Doc. no: P0112R0 Date: 2015-09-25 Revises: N4478 Reply-To: Christopher Kohlhoff <chris@kohlhoff.com>
In the June 2014 committee meeting in Rapperswil, LEWG requested that Boost.Asio-based N2175 Networking Library Proposal for TR2 (Revision 1) be updated for C++14 and brought forward as a proposed Networking Technical Specification. This document is that revision. As well as updating the proposal for C++14, it incorporates improvements to Asio that are based on the widespread field experience accumulated since 2007.
The Boost.Asio library, from which this proposal is derived, has been deployed in numerous systems, from large (including internet-facing HTTP servers, instant messaging gateways and financial markets applications) to small (mobile phones and embedded systems). The Asio library supports, or has been ported to, many operating systems including Linux, Mac OS X, Windows (native), Windows Runtime, Solaris, FreeBSD, NetBSD, OpenBSD, HP-UX, Tru64, AIX, iOS, Android, WinCE, Symbian, vxWorks and QNX Neutrino.
This revision includes changes to address the remaining issues from the LWG wording review held in Cologne in February 2015, as well applying design changes following LEWG review in Lenexa. As the changes are too extensive to list here, readers may wish to view the GitHub page for this proposal at https://github.com/chriskohlhoff/asio-tr2/ for further information.
Since the previous revision, the design changes of note include:
io_service
to
io_context
.
wrap()
to bind_executor()
.
package()
to be the function call operator of use_future
.
const_buffers_1
and mutable_buffers_1
classes.
The buffer sequence requirements have been updated, and const_buffer
and mutable_buffer
now
satisfy these requirements directly.
data()
and size()
member functions to const_buffer
and mutable_buffer
, replacing
buffer_cast<>()
and buffer_size()
respectively.
An almost complete implementation of the proposal text may be found in a variant of Asio that stands alone from Boost. This variant is available at https://github.com/chriskohlhoff/asio/tree/master.
Unfamiliar readers are encouraged to look to the Boost.Asio documentation and examples for a more complete picture of the use of the library.
However, to give some idea of the flavour of the proposed library, consider the following sample code. This is part of a server program that echoes the characters it receives back to the client in upper case.
template <typename Iterator> void uppercase(Iterator begin, Iterator end) { std::locale loc(""); for (Iterator iter = begin; iter != end; ++iter) *iter = std::toupper(*iter, loc); } void sync_connection(tcp::socket& socket) { try { std::vector<char> buffer_space(1024); for (;;) { std::size_t length = socket.read_some(buffer(buffer_space)); uppercase(buffer_space.begin(), buffer_space.begin() + length); write(socket, buffer(buffer_space, length)); } } catch (std::system_error& e) { // ... } }
The synchronous operations used above are functions that do not return control to the caller until the corresponding operating system operation completes. In Asio-based programs their use cases typically fall into two categories:
Next, the equivalent code developed using asynchronous operations might look something like this:
class async_connection : public std::enable_shared_from_this<async_connection> { public: async_connection(tcp::socket socket) : socket_(std::move(socket)) { } void start() { do_read(); } private: void do_read() { auto self(shared_from_this()); socket_.async_read_some(buffer(buffer_space_), [this, self](std::error_code ec, std::size_t length) { if (!ec) { uppercase(buffer_space_.begin(), buffer_space_.begin() + length); do_write(length); } }); } void do_write(std::size_t length) { auto self(shared_from_this()); async_write(socket_, buffer(buffer_space_, length), [this, self](std::error_code ec, std::size_t /*length*/) { if (!ec) { do_read(); } }); } tcp::socket socket_; std::vector<char> buffer_space_{1024}; };
Asynchronous operations do not block the caller, but instead involve the delivery of a notification to the program when the corresponding operating system operation completes. Most non-trivial Asio-based programs will make use of asynchronous operations.
