *lsp->t)); /* ??? */
28 rcu_read_unlock();
29 return data;
30 }

Figure 31: List-Based-Stack Head-Marked Depen-
dencies, 1 of 2

It is worth repeating that key goals include min-
imizing the need for std::kill dependency() and
minimizing unsolicited memory-barrier instructions.

7.9.1 Extending Dependency Chains

The following categories of primitive operations ex-
tend dependency chains:15

1. Moving, copying, and casting.

2. Pointer offsets.

3. Dereferencing and address-of, including class-
member access.

4. Integer operations.

5. Miscellaneous operators.

15 In case of operator overloading, the actual functions called
must be analyzed in order to determine their effects on depen-
dency chains.

1 int ls_push(struct liststackhead *head, void *t)
2 {
3 struct liststack *lsp;
4 struct liststack *lsnp1;
5 struct liststack *lsnp2;
6 size_t sz;
7
8 sz = sizeof(*lsp);
9 sz = (sz + CACHE_LINE_SIZE - 1) / CACHE_LINE_SIZE;

10 sz *= CACHE_LINE_SIZE;
11 lsp = malloc(sz);
12 if (!lsp)
13 return -ENOMEM;
14 if (!t)
15 abort();
16 lsp->t = t;
17 rcu_read_lock();
18 lsnp2 = ACCESS_ONCE(head->first);
19 do {
20 lsnp1 = lsnp2;
21 lsp->next = lsnp1;
22 lsnp2 = cmpxchg(&head->first, lsnp1, lsp);
23 } while (lsnp1 != lsnp2);
24 rcu_read_unlock();
25 return 0;
26 }
27
28 static void ls_rcu_free_cb(struct rcu_head *rhp)
29 {
30 struct liststack *lsp;
31
32 lsp = container_of(rhp, struct liststack, rh);
33 free(lsp);
34 }
35
36 _Carries_dependency
37 void *ls_pop(struct liststackhead *head)
38 {
39 struct liststack *lsp;
40 struct liststack *lsnp1;
41 struct liststack *lsnp2;
42 void *data;
43
44 rcu_read_lock();
45 lsnp2 = rcu_dereference(head->first, head->first->next);
46 do {
47 lsnp1 = lsnp2;
48 if (lsnp1 == NULL) {
49 rcu_read_unlock();
50 return NULL;
51 }
52 lsp = rcu_dereference(lsnp1->next, lsnp->next->t);
53 lsnp2 = cmpxchg(&head->first, lsnp1, lsp);
54 } while (lsnp1 != lsnp2);
55 data = rcu_dereference(lsnp2->t, *lsnp2->t));
56 rcu_read_unlock();
57 call_rcu(&lsnp2->rh, ls_rcu_free_cb);
58 return data;
59 }

Figure 32: List-Based-Stack Head-Marked Depen-
dencies, 2 of 2

WG21/P0098R1 30

1 #define rcu_ptr_extract(p) \
2 ({ \
3 uintptr_t ___ip = (uintptr_t)(p); \
4 \
5 ___ip = ___ip & ~0x7; \
6 (typeof(p)) ___ip; \
7 })
8
9 #define rcu_ptr_set_bits(p, bits) \

10 ({ \
11 uintptr_t ___ip = (uintptr_t)(p); \
12 \
13 ___ip = ___ip & ~0x7; \
14 ___ip = ___ip | (bits); \
15 (typeof(p)) ___ip; \
16 })
17
18 #define rcu_ptr_get_bits(p, bits) \
19 ({ \
20 uintptr_t ___ip = (uintptr_t)(p); \
21 \
22 ___ip & ~0x7; \
23 })

Figure 33: Pointers and Bit Manipulation on 64-Bit
System

1 p = rcu_dereference(gp);
2 *p = 5;

Figure 34: Extending Dependency Chain on Left-
Hand Side

Any other operation terminates a dependency
chain. The operations that extend dependency chains
are covered in more detail below.

Moving, Copying, and Casting: Values that are
part of a dependency chain may be moved, copied,
and casted (in some cases), and the dependency chain
will propagate to the result.

1. If any value is part of a dependency chain, then
using that value as the left-hand side of an as-
signment expression extends the chain to cover
the assignment. This rule is exercised in the
Linux kernel by stores into fields making up an
RCU protected data element. This is illustrated
by Figure 34.

2. If any value is part of a dependency chain, then
using that value as the right-hand side of an as-
signment expression extends the chain to cover
both the assignment and the value returned by
that assignment statement. Line 20 of Figure 20
shows how this rule may be used to extend a
dependency chain into a local variable.

3. If any value that is part of a dependency chain is
stored to a non-shared variable, then any value
loaded by a later load from that same variable by
that same thread is also part of the dependency
chain. Lines 20 and 24 of Figure 20 illustrate this
rule, though this rule would apply even if local
variable lsp was a intptr t instead of a pointer.
Note that the job of determining whether or not
a given variable is non-shared falls to the devel-
oper, not the compiler. That said, a high-QoI
compiler might choose to make this determina-
tion in order to issue helpful diagnostic messages.

4. If a pointer that is part of a dependency chain
is stored to any variable, then any value loaded
by a later load from that same variable by that
same thread is also part of the dependency chain.
Lines 20 and 24 of Figure 20 illustrate this rule,
though this rule would apply even if local vari-
able lsp was instead a shared variable. As be-
fore, determining whether or not the store and

WG21/P0098R1 31

load were carried out by the same thread falls to
the developer, not to the compiler.

5. If a pointer is part of a dependency chain, then
casting it (either explicitly or implicitly) to any
pointer-sized type extends the chain to the re-
sult. Line 3 of Figure 33 illustrates this rule.

6. If a value of type intptr t or uintptr t is
part of a dependency chain, then casting it to
a pointer type extends the chain to the result.
Line 6 of Figure 33 illustrates this rule. Note
that many implementations do not differentiate
between intptr t and uintptr t on the one
hand and other integral types on the other. Such
implementations would likely loosen this restric-
tion to cover a larger subset of the integral types.

7. If a pointer is part of a dependency chain, then
if that pointer is used as the argument of a func-
tion call, the dependency chain extends to the
corresponding parameter.

8. If a function returns a pointer that is part of a
dependency chain, the dependency chain extends
to the returned value in the calling function.

Pointer Offsets: If a given pointer is part of a de-
pendency chain, then integral offsets to that pointer
are also part of that dependency chain.

1. If a pointer is part of a dependency chain, then
adding an integral value to that pointer extends
the chain to the resulting value. This applies
for both positive and negative integers, and also
to addition via the infix + operator and via the
postfix [] operator. Note that the addition must
be carried out on a pointer: Casting to an inte-
gral type and then carrying out the addition will
break the dependency chain. Therefore, instead
of casting to an integral type to carry out the
addition, cast to a pointer to char.16 Line 24 of

16 Yes, some old systems had strange formats for character
pointers, and this restriction does exclude those systems from
this nuance of dependency ordering. However, to the best of
my knowledge, all such systems were uniprocessors, so this is
not a real problem.

Figure 20 illustrates this, given that the ->t acts
as a pointer offset prior to indirection.

2. If a pointer is part of a dependency chain, then
subtracting an integer from that pointer extends
the chain to the resulting value. This applies
for both positive and negative integers. Again,
casting to an integral type and then carrying
out the subtraction will break the dependency
chain, so instead cast to a pointer to char. The
Linux-kernel container of() macro illustrates
this. This macro is used to find the beginning of
a structure given a pointer to a field within that
same structure.