While the code may appear more complex due to the inverted flow of control, it allows a knowledgeable programmer to write code that will scale to a great many concurrent connections. However, this proposal uses the asynchronous model described in [N4045]. This is an extensible model that allows the asynchronous operations to support a variety of composition and notification mechanisms, and these mechanisms may alleviate this complexity. This includes futures:
std::future<std::size_t> fut = socket.async_read_some(buffer(buffer_space), use_future); // ... std::size_t length = fut.get();
and, through library extensions, coroutines:
void coro_connection(tcp::socket& socket, yield_context yield) { try { std::vector<char> buffer_space(1024); for (;;) { std::size_t length = socket.async_read_some(buffer(buffer_space), yield); uppercase(buffer_space.begin(), buffer_space.begin() + length); async_write(socket, buffer(buffer_space, length), yield); } } catch (std::system_error& e) { // ... } }
Finally, for many applications, networking is not a core feature, nor is it seen as a core competency of the application’s programmers. To cater to these use cases, the proposal provides a high-level interface to TCP sockets that is designed around the familiar C++ I/O streams framework.
Using the library in this way is as easy as opening a stream object with the remote host’s details:
tcp::iostream s("www.boost.org", "http");
Once connected, you send and receive any data as needed. In this case you send a request:
s << "GET / HTTP/1.0\r\n"; s << "Host: www.boost.org\r\n"; s << "Accept: */*\r\n"; s << "Connection: close\r\n\r\n";
Then receive and process the response:
std::string header; while (std::getline(s, header) && header != "\r") std::cout << header << "\n"; std::cout << s.rdbuf();
You can set a timeout to detect unresponsive connections:
s.expires_after(std::chrono::seconds(60));
And, if at any time there is an error, the tcp::iostream
class’s error()
member function may be used to obtain an error_code
that identifies the reason for failure:
if (!s) { std::cout << "Unable to connect: " << s.error().message() << "\n"; return 1; }
Problem areas addressed by this proposal include:
Features that are considered outside the scope of this proposal include:
The bulk of the library interface is intended for use by developers with at least some understanding of networking concepts (or a willingness to learn). A high level iostreams interface supports simple use cases and permits novices to develop network code without needing to get into too much depth.
The interface is based on the BSD sockets API, which is widely implemented and supported by extensive literature. It is also used as the basis of networking APIs in other languages (e.g. Java). Unsafe practices of the BSD sockets API, e.g. lack of compile-time type safety, are not included.
Asynchronous support is derived from the Proactor design pattern as implemented by the ADAPTIVE Communication Environment [ACE], and is influenced by the design of the Symbian C++ sockets API [SYMBIAN], which supports synchronous and asynchronous operations side-by-side. The Microsoft .NET socket classes [MS-NET] and the Extended Sockets API [ES-API] developed by The Open Group support similar styles of network programming.
This is a pure library proposal. It does not add any new language features, nor does it alter any existing standard library headers. It makes additions to experimental headers that may also be modified by other Technical Specifications.
This library can be implemented using compilers that conform to the C++14 standard. An implementation of this library requires operating system-specific functions that lie outside the C++14 standard.
The asynchronous operations defined in this proposal use the asynchronous model previously described in [N4045]. With the extensible asynchronous model presented in that paper, the user has the ability to select an asynchronous approach that is appropriate to each use case. With these library foundations, a single extensible asynchronous model can support a variety of composition methods, including:
To facilitate the coordination of asynchronous operations in multithreaded programs, the asynchronous model also utilises the executors design described and specified in [P0113].
As executors and the extensible asynchronous model are a prerequisite for the networking library, the proposed text below incorporates a complete specification of these facilities.
<experimental/executor>
synopsisasync_result
async_completion
associated_allocator
get_associated_allocator
execution_context
execution_context::service
is_executor
uses_executor
associated_executor
get_associated_executor
executor_binder
executor_binder
constructorsexecutor_binder
accessexecutor_binder
invocationasync_result
associated_allocator
associated_executor
bind_executor
executor_work_guard
make_work_guard
system_executor
system_context
bad_executor
executor
dispatch
post
defer
strand
use_future_t
async_result
for packaged_task
<experimental/buffer>
synopsismutable_buffer
const_buffer
buffer_size
buffer_copy
dynamic_vector_buffer
dynamic_string_buffer
transfer_all
transfer_at_least
transfer_exactly
<experimental/socket>
synopsissocket_base
basic_socket
basic_datagram_socket
basic_stream_socket
basic_socket_acceptor
<experimental/internet>
synopsisip::address
ip::address_v4
ip::address_v6
ip::bad_address_cast
ip::basic_address_iterator
specializationsip::basic_address_range
specializationsip::network_v4
ip::network_v6
ip::basic_endpoint
ip::basic_resolver_entry
ip::basic_resolver_results
ip::resolver_base
ip::basic_resolver
ip::tcp
ip::udp
This Technical Specification describes extensions to the C++ Standard Library. This Technical Specification specifies requirements for implementations of an interface that computer programs written in the C++ programming language may use to perform operations related to networking, such as operations involving sockets, timers, buffer management, host name resolution and internet protocols. This Technical Specification is applicable to information technology systems that can perform network operations, such as those with operating systems that conform to the POSIX interface. This Technical Specification is applicable only to vendors who wish to provide the interface it describes.
Conformance is specified in terms of behavior. Ideal behavior is not always implementable, so the conformance sub-clauses take that into account.
Some behavior is specified by reference to POSIX. How such behavior is actually implemented is unspecified.
[Note: This constitutes an "as if" rule allowing implementations to call native operating system or other APIs. —end note]
Implementations are encouraged to provide such behavior as it is defined by POSIX. Implementations shall document any behavior that differs from the behavior defined by POSIX. Implementations that do not support exact POSIX behavior are encouraged to provide behavior as close to POSIX behavior as is reasonable given the limitations of actual operating systems and file systems. If an implementation cannot provide any reasonable behavior, the implementation shall report an error as specified in Error Reporting.
[Note: This allows users to rely on an exception being thrown or an error code being set when an implementation cannot provide any reasonable behavior. —end note]
Implementations are not required to provide behavior that is not supported by a particular operating system.
This Technical Specification defines conditially-supported features, in
the form of additional member functions on types that satisfy Protocol
, Endpoint
, SettableSocketOption
, GettableSocketOption
or IoControlCommand
requirements.
[Note: This is so that, when the additional member functions are available, C++ programs may extend the library to add support for other protocols and socket options. —end note]
For the purposes of this Technical Specification, implementations that provide all of the additional member functions are known as extensible implementations.
[Note: Implementations are encouraged to provide the additional member functions, where possible. It is intended that POSIX and Windows implementations will provide them. —end note]
The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
[Note: The programming language and library described
in ISO/IEC 14882 is herein called the C++ Standard. References to clauses
within the C++ Standard are written as "C++Std [xref]".
The operating system interface described in ISO/IEC 9945 is herein called
POSIX. —end note]
This Technical Specification mentions commercially available operating systems for purposes of exposition. [1]
Unless otherwise specified, the whole of the C++ Standard's Library introduction (C++Std [library]) is included into this Technical Specification by reference.
The components described in this Technical Specification are experimental
and not part of the C++ standard library. All components described in this
Technical Specification are declared in namespace std::experimental::net::v1
or a sub-namespace thereof unless otherwise
specified. The headers described in this technical specification shall import
the contents of std::experimental::net::v1
into std::experimental::net
as if by:
namespace std { namespace experimental { namespace net { inline namespace v1 {} } } }
Unless otherwise specified, references to other entities described in this
Technical Specification are assumed to be qualified with std::experimental::net::v1::
, references
to entities described in the C++ standard are assumed to be qualified with
std::
,
and references to entities described in C++ Extensions for Library Fundamentals
are assumed to be qualified with std::experimental::fundamentals_v1::
.
[defs.host.byte.order] See section 3.194 of POSIX Base Definitions, Host Byte Order.
[defs.net.byte.order] See section 3.238 of POSIX Base Definitions, Network Byte Order.
[defs.sync.op] A synchronous operation is one where control is not returned until the operation completes.
[defs.async.op] An asynchronous operation is one where control is returned immediately without waiting for the operation to complete. Multiple asynchronous operations may be executed concurrently.
[defs.orderly.shutdown] The procedure for shutting down a stream after all work in progress has been completed, without loss of data.
This section describes tentative plans for future versions of this technical specification and plans for moving content into future versions of the C++ Standard.
The C++ committee may release new versions of this technical specification,
containing networking library extensions we hope to add to a near-future
version of the C++ Standard. Future versions will define their contents in
std::experimental::net::v2
,
std::experimental::net::v3
,
etc., with the most recent implemented version inlined into std::experimental::net
.
When an extension defined in this or a future version of this technical specification
represents enough existing practice, it will be moved into the next version
of the C++ Standard by replacing the experimental::net::vN
segment of its namespace with net
, and by removing the experimental/
prefix from its header's path.