3. Note that class-member access operators (. and
->) can be thought of as computing an offset as
part of their execution.

Dereferencing and Address-Of: Dereferencing
a pointer that is part of a dependency chain extends
the dependency chain to the result, but only when
the resulting value is a pointer type. Taking the ad-
dress of a pointer that is part of a dependency chain,
and then dereferencing the resulting pointer, extends
the dependency chain to the result.

1. If a pointer is part of a dependency chain, then
dereferencing it using the prefix * operator ex-
tends the chain through the dereference opera-
tion. Line 24 of Figure 20 illustrates this, given
that the ->t acts as a pointer offset prior to in-
direction.

2. If a pointer is part of a dependency chain, then
dereferencing it using the -> field-selection oper-
ator extends the chain to the field. Note that the
when the -> operator is followed by one or more
. operators, these latter operators are equiva-
lent to adding a constant integer to the original
pointer. Line 24 of Figure 20 directly illustrates
this rule.

3. If a pointer is part of a dependency chain, then
applying the unary & address-of operator, op-
tionally casting this address to a pointer type
(perhaps repeatedly to different pointer types,

WG21/P0098R1 32

either explicitly or implicitly), then applying the
* dereference operator extends the chain to the
result. This is used by some of the Linux-kernel
list-processing macros.

Integer Operations: It is important to note that
performing integer operations on pointer values and
then attempting to use the result as a pointer is out-
side of the current standard. Nevertheless, there are
a great many use cases in this area, so the following
rules apply. Please note that these rules cannot be
part of the standard in its current form, but instead
must be negotiated with individual implementers.

1. If a value of type intptr t or uintptr t is part
of a dependency chain, then the bitwise infix &

and | operators extend the dependency chain to
the resulting value. Line 5 of Figure 33 illus-
trates this rule.

2. If a value of type intptr t or uintptr t is part
of a dependency chain, the the bitwise infix ^

operator extends the dependency chain to the
resulting value. The use case for this traversal of
buddy-allocator-like lists or dense-array heaps,
but it is not clear whether these use cases justify
this addition to dependency ordering.

Miscellaneous Operations: The following oper-
ations also extend dependency chains.

1. If a pointer is part of a dependency chain, and
that pointer appears in the operand of a ?: op-
erator selected by the condition, then the chain
extends to the result. Please note that ?: does
not extend chains from its condition, only from
its second or third argument.

2. If a pointer is part of a dependency chain, and
that pointer appears in the right-hand operand
of a , operator, then the chain extends to the
result. Please note that the , operator does not
extend chains from its left-hand operand, only
from its right-hand operand.

3. If a pointer to a function is part of a depen-
dency chain, then invoking the pointed-to func-
tion extends the chain from the pointer to the

1 struct bar {
2 struct bar *next;
3 int a;
4 int b;
5 };
6 struct bar *head = { &head, 1, 2 };
7
8 for (p = head->next; p; p = rcu_dereference(p->next)) {
9 foo += p->a;

10 if (p == &head)
11 break;
12 }
13 bar *= head->b;

Figure 35: Back-Propagation of Dependency-Chain
Breakage Due to Comparisons

1 if (p > &foo)
2 do_something(p);
3 else if (p < &foo)
4 do_something_else(p);
5 else
6 do_something_nodep(p);

Figure 36: Inequality-Comparison Dependency-
Chain Breakage

instructions executed. Note that the exact mech-
anism used to update instructions is implemen-
tation defined, and might require use of special
instruction-cache-flush operations.17

4. If a given operation extends a dependency chain,
then so does its atomic counterpart. For exam-
ple, the rules applying to assignments also apply
to atomic loads and stores. It also applies to
atomic exchange and and atomic compare and
swap.

7.9.2 Terminating Dependency Chains

Even though all other operations terminate depen-
dency chains, there are a few that deserve special
mention:

1. Equality comparisons.

17 This may sound strange, but just you try implementing
dynamic linking without the ability to update instructions!
That said, this is very clearly outside of the current standard,
so this item is something to be negotiated with individual im-
plementers.

WG21/P0098R1 33

2. Narrowing magnitude comparisons.

3. Narrowing arithmetic operations.

4. Narrowing bitwise operations.

5. Storing non-pointers into shared variables.

6. Passing values between threads without using a
memory order consume load.

7. Undefined behavior.

8. Use of std::kill dependency.

Each of these is covered below.

Equality comparisons: If a pointer is part of a
dependency chain, then a == or != comparison that
compares equal to some other pointer, where that
other pointer is not part of any dependency chain,
will cause any uses of the original pointer to no longer
be part of the dependency chain. This dependency-
chain breakage can back-propagate to earlier uses of
the pointer, so that in Figure 35, if the comparison
on line 10 compares equal, then the access on line 9
is not part of the dependency chain. This is admit-
tedly a rather strange code fragment, and besides,
the Linux-kernel barrier() macro could prevent this
if placed between lines 9 and 10. Furthermore, the
Linux kernel’s list macros avoid this situation because
the equal comparison terminates the loop.

So what if the compiler introduces an equality com-
parison? This might happen when doing feedback-
directed optimization, where the compiler might no-
tice (for example) that a particularly statically allo-
cated structure was almost always the first element
on a given list. The compiler might therefore in-
troduce a specialization optimization, comparing the
addresses and generating code using the statically al-
located structure on equals comparison. On the one
hand, in the cases where the Linux kernel adds a stat-
ically allocated structure to an RCU-protected linked
data structure, that structure has been initialized at
compile time, so that dependency ordering is not re-
quired. On the other hand, this appears to be an
extremely dubious optimization for linked data struc-
tures: In a great many cases, the added overhead of

the comparison would overwhelm the benefits of gen-
erating code based on the statically allocated struc-
ture.

High-quality implementations would therefore be
expected to provide means for disabling this sort of
optimization, especially for pointers obtained from
the heap. After all, use of statically allocated struc-
tures in RCU-protected lists could be quite useful
during out-of-memory conditions, in which case the
specialization optimization would almost always re-
duce performance, which is not what optmizations
are supposed to be doing.

Alternatively, an intrinsic could provide
comparison, but avoid breaking dependency
chains. For example, a T std::pointer cmp

eq dep(T *pd, T* p) intrinsic could compare the
two pointers, but perserve dependencies carried
by pd even if they compare equal. For complete-
ness, a T std::pointer cmp ne dep(T *pd, T* p)

instrinic could also be provided for not-equal com-
parisons. Note that there is no way to compare
two pointers carrying dependencies and preserve
the dependency for both. This is because there are
currentely no use cases requiring this, and requiring
it would require the compiler to be less efficient in
its register usage.

Narrowing magnitude comparisons: A series
of >, <, >=, or <= operators that informs the compiler
of the exact value of a pointer causes that pointer
to no longer be part of the dependency chain. See
Figure 36 for an example of this. On line 6 of this
figure, the compiler knows that the value of p is equal
to &foo, so although there is dependency ordering to
lines 2 and 4, there is no dependency ordering to
line 6. This dependency-chain breakage can back-
propagate, just as for equality comparisons. How-
ever, dependencies are maintained for normal uses,
for example, the use of comparisons for deadlock
avoidance when acquiring locks contained in multi-
ple RCU-protected data elements.

As with equality comparison, an intrinsic could
provide comparison, but avoid breaking dependency
chains. For example, T std::pointer cmp gt

dep(T *pd, T* p), T std::pointer cmp ge

WG21/P0098R1 34

dep(T *pd, T* p), T std::pointer cmp lt

dep(T *pd, T* p), and T std::pointer cmp le

dep(T *pd, T* p) intrinsics could compare the two
pointers, but perserve dependencies carried by pd

even if a series of comparisons allowed the compiler
to deduce the exact value of the pointer.

Narrowing arithmetic operations: If a pointer
is part of a dependency chain, and if the values
added to or subtracted from that pointer cancel the
pointer value so as to allow the compiler to pre-
cisely determine the resulting value, then the result-
ing value will not be part of any dependency chain.
For example, if p is part of a dependency chain, then
((char *)p-(uintptr t)p)+65536 will not be.18

Narrowing bitwise operations: If a value of type
intptr t or uintptr t is part of a dependency chain,
and if that value is one of the operands to an &

or | infix operator whose result has too few or too
many bits set, then the resulting value will not be
part of any dependency chain. For example, on a
64-bit system, if p is part of a dependency chain,
then (p & 0x7) provides just the tag bits, and nor-
mally cannot even be legally dereferenced. Similarly,
(p | ~0) normally cannot be legally dereferenced.
However, (p & ~0x7) will provide a usable pointer
that is part of p’s dependency chain. Setting or
clearing bits that are not used by the implementa-
tion or that would be zero for a properly aligned ob-
ject will not break the dependency chain. That said,
the compiler might not know the definition of “prop-
erly aligned”, for example, in the cases of manually
cache-aligned or page-aligned objects.

Note that the ^ exclusive-OR operator can also
break dependency chains, most straightforwardly via
something like a ^ a.

Storing non-pointers into shared variables: If
a non-pointer value that is part of a dependency chain
is stored into a shared variable, then the dependency

18 That said, 5.7p4 of C++ and 6.5.6p8 of C both say that
indexing outside of an object is undefined behavior, so the loss
of dependency ordering is likely the least of the problems here.

chain does not extend to a later load from that vari-
able.

Passing values between threads: If a value that
is part of a dependency chain is stored into a variable
by one thread, and loaded from that same variable by
some other thread using either a non-atomic load or
a memory order relaxed load, then the dependency
chain does not extend to the second thread. To get
this effect, the second thread would instead need to
use a memory order consume load. Note that this
would extend the dependency chain even if the cor-
responding store was a memory order relaxed store
because the required store-side ordering is provided
by the dependency chain.

Undefined behavior: If undefined behavior is in-
voked, then, consistent with the notion of undefined
behavior, there are no dependency-chain guarantees.

If a given pointer, intptr t, or uintptr t is used
such that only one value avoids undefined behavior,
then the dependency chain is broken in the same way
as it would be in the case of an equality comparison
with that same value.

kill dependency(): The result of calling
std::kill dependency is never part of any de-
pendency chain. This operation can be used to
suppress diagnostics that implementations might
omit for likely misuses of dependency ordering.

7.9.3 Restricted Dependency Chains and the
Linux Kernel

This covers all known pointer-based RCU uses in the
Linux kernel, aside from RCU-protected array in-
dexes (more on these later). However, as noted ear-
lier, these restrictions might prove too constraining
for future code. Therefore, it might be necessary to
combine this approach with some variation on one of
the methods for explicitly marking variables, formal
parameters, and return values that are intended to
carry dependencies.

Section 3.2 discussed dependency chains headed
by memory order consume loads of integers that are

WG21/P0098R1 35

1 p = atomic_load_explicit(gp, memory_order_consume);
2 if (p == ptr_a) {
3 q = std::kill_dependency(p);
4 a = q->special_a;
5 } else {
6 a = p->normal_a;
7 }

Figure 37: Avoiding Diagnostic Due To Dependency-
Ordering Value-Narrowing Hazard

later used as array indexes or pointer offsets. Al-
though there are a (very) few such uses in the Linux
kernel, accommodating dependency chains headed by
loads of integers greatly complicates the handling of
dependency chains.19 For example, given an integer x
produced by a memory order consume load, we must
correctly handle expressions containing (x - x), in-
cluding cases where the cancellation is not at all obvi-
ous from the source code. In contrast, given a pointer
p, the expression (p - p) not a pointer, and the rules
given above do not require carrying a dependency
through such an expression. This approach there-
fore excludes dependency chains headed by memory

order consume loads from non-pointer atomic vari-
ables.

This raises the question of what should be done
about the Linux kernel code that relies on order-
ing carried through integer array indexes. Paul has
answered this question by creating a Linux-kernel
patch that removes the kernel’s dependency on RCU-
protected array indexes [22], and this patch was ac-
cepted into the v4.2 release of the Linux kernel.

7.9.4 Restricted Dependency Chains: Ad-
vantages and Disavantages

This approach to dependency ordering has the fol-
lowing advantages and disadvantages:

1. There is no need for compilers to trace depen-
dency chains. Instead, dependencies are an au-
tomatic result of current code-generation and op-
timization practices.

19 And for this reason, carrying of dependencies via integers
is no longer supported in the Linux kernel as of v4.2, except
in a few very restricted instances.

2. There would be little or no limitation on com-
piler optimizations. Compilers are no longer re-
quired to establish artificial dependencies for ex-
pressions such as (x - x) or to detect value-
narrowing hazards involving == and !=.

3. The breaking of dependency chains when a
pointer compares equal to some other pointer
might prove to be onerous, but it is not a
problem for current Linux use cases.20 The
most common cases are comparison against a
list header (in which case an equality compar-
ison terminates the traversal) and comparison
against NULL (in which case an equality com-
parison indicates a pointer that cannot be deref-
erenced in any case).

4. The compiler is prohibited from carrying out
value-speculation optimizations on pointers or
values of type intptr t or uintptr t that have
been cast from a pointer type and subjected to
no operations other than infix &, |, and ^. (Is
this an advantage or a disadvantage? The an-
swer to this question is left to the reader.)

5. In a great many cases, dependency chains can
reliably pass through library functions compiled
by pre-C11 compilers.

6. It would not be necessary to use std::kill

dependency() calls in most cases. That said,
use of std::kill dependency() might at some
future point allow the compiler to produce bet-
ter diagnostics for dubious dependency-chain use
cases. For example a compiler might issue a
warning for the value-narrowing hazard shown
on line 3 of Figure 13, and that diagnostic might
be suppressed as shown in Figure 37.

7. More generally, this approach allows annotations
to be discarded, as was shown in Figures 20
and 21. However, the memory order consume

loads are still required in order to support DEC
Alpha and prevent compiler optimizations that
might otherwise destroy the dependency chain.

20 This needs to be re-verified.

WG21/P0098R1 36

8. It would not be necessary to use [[carries

dependency]] attributes. However, as with
std::kill dependency(), use of something like
[[carries dependency]] might produce bet-
ter diagnostics for dubious use dependency-chain
use cases. That said, it might be preferable to
substitute either type or object modifiers for at-
tributes, given that use of attributes is not per-
mitted to change the meaning of the program
and also that attributes are not yet supported
by the C language.

9. With the exception of one use case involving ar-
rays, no changes to the Linux-kernel source code
are required. As noted earlier, a patch is avail-
able to remove the Linux kernel’s dependency
on RCU-protected array indexes [22], and this
patch was accepted into the v4.2 release of the
Linux kernel.

10. This approach has the advantage of implemen-
tation experience extending for more than two
decades.

In the future, this approach could be augmented by
attributes, type modifiers, object modifiers, or other
markings to allow more elaborate dependency chains
to be created on the one hand, and to improve the
compiler’s ability to emit diagnostics for dubious uses
of dependency chains on the other.