These macros allow users to determine which version of this Technical Specification is supported by the headers defined by the specification. All headers in this Technical Specification shall supply the following macro definition:
#define __cpp_lib_experimental_net yyyymm
If an implementation supplies all of the conditionally-supported features specified in [conformance.conditional], all headers in this Technical Specification shall supply the following macro definition:
#define __cpp_lib_experimental_net_extensible yyyymm
[Note: The value of the macros __cpp_lib_experimental_net
and __cpp_lib_experimental_net_extensible
is yyyymm
where yyyy
is the year and mm
the month when the version of the Technical Specification was completed.
—end note]
This subclause describes the conventions used to specify this Technical Specification, in addition to those conventions specified in C++Std [description].
In addition to the elements defined in C++Std [structure.specifications], descriptions of function semantics contain the following elements (as appropriate):
— Completion signature: - if the function initiates an asynchronous operation, specifies the signature of a completion handler used to receive the result of the operation.
Several classes defined in this Technical Specification are nested classes.
For a specified nested class A::B
,
an implementation is permitted to define A::B
as a synonym for a class with equivalent functionality to class A::B
.
[Note: When A::B
is a synonym for another type A
shall provide a nested type B
,
to emulate the injected class name. —end note]
Most synchronous network library functions provide two overloads, one that
throws an exception to report system errors, and another that sets an
error_code
(C++Std [syserr]).
[Note: This supports two common use cases:
— Uses where system errors are truly exceptional and indicate a serious
failure. Throwing an exception is the most appropriate response.
— Uses where system errors are routine and do not necessarily represent
failure. Returning an error code is the most appropriate response. This
allows application specific error handling, including simply ignoring the
error.
—end note]
Functions not having an argument of type
error_code&
report errors as follows, unless otherwise specified:
— When a call by the implementation to an operating system or other underlying
API results in an error that prevents the function from meeting its specifications,
the function exits via an exception of a type that would match a handler
of type system_error
.
— Destructors throw nothing.
Functions having an argument of type error_code&
report errors as follows, unless otherwise
specified:
— If a call by the implementation to an operating system or other underlying
API results in an error that prevents the function from meeting its specifications,
the error_code&
argument ec
is set as appropriate
for the specific error. Otherwise, the ec
argument is set such that !ec
is true
.
Where a function is specified as two overloads, with and without an argument
of type error_code&
:
R f(A1 a1, A2 a2, ..., AN aN); R f(A1 a1, A2 a2, ..., AN aN, error_code& ec);
then, when R is non-void
, the effects of the first overload
are as if:
error_code ec; R r(f(a1, a2, ..., aN, ec)); if (ec) throw system_error(ec, __func__); return r;
otherwise, when R
is void
, the effects of the
first overload are as if:
error_code ec; f(a1, a2, ..., aN, ec); if (ec) throw system_error(ec, __func__);
except that the type thrown may differ as specified above.
For both overloads, failure to allocate storage is reported by throwing an exception as described in the C++ standard (C++Std [res.on.exception.handling]).
In this Technical Specification, when a type requirement is specified using
two function call expressions f,
with and without an argument ec
of type error_code
:
f(a1, a2, ..., aN) f(a1, a2, ..., aN, ec)
then the effects of the first call expression of f shall be as described for the first overload above.
Asynchronous network library functions in this Technical Specification
are identified by having the prefix async_
and take a completion handler [async.reqmts.async.token].
These asynchronous operations report errors as follows:
— If a call by the implementation to an operating system or other underlying
API results in an error that prevents the asynchronous operation from meeting
its specifications, the completion handler is invoked with an error_code
value ec
that is set as appropriate for the specific error. Otherwise, the error_code
value ec
is set such that !ec
is true
.
— Asynchronous operations shall not fail with an error condition that indicates
interruption of an operating system or underlying API by a signal [Note:
Such as POSIX error number EINTR
—end note] . Asynchronous operations shall not fail
with any error condition associated with non-blocking operations [Note:
Such as POSIX error numbers EWOULDBLOCK
,
EAGAIN
, or EINPROGRESS
; Windows error numbers WSAEWOULDBLOCK
or WSAEINPROGRESS
—end note] .
In this Technical Specification, when a type requirement is specified as
a call to a function or member function having the prefix async_
, then the function shall satisfy
the error reporting requirements described above.