7.10 Draft Wording for Restricted
Dependency Chains

Because bit manipulations on pointers results in un-
defined behavior, the wording for this restricted-
dependency-chain approach is considerably simpler
than might be expected.21 Although there are well-
known and heavily used algorithms that depend on
setting tag bits on pointers, such algorithms must live
outside of the confines of the standard even without
dependency chains. This approach has the advan-
tage that dependencies are then carried only through
pointer types, which greatly simplifies the specifica-
tion.

21 Kudos to Jens Maurer for pointing this out.

1.10p11 of the most recent draft of the
standard[29], is replaced with the following:

An evaluation A carries a dependency to an
evaluation B of pointer type if

• B is the invocation of an assign-
ment operator and A is the right-hand
operand of this operator, or

• B is the invocation of a cast operator
that is not a reinterpret cast and A
is the operand, or22

• B is a parameter to a function and A
is the value of the corresponding argu-
ment, or

• A is the value returned by a function
and B is the returned value in the call-
ing context, or

• B is an additive operator, A is an
operand to this operator, and the other
operand is of integral type.

• B is the prefix * dereference operation
and A is its operand, or

• B is the -> class-member access oper-
ator and A is its left-hand operand, or

• B is the ?: operator and A is the
operand selected by that operator’s
condition, or

• B is the , operator and A is its right-
most operand, or

• A writes a scalar object or bit-field M,
B reads the value written by A from
M, and A is sequenced before B, or

• for some evaluations X and Y, X is the
unary & operator, A is that operator’s
operand, X carries a dependency to Y,
B is the the unary * operator, and Y
is that operator’s operand, or

• for some evaluation X, A carries a de-
pendency to X, and X carries a depen-
dency to B.

22 The intent is that casts that leave pass through the bits
carry a dependency, while those that affect the pointer value
do not.

WG21/P0098R1 37

An evaluation A carries a dependency to a
side-effect C if

• C is the side effect resulting from an
assignment operator, and A is either
operand of this operator, or

• C is the side effect resulting from an
atomic read-modify-write operation, A
is its first argument, and the corre-
sponding non-atomic operation would
carry a dependency, or

• C is the side effect resulting from
an atomic store() or atomic store

explicit() function, and A is the
function’s second argument, or

• C is the side effect resulting from
an atomic exchange() or atomic

exchange explicit() function, and A
is the function’s second argument, or

• C is the side effect resulting from an
atomic compare exchange weak(),
atomic exchange weak explicit(),
atomic compare exchange strong(),
or atomic exchange strong

explicit() function, and A is
the function’s third (new-value)
argument.

• C is the side effect resulting from
an atomic read-modify-write mem-
ber function, A is the corresponding
object, and the corresponding non-
atomic operation would carry a depen-
dency, or

• C is the side effect resulting from a
store() or store explicit() mem-
ber function, and A is the member
function’s first argument, or

• C is the side effect resulting from an
exchange() or exchange explicit()

member function, and A is the member
function’s first argument, or

• C is the side effect resulting from
a compare exchange weak(),
exchange weak explicit(),

compare exchange strong(), or
exchange strong explicit() mem-
ber function, and A is the member
function’s second (new-value) argu-
ment.

An evaluation A carries a dependency to a
memory load D if

• D is the memory load resulting from
an atomic load() or atomic load

explicit() function, and A is the
function’s first argument, or

• D is the memory load resulting from an
atomic read-modify-write operation, A
is its first argument, and the corre-
sponding non-atomic operation would
carry a dependency, or

• D is the memory load resulting from
an atomic read-modify-write mem-
ber function, A is the corresponding
object, and the corresponding non-
atomic operation would carry a depen-
dency.

If a pointer is subjected to a series of com-
parison operators that enables exact deter-
mination of its value, then no dependency
is carried to that pointer. Note: To carry
out comparisons without destroying the
dependency chain, use the std::pointer

cmp eq dep(), std::pointer cmp

ne dep(), std::pointer cmp gt

dep(), std::pointer cmp ge dep(),
std::pointer cmp lt dep(), or
std::pointer cmp le dep() intrinsics.

Note: std::kill dependency() is not
mentioned above, so if A is its argument
and B its result, no dependency is carried
from A to B.

Note: The intent of these rules is to enable
compilers to carry out their normal opti-
mizations, while still permitting developers
to rely on the common dependency-ordering
use cases.

WG21/P0098R1 38

Note: Although the [[carries

dependency]] attribute is no longer
needed to specify that a dependency
chain exists, this attribute can help the
implementation provide higher-quality
diagnostics. For example, doing an equality
comparison to a non-NULL pointer that
is dereferenced could result in a warning
diagnostic. Such a warning would make the
user aware that no dependency was carried
to that pointer.

1.10p12 of the most recent draft is updated by in-
serting the phrase “of pointer type”, resulting in‘the
following:

An evaluation A is dependency-ordered be-
fore an evaluation B if

• A performs a release operation on an
atomic object M of pointer type, and,
in another thread, B performs a con-
sume operation on M and reads a value
written by any side effect in the release
sequence headed by A, or

• for some evaluation X, A is
dependency-ordered before X and
X carries a dependency to B.

7.11 Storage Class

This approach, similar to that suggested by Lawrence
Crowl in response to the approach described in Sec-
tion 7.6, uses a new storage class to indicate where
dependencies need to be carried. This section also
applies lessons learned in discussions of the other
approaches, particularly those of Sections 7.3, 7.5
and 7.9. In particular, this approach retains the re-
striction called out in Section 7.9, namely allowing
dependencies to be carried only through pointer-like
types, including restricted operations on intptr t

and uintptr t.23

23 JF Bastien points out that in C++ this could be imple-
mented as a class that is special in a manner similar to the
atomic classes. One example of the special handling required
is to preserve dependencies past successful pointer equality

The idea is to provide a storage class Carries

dependency that indicates that the modified lo-
cal variable, struct/union field, function arguments,
function parameters, or return value carries a depen-
dency. This is similar to the existing [[carries

dependency]] attribute, but is usable by C (which
lacks attributes) as well as by C++, and which,
unlike [[carries dependency]], is permitted to
change the program’s semantics. This last is impor-
tant because it provides greater flexibility in avoiding
unsolicited (and costly) memory-fence instructions.

This approach results in the code shown in Fig-
ures 24 and 25.

This approach uses strict dependencies rather than
semantic dependencies, which means that the imple-
mentation will need to emit explicit memory-fence
instructions in cases where the dependencies would
not be preserved by the underlying hardware. How-
ever, high quality-of-implementation compilers would
be expected to provide options to issue warnings
when such instructions were emitted, allowing the
developer to modify the code to avoid these ex-
pensive instructions. In addition, high quality-of-
implementation compilers are expected to carry de-
pendencies past things like successful equality com-
parisons with no performance degradation. The
operations carrying dependencies are exactly those
shown for the carries a dependency relation shown in
1.10p11 of the standard [29].

Assignment from an object with Carries

dependency storage class to an object not of this
storage class would act as an implicit std::kill

dependency(). This is useful when protection of a
given object is shifted from a dependency chain to
a lock or reference count. However, high quality-of-
implementation compilers would be expected to pro-
vide options to issue warnings when such an implicit
std::kill dependency() was encountered, which
would allow developers to enforce coding-style rules
requiring explicit std::kill dependency(), if de-
sired.

A high quality-of-implementation compiler would
also be expected to provide options to enable warn-

comparisons. However, a C-language implementation would
require something resembling a storage class, so this proposal
starts at that point.

WG21/P0098R1 39

ings to be issued when a dependency chain was
headed by something other than a memory order

consume load or an object with the Carries

dependency storage class. A cast could be used to
suppress these warnings, which could be provided as
std::unkill dependency() if experience indicates
that this is useful. This std::unkill dependency()

is likely to be useful to enable common code that
traverses data structures using dependencies in some
cases and using mutual exclusion in other cases.

The new Carries dependency storage class may
appear with register, static, thread local, and
extern. If Carries dependency appears in one dec-
laration of a variable, it shall appear in all other dec-
larations of that entity. The Carries dependency

storage class can be applied only to the names of
variables, functions, formal parameters, and struc-
ture/union fields. Only variables of scalar or pointer
type may be marked as Carries dependency.24

Here are use cases for the storage-class combina-
tions:

• register Carries dependency: A local vari-
able that carries a dependency that should also
be stored in a machine register.

• static Carries dependency: A static local
variable that carries a dependency. Such a vari-
able is presumably subject to some sort of mu-
tual exclusion mechanism so as to avoid inter-
thread access.

• static thread local Carries dependency:
A static thread-local variable that carries a
dependency.

• extern Carries dependency: A variable
shared among translation units that carries a
dependency. Such a variable is presumably sub-
ject to some sort of mutual exclusion mechanism
so as to avoid inter-thread access.

• extern thread local Carries dependency:
A thread-local variable shared among transla-
tion units that carries a dependency.

24 But if you have a valid use case for an aggregate construct
that carries a dependency, please let us know.

• thread local Carries dependency: A
thread-local variable that carries a dependency.

Again, this Carries dependency storage class
can only be applied to pointer-like types, with only
restricted operations permitted on intptr t and
uintptr t (see Section 7.9.1 for details).

This approach has the following advantages and
disadvantages:

1. The implementation is likely to be simpler in
that dependencies need not be traced. Instead,
only computations involving objects of the
Carries dependency storage class need be han-
dled specially. This eliminates unnecessary re-
striction of optimizations on unintentional de-
pendency chains.

2. The implicit std::kill dependency() means
that many irrelevant dependency chains are
pruned by default, so that fewer explicit
std::kill dependency() invocations are re-
quired.

3. Attributes need not be added to the C language.

4. No modifications to the type system are re-
quired.

5. Applying this to the Linux kernel would require
significant marking of variables carrying depen-
dencies, however, the Linux kernel is expected
to use the approach called out in Section 7.9.
Longer term, some portions of the Linux ker-
nel might incrementally transition to this object-
modifier approach, especially if doing so provides
significant diagnostic benefits.

6. The strict dependencies should permit tools
based on formal methods to successfully analyze
dependency chains. High quality tooling might
well encourage existing RCU-using projects to
adopt this storage-class-based approach.

7.12 Evaluation

This evaluation starts by enumerating the different
audiences that any change to memory order consume

WG21/P0098R1 40

must address (Section 7.12.1) and then compares the
various proposals based on the perceived viewpoints
of these audiences (Section 7.12.2).

7.12.1 Audiences

The main audiences for any change to memory

order consume include standards committee mem-
bers, compiler implementers, formal-methods re-
searchers, developers intending to write new code,
and developers working with existing RCU code. The
Linux kernel community is of course a notable exam-
ple of this last category.

Standards committee members would like a clean
and non-intrusive change to the standard. They
would of course also like solutions minimizing the
number and vehemence of complaints from the other
audiences, or, failing that, reducing the complaints
to a tolerable noise level.

Compiler implementers would like a mechanism
that fits nicely into current implementations, which
does much to explain their satisfaction with the ap-
proach of strengthening memory order consume to
memory order acquire. In particular, they would
like to avoid unbounded tracing of dependencies, and
would prefer minimal constraints on their ability to
apply time-honored optimizations.

Formal-methods researchers would like a definition
of memory order consume that fits into existing the-
oretical frameworks without undue conceptual vio-
lence. Of particular concern is any need to deal with
counter-factuals, in other words, any need to rea-
son not only about values of variables required for
the solution of a given litmus test, but also about
other unrelated values for these variables. As such,
counter-factuals are the rock upon which otherwise
attractive approaches involving semantic dependency
have foundered.25 Some practitioners might won-
der why the opinion of formal-methods researchers
should be given any weight at all, and the answer to
this question is that it is the work of formal-methods
researchers that provides us the much-needed tools
that we need to analyze both the memory-ordering

25 That said, Alan Jeffries is making another attempt to
come up with a suitable formal definition of semantic depen-
dency.

specification itself as well as programs using that
specification.

Developers writing new code need something that
expresses their algorithm with a minimum of syn-
tactic saccharine, that is easy to learn, and that is
easy to maintain. For example, one of the weak-
nesses of the current standards’ definition of memory
order consume is the need to sprinkle large numbers
of std::kill dependency() calls throughout one’s
code. In short, developers would like it to be easy to
write, analyze, and maintain code that uses depen-
dency ordering.

Developers with existing RCU code have the same
desires as do developers writing new code, but are
also very interested in minimizing the code churn re-
quired to adhere to the standard.

The challenge if of course to find a proposal that
addresses the viewoints of all of these audiences. As
we will see in the next session, this is not easy. How-
ever, there is some hope that the approach presented
in Section 7.9 might suffice.

7.12.2 Comparison

A summary comparison of the proposals is shown in
Table 1.

The dependency type can either be “dep” for nor-
mal dependency, “rdep” for the restricted depen-
dencies discussed in Section 7.9, “sdep” for (global)
semantic dependency, or “lsdep” for local seman-
tic dependency.26 Variable, formal-parameter, and
return-value marking can either be type-based (“T”),
storage-class-based (“S”), attribute-based (“A”), or
not required (“ ”). Beginning-of-chain handling can
either require explicit indication to which quanti-
ties dependencies must be carried (“D”) or nothing
(“ ”). End-of-chain handling can either require an
explicit std::kill dependency (“K”), an implicit
std::kill dependency (“k”), explicit designation of

26 Recall that a local semantic dependency remains a de-
pendency even if the memory order consume load at its head
can return only a single value. In contrast, a global seman-
tic dependency remains a dependency only if more than one
value can appear at the end of the chain. Therefore, optimiza-
tions based on global full-program analysis can break a global
semantic dependency but can break neither a local semantic
dependency nor a normal dependency.

WG21/P0098R1 41

D
ep

en
d
en

cy
T

y
p

e

O
b

je
ct

M
a
rk

in
g

F
o
rm

a
l-

P
a
ra

m
et

er
M

a
rk

in
g

R
et

u
rn

-V
a
lu

e
M

a
rk

in
g

B
eg

in
n
in

g
-O

f-
C

h
a
in

H
a
n
d
li
n
g

E
n
d
-O

f-
C

h
a
in

H
a
n
d
li
n
g

D
ep

en
d
en

cy
T

ra
ci

n
g

R
eq

u
ir

ed

C
A

tt
ri

b
u
te

S
u
p
p

o
rt

R
eq

u
ir

ed

D
ia

g
n
o
st

ic
C

a
p
a
b
il
it

y

U
n
so

li
ci

te
d

M
em

o
ry

F
en

ce
s

L
in

u
x
-K

er
n
el

C
o
m

p
a
ti

b
il
it

y

S
u
it

a
b
le

fo
r

F
o
rm

a
l

V
er

ifi
ca

ti
o
n

C11 / C++11 dep A A K Y Y n Y N

Type-Based Designation of Dependency
Chains With Restrictions (Section 7.2)

lsdep T T T k ? Y N N

Type-Based Designation of Dependency
Chains (Section 7.3)

dep T T T k ? Y N

Whole-Program Option (Section 7.4) sdep N N

Local-Variable Restriction (Section 7.5) dep A A k Y ? Y N

Mark Dependency-Carrying Local Variables
(Section 7.6)

dep A A A k Y ? Y N

Explicitly Tail-Marked Dependency Chains
(Section 7.7)

dep A A Dk y Y N Y N ?

Explicitly Head-Marked Dependency Chains
(Section 7.8)

dep ? ? D k y Y N Y N ?

Restricted Dependency Chains (Section 7.9) rdep N N

Storage Class (Section 7.11) rdep S S S Y N

Marking: “A”: attribute, “S”: Object, “T”: type.
Beginning of chain: “D”: explicit designation.
End of chain: “D”: explicit designation, “k/K”: implicit/explicit std::kill dependency.
Dependency tracking required: “y”: only for marked chains, “Y”: always.
Diagnostic capability: “n”: incomplete, “N”: very limited, “?”: could be provided.

Table 1: Comparison of Consume Proposals

WG21/P0098R1 42

dependency (“D”), or nothing (“ ”).27 Dependency
tracking might be required for all chains (“Y”), ex-
plicitly designated chains (“y”), or not required at
all (“ ”). C-language [[carries dependency]] sup-
port might be required (“Y”) or not (“ ”). Diagnostic
capability is difficult to evaluate for many of the pro-
posals, but for some proposals it is limited (“n”), for
others quite difficult (“N”), and for still others too
early to tell (“?”). Some proposals inflict unsolicited
memory fences on developers (“Y”), and others do
not (“ ”), and some proposals are source-code com-
patible with the Linux kernel (“ ”), while others are
not (“N”). Anything other than pure syntactic depen-
dendencies (“dep”) are quite challenging for current
formal-verification tools, resulting in most proposals
getting (“N”) or (“?”).

The ideal proposal would have dependency type
“dep” (thus making it easier to model dependency
ordering and making it unnecessary for developer to
have to outwit full-program optimizations), no need
for variable, formal-parameter, or return-value mark-
ing (thus minimizing changes required for existing
RCU code), implicit “do the right thing” end-of-chain
handling,28 (thus minimizing the need for whack-
a-mole source-code markups), no need for depen-
dency tracking (thus making it easier to implement),
no need for C-language support for the [[carries

dependency]] attribute (thus minimizing changes to
the C standard), good diagnostic capabilities, refrain
from supplying unsolicited memory fences, be source-
code compatible with the Linux kernel, and lend itself
well to analysis by formal-verification tools.

However, there appears to be no such proposal pos-
sible, so the recommended approach is to use the re-
stricted dependency chains discussed in Section 7.9
for large existing code bases and the storage-class
approach discussed in Section 7.11 for new code and
perhaps also as a future direction for large existing
code bases.

27 Variables that go out of scope always have any dependency
chain implicitly killed.

28 Perhaps implemented by a careful choice of exactly which
operators carry dependencies in which situations.

8 Summary

This document has analyzed Linux-kernel use of de-
pendency ordering and has laid out the status-quo in-
teraction between the Linux kernel and pre-C11 com-
pilers. It has also put forward some possible ways of
building towards a full implementation of C11’s and
C++11’s handling of dependency ordering. It calls
out some weaknesses in C11’s and C++11’s handling
of dependency ordering and offers some alternatives.
Finally, it recommends one approach (Section 7.9) for
large existing code bases and a second approach (Sec-
tion 7.11) for new code bases. Over time, it is hoped
that the availability of diagnostic tools will motivate
migration to the second of these two approaches.

References

[1] Alglave, J., Maranget, L., Pawan, P.,
Sarkar, S., Sewell, P., Williams, D., and
Nardelli, F. Z. PPCMEM/ARMMEM: A tool
for exploring the POWER and ARM memory
models. http://www.cl.cam.ac.uk/~pes20/

ppc-supplemental/pldi105-sarkar.pdf,
June 2011.

[2] Alglave, J., Maranget, L., and
Tautschnig, M. Herding cats: Modelling,
simulation, testing, and data-mining for weak
memory. In Proceedings of the 35th ACM SIG-
PLAN Conference on Programming Language
Design and Implementation (New York, NY,
USA, 2014), PLDI ’14, ACM, pp. 40–40.

[3] ARM Limited. ARM Architecture Reference
Manual: ARMv7-A and ARMv7-R Edition,
2010.

[4] Boehm, H. J. Space efficient conservative
garbage collection. SIGPLAN Not. 39, 4 (Apr.
2004), 490–501.

[5] Bonzini, P., and Day, M. RCU imple-
mentation for Qemu. http://lists.gnu.

org/archive/html/qemu-devel/2013-08/

msg02055.html, August 2013.

http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/pldi105-sarkar.pdf
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/pldi105-sarkar.pdf
http://lists.gnu.org/archive/html/qemu-devel/2013-08/msg02055.html
http://lists.gnu.org/archive/html/qemu-devel/2013-08/msg02055.html
http://lists.gnu.org/archive/html/qemu-devel/2013-08/msg02055.html

WG21/P0098R1 43

[6] Dalton, M. THE DESIGN AND IMPLE-
MENTATION OF DYNAMIC INFORMATION
FLOW TRACKING SYSTEMS FOR SOFT-
WARE SECURITY. PhD thesis, Stanford
University, 2009. Available: http://csl.

stanford.edu/~christos/publications/

2009.michael_dalton.phd_thesis.pdf

[Viewed March 9, 2010].

[7] Desnoyers, M. [RFC git tree] userspace RCU
(urcu) for Linux. http://liburcu.org, Febru-
ary 2009.

[8] Desnoyers, M., McKenney, P. E., Stern,
A., Dagenais, M. R., and Walpole, J.
User-level implementations of read-copy update.
IEEE Transactions on Parallel and Distributed
Systems 23 (2012), 375–382.

[9] Grisenthwaite, R. ARM Barrier Litmus
Tests and Cookbook. ARM Limited, 2009.

[10] Howard, P. W., and Walpole, J. A rel-
ativistic enhancement to software transactional
memory. In Proceedings of the 3rd USENIX con-
ference on Hot topics in parallelism (Berkeley,
CA, USA, 2011), HotPar’11, USENIX Associa-
tion, pp. 1–6.

[11] Howard, P. W., and Walpole, J. Relativis-
tic red-black trees. Concurrency and Computa-
tion: Practice and Experience (2013), n/a–n/a.

[12] Intel Corporation. A Formal Speci-
fication of Intel Itanium Processor Fam-
ily Memory Ordering, 2002. Avail-
able: http://developer.intel.com/

design/itanium/downloads/251429.htm

ftp://download.intel.com/design/

Itanium/Downloads/25142901.pdf [Viewed:
January 10, 2007].

[13] International Business Machines Corpo-
ration. Power ISA Version 2.07, 2013.

[14] Kannan, H. Ordering decoupled metadata ac-
cesses in multiprocessors. In MICRO 42: Pro-
ceedings of the 42nd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (New
York, NY, USA, 2009), ACM, pp. 381–390.

[15] McCarthy, J. Recursive functions of symbolic
expressions and their computation by machine,
part i. Commun. ACM 3, 4 (Apr. 1960), 184–
195.

[16] McKenney, P. E. Read-copy update
(RCU) usage in Linux kernel. Available:
http://www.rdrop.com/users/paulmck/

RCU/linuxusage/rculocktab.html [Viewed
January 14, 2007], October 2006.

[17] McKenney, P. E. What is RCU? part 2:
Usage. Available: http://lwn.net/Articles/

263130/ [Viewed January 4, 2008], January
2008.

[18] McKenney, P. E. The RCU API, 2010 edi-
tion. http://lwn.net/Articles/418853/, De-
cember 2010.

[19] McKenney, P. E. Validating memory barri-
ers and atomic instructions. http://lwn.net/

Articles/470681/, December 2011.

[20] McKenney, P. E. Is Parallel Programming
Hard, And, If So, What Can You Do About It?
kernel.org, Corvallis, OR, USA, 2012.

[21] McKenney, P. E. Structured deferral: syn-
chronization via procrastination. Commun.
ACM 56, 7 (July 2013), 40–49.

[22] McKenney, P. E. [PATCH tip/core/rcu
1/4] mce: Stop using array-index-based RCU
primitives. [PATCHtip/core/rcu1/4]mce:

Stopusingarray-index-basedRCUprimitives,
May 2015.

[23] McKenney, P. E., Purcell, C., Al-
gae, Schumin, B., Cornelius, G., Qwer-
tyus, Conway, N., Sbw, Blainster, Ru-
fus, C., Zoicon5, Anome, and Eisen, H.
Read-copy update. http://en.wikipedia.

org/wiki/Read-copy-update, July 2006.

[24] McKenney, P. E., and Slingwine, J. D.
Read-copy update: Using execution history to
solve concurrency problems. In Parallel and
Distributed Computing and Systems (Las Vegas,
NV, October 1998), pp. 509–518.

http://csl.stanford.edu/~christos/publications/2009.michael_dalton.phd_thesis.pdf
http://csl.stanford.edu/~christos/publications/2009.michael_dalton.phd_thesis.pdf
http://csl.stanford.edu/~christos/publications/2009.michael_dalton.phd_thesis.pdf
http://liburcu.org
http://developer.intel.com/design/itanium/downloads/251429.htm
http://developer.intel.com/design/itanium/downloads/251429.htm
ftp://download.intel.com/design/Itanium/Downloads/25142901.pdf
ftp://download.intel.com/design/Itanium/Downloads/25142901.pdf
http://www.rdrop.com/users/paulmck/RCU/linuxusage/rculocktab.html
http://www.rdrop.com/users/paulmck/RCU/linuxusage/rculocktab.html
http://lwn.net/Articles/263130/
http://lwn.net/Articles/263130/
http://lwn.net/Articles/418853/
http://lwn.net/Articles/470681/
http://lwn.net/Articles/470681/
[PATCH tip/core/rcu 1/4] mce: Stop using array-index-based RCU primitives
[PATCH tip/core/rcu 1/4] mce: Stop using array-index-based RCU primitives
http://en.wikipedia.org/wiki/Read-copy-update
http://en.wikipedia.org/wiki/Read-copy-update

WG21/P0098R1 44

[25] McKenney, P. E., and Stern, A.
Axiomatic validation of memory bar-
riers and atomic instructions. http:

//lwn.net/Articles/608550/, August 2014.

[26] McKenney, P. E., and Walpole, J. What is
RCU, fundamentally? Available: http://lwn.

net/Articles/262464/ [Viewed December 27,
2007], December 2007.

[27] Michael, M. M. Hazard pointers: Safe mem-
ory reclamation for lock-free objects. IEEE
Transactions on Parallel and Distributed Sys-
tems 15, 6 (June 2004), 491–504.

[28] Rossbach, C. J., Hofmann, O. S., Porter,
D. E., Ramadan, H. E., Bhandari, A., and
Witchel, E. TxLinux: Using and managing
hardware transactional memory in an operating
system. In SOSP’07: Twenty-First ACM
Symposium on Operating Systems Principles
(October 2007), ACM SIGOPS. Avail-
able: http://www.sosp2007.org/papers/

sosp056-rossbach.pdf [Viewed October 21,
2007].

[29] Smith, R. Working draft, stan-
dard for programming language C++.
http://www.open-std.org/jtc1/sc22/wg21/

docs/papers/2015/n4527.pdf, May 2015.

[30] Vigueras, G., Orduña, J. M., and Lozano,
M. A Read-Copy Update based parallel server
for distributed crowd simulations. The Journal
of Supercomputing (Apr. 2012).

Change Log

This paper first appeared as N4026 in May of 2014.
Revisions to this document are as follows:

• Add a suggestion to Section 7.1 that developers
provide diagnostics for singleton arrays when us-
ing RCU-protected indexes. (May 28, 2014.)

• Apply changes from Torvald Riegel feedback:

1. Move Section 7.1, which summarizes the
Linux-kernel uses of dependency chains, up
to the beginning of Section 7.

2. Fix some typos in Section 7.4, and add
words accounting for DEC Alpha, which
must continue to promote memory order

consume loads to memory order acquire

with this section’s approach. Also clarify
Jeff Preshing’s conjecture about the lack of
optimizations that break semantic depen-
dency chains.

(June 5, 2014.)

• Add Section 7.5, which covers Hans Boehm’s
approach, which restricts dependency chains to
local variable. Also add Section 7.6, which
covers Clark Nelso’s approach, which uses
the [[carries dependency]] attribute to mark
those local variables that carry dependencies.
(July 17, 2014.)

• Mark the paper as a revision of N4036. (July 17,
2014.)

• Add Jeff Preshing, Hans Boehm, and Clark Nel-
son as authors, and clarify Hans’s proposal in
Section 7.5. (August 13, 2014.)

• Add Olivier Giroux’s proposal for explicitly
marking the tails of dependency chains as Sec-
tion 7.7, and add Olivier as author. Update the
advantages and disadvantages of Jeff Preshing’s
whole-program option in Section 7.4 Add advan-
tages and disadvantages for Hans Boehm’s pro-
posal in Section 7.5 and for Clark Nelson’s pro-
posal in Section 7.6. (August 23, 2014.)

• Update Olivier Giroux’s explicit dependency-
chain marking proposal in Section 7.7 based on
feedback from Olivier. (August 24, 2014.)

• Add a section header (Section 4.1.1) for the
dependency-chain rules for 2014 GCC implemen-
tations. Add Section 4.1.3 laying out the sim-
pler rules for managing dependency chains in the
older 1990s Sequent C implementations. Add
a footnote to Section 7.6 recording Lawrence

http://lwn.net/Articles/608550/
http://lwn.net/Articles/608550/
http://lwn.net/Articles/262464/
http://lwn.net/Articles/262464/
http://www.sosp2007.org/papers/sosp056-rossbach.pdf
http://www.sosp2007.org/papers/sosp056-rossbach.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4527.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4527.pdf

WG21/P0098R1 45

Crowl’s preference for object modifiers instead of
either attributes or type modifiers. Add words to
Section 7.7 noting that atomic signal fence()

or the Linux kernel’s barrier() can be used to
suppress code-motion optimizations that might
otherwise prevent fixing up tail-marked depen-
dency chains that were broken by code-motion
optimizations. (October 1, 2014.)

• Add Section 3.4, which describes operators that
act as the last link in the Linux kernel’s depen-
dency chains, including the ambiguous role of
the -> operator. (October 1, 2014.)

• Update plots of RCU API usage. (October 5,
2014.)

• Flesh out Section 4.1.2, which lays out a short
history of dependency-chain management rules
for the Linux kernel. Numerous minor clarifica-
tions and corrections throughout the document.
(October 5, 2014.)

• Add “and” before final author’s name and email
address. Also add a pointer back to N4036. (Oc-
tober 5, 2014.)

• Add a brain-dead build script. (October 5,
2014.)

• Add Section 7.12, which has the beginnings of
an evaluation of the various proposals. (October
5, 2014.)

The paper was then published as N4215, which
was revised as follows:

• Add verbiage to Sections 7.2 and 7.12.2 differ-
entiating between various forms of syntactic and
semantic dependencies. (November 11, 2014.)

• Add a now-deleted section suggesting a C
keyword instead of the C++ [[carries

dependency]] attribute. This section also sug-
gests that combining ideas from several propos-
als might be helpful. (November 11, 2014.)

• Add Section 7.8 which contains a first attempt
to describe Olivier Giroux’s head-marked depen-
dency chains. (November 11, 2014.)

• Add example code in Figures 15 and 16. Add
similar figures to the proposals showing how they
mark the dependency chains in the sample code.
(November 11, 2014.)

At this point, the paper was published as N4321,
which was revised as follows:

• Add a warning against using operands to & and
| that leave only one bit set (or, respectively,
cleared) to Section 4.1.1. (April 9, 2015.)

• Update plots of RCU API usage. (April 19,
2014.)

• Add Section 7.9, which restricts dependency
chains with the goal of allowing unmarked de-
pendency chains while avoiding restricting com-
piler optimizations. One important restriction is
the elimination of RCU-protected array indexes.
(April 19, 2014.)

• Add verbiage to Section 3.2 noting that the &

operator is sometimes used to find the beginning
of a power-of-two aligned structure. (April 19,
2014.)

• Apply feedback from Linus Torvalds to Sec-
tion 7.9. (May 20, 2015.)

• Apply feedback from Linus Torvalds to Sec-
tion 7.9. (May 20, 2015.)

• Apply feedback from Torvald Riegel to Sec-
tion 7.9. (May 20, 2015.)

• Don’t allow integers to carry dependencies into
or out of unmarked functions in Section 7.9.
(May 21, 2015.)

• Update Section 7.9 to note that assignments can-
not extend a dependency chain from one thread
to another, and that assignments cannot extend
an intptr t- or uintptr t-based dependency
chain through a shared variable, even within a
given thread. (May 21, 2015.)

• Update Section 7.9 to note that atomic op-
erations can extend dependency chains in the
same way that their non-atomic counterparts
can. (May 21, 2015.)

WG21/P0098R1 46

• Update Section 7.9 to explicitly call out the fact
that stores and subsequent loads can extend de-
pendency chains. (May 21, 2015.)

• Update Section 7.9 to explicitly state that un-
defined behavior terminates dependency chains,
and that if only one value of a pointer avoids
undefined behavior, any dependency chains
through that pointer at that point are termi-
nated. (May 22, 2015.)

• Update Section 7.9 to document the difficul-
ties stemming from value-specialization opti-
mizations. (May 23, 2015.)

• Update Section 7.9 to note the back-propagation
of the dependency-chain-breaking effects of the
compiler deducing the exact value of a pointer.
(May 27, 2015.)

• Update Section 7.9 to give more information
on how much bit-setting and bit-clearing is too
much. (June 8, 2015.)

• Update Section 7.9 to note that the Linux ker-
nel does not rely on dependency ordering when
a statically allocated structure is linked into an
RCU-protected structure, but also note that op-
timizations breaking dependency ordering in this
case seem quite dubious. (July 11, 2015.)

• Update Section 7.9 illustrating dependency-
chain rules with examples. (July 11, 2015.)

• Update Section 7.9 noting that simple loads suf-
fice for memory order consume loads. (July 11,
2015.)

• Update Sections 7.7 and 7.8 calling out abstrac-
tion challenges for head- and tail-marking ap-
proaches. (July 13, 2015.)

• Add subsections to Section 7.9. (July 13, 2015.)

• Update Section 7.9 to amplify objections to spe-
cialization optimizations applied to heap-based
pointers. (July 13, 2015.)

• Update Section 7.9.1 to note that if a given oper-
ation extends a dependency chain, then so does
its atomic counterpart. (August 21, 2015.)

• Add text throughout stating that the patches
prohibiting carrying of dependencies through in-
teger variables have been accepted into v4.2 of
the Linux kernel (with a very few exceptions).
(September 5, 2015.)

• Add clarifications to Section 7.9, particularly
surrounding division of responsibility between
the developer and the compiler. (September 5,
2015.)

• Add diagnostic capability and unsolicited mem-
ory fences as criteria in Table 1. (September 14,
2015.)

• Add Linux-kernel compatibility and formal ver-
ification as criteria in Table 1. (September 14,
2015.)

• Add a storage-class proposal in Section 7.11 and
update Table 1 accordingly. (September 17,
2015.)

• Update Linux-kernel synchronization statistics
to v4.2. (September 19, 2015.)

• Update Section 7.11 to clarify that the storage-
class approach retains type restriction: Only
pointer-like types, with restrictions on opera-
tions on intptr t and uintptr t. (September
21, 2015.)

At this point, the paper was published as
P0098R0, which was revised as follows:

• Convert lingering C syntax to C++, as suggested
by Thomas Koeppe. (October 1, 2015.)

• Update standards references from n3691 to
n4527, as suggested by Jens Maurer. (January
4, 2016.)

• Add introductory sentences indicating that this
is the last version of this, and that the follow-
on will be a concrete proposal for handling of
memory order consume.

WG21/P0098R1 47

At this point, the paper was published as
P0098R1.

	1 Introduction
	2 Introduction to RCU
	3 Linux-Kernel Use Cases
	3.1 Types of Linux-Kernel Dependency Chains
	3.2 Operators in Linux-Kernel Dependency Chains
	3.3 Operators Terminating Linux-Kernel Dependency Chains
	3.4 Operators Acting as Last Link in Linux-Kernel Dependency Chains
	3.5 Linux-Kernel Dependency Chain Length

	4 Dependency Ordering in Pre-C11 Implementations
	4.1 Rules for C-Language RCU Users
	4.1.1 Rules for 2014 GCC Implementations
	4.1.2 Rules for 2003 GCC Implementations
	4.1.3 Rules for 1990s Sequent C Implementations

	4.2 Rules for C-Language Implementers

	5 Dependency Ordering in C11 and C++11 Implementations
	6 Weaknesses in C11 and C++11 Dependency Ordering
	7 Potential Alternatives to C11 and C++11 Dependency Ordering
	7.1 Revising C11 and C++11 Dependency-Ordering Definition
	7.2 Type-Based Designation of Dependency Chains With Restrictions
	7.3 Type-Based Designation of Dependency Chains
	7.4 Whole-Program Option
	7.5 Local-Variable Restriction
	7.6 Mark Dependency-Carrying Local Variables
	7.7 Explicitly Tail-Marked Dependency Chains
	7.8 Explicitly Head-Marked Dependency Chains
	7.9 Restricted Dependency Chains
	7.9.1 Extending Dependency Chains
	7.9.2 Terminating Dependency Chains
	7.9.3 Restricted Dependency Chains and the Linux Kernel
	7.9.4 Restricted Dependency Chains: Advantages and Disavantages

	7.10 Draft Wording for Restricted Dependency Chains
	7.11 Storage Class
	7.12 Evaluation
	7.12.1 Audiences
	7.12.2 Comparison

	8 Summary