Unless otherwise specified, when the behavior of a synchronous or asynchronous
operation is defined "as if" implemented by a POSIX function,
the error_code
produced
by the function shall meet the following requirements:
— If the failure condition is one that is listed by POSIX for that function,
the error_code
shall compare
equal to the error's corresponding enum
class errc
(C++Std [syserr]) or enum class resolver_errc
constant.
— Otherwise, the error_code
shall be set to an implementation-defined value that reflects the underlying
operating system error.
[Example: The POSIX specification for shutdown
lists EBADF
as one of its
possible errors. If a function that is specified "as if" implemented
by shutdown
fails with EBADF
then the
following condition holds for the error_code
value ec
: ec == errc::bad_file_descriptor
—end example]
When the description of a function contains the element Error
conditions, this lists conditions where the operation may fail.
The conditions are listed, together with a suitable explanation, as enum class
constants. Unless otherwise specified, this list is a subset of the failure
conditions associated with the function.
Some POSIX functions referred to in this Technical Specification may report
errors by raising a SIGPIPE
signal. Where a synchronous or asynchronous operation is specified in terms
of these POSIX functions, the generation of SIGPIPE
is suppressed and an error condition corresponding to POSIX EPIPE
is produced instead.
Table 1. Networking library summary
Clause |
Header(s) |
---|---|
| |
| |
| |
| |
| |
| |
| |
|
Throughout this Technical Specification, the names of the template parameters are used to express type requirements, as listed in the table below.
Table 2. Template parameters and type requirements
template parameter name |
type requirements |
---|---|
| |
|
C++Std [allocator.requirements] |
| |
| |
|
C++Std [time.clock.req] |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
|
#include <experimental/executor> #include <experimental/io_context> #include <experimental/timer> #include <experimental/buffer> #include <experimental/socket> #include <experimental/internet>
[Note: This header is provided as a convenience for
programs so that they may access all networking facilities via a single,
self-contained #include
.
—end note]
namespace std { namespace experimental { namespace net { inline namespace v1 { class execution_context; template<class T, class Executor> class executor_binder; template<class Executor> class executor_work_guard; class system_executor; class executor; template<class Executor> class strand; class io_context; template<class Clock> struct wait_traits; template<class Clock, class WaitTraits = wait_traits<Clock>> class basic_waitable_timer; typedef basic_waitable_timer<chrono::system_clock> system_timer; typedef basic_waitable_timer<chrono::steady_clock> steady_timer; typedef basic_waitable_timer<chrono::high_resolution_clock> high_resolution_timer; template<class Protocol> class basic_socket; template<class Protocol> class basic_datagram_socket; template<class Protocol> class basic_stream_socket; template<class Protocol> class basic_socket_acceptor; template<class Protocol, class Clock = chrono::steady_clock, class WaitTraits = wait_traits<Clock>> class basic_socket_streambuf; template<class Protocol, class Clock = chrono::steady_clock, class WaitTraits = wait_traits<Clock>> class basic_socket_iostream; namespace ip { class address; class address_v4; class address_v6; class address_iterator_v4; class address_iterator_v6; class address_range_v4; class address_range_v6; class network_v4; class network_v6; template<class InternetProtocol> class basic_endpoint; template<class InternetProtocol> class basic_resolver_entry; template<class InternetProtocol> class basic_resolver_results; template<class InternetProtocol> class basic_resolver; class tcp; class udp; } // namespace ip } // inline namespace v1 } // namespace net } // namespace experimental } // namespace std
Default template arguments are described as appearing both in <netfwd>
and in the synopsis of other headers
but it is well-formed to include both <netfwd>
and one or more of the other headers. [Note: It is
the implementation’s responsibility to implement headers so that including
<netfwd>
and other headers does not violate
the rules about multiple occurrences of default arguments. —end
note]
namespace std { namespace experimental { namespace net { inline namespace v1 { template<class CompletionToken, class Signature, class = void> class async_result; template<class CompletionToken, class Signature> struct async_completion; template<class T, class ProtoAllocator = allocator<void>> struct associated_allocator; template<class T, class ProtoAllocator = allocator<void>> using associated_allocator_t = typename associated_allocator<T, ProtoAllocator>::type; // get_associated_allocator: template<class T> associated_allocator_t<T> get_associated_allocator(const T& t) noexcept; template<class T, class ProtoAllocator> associated_allocator_t<T, ProtoAllocator> get_associated_allocator(const T& t, const ProtoAllocator& a) noexcept; enum class fork_event { prepare, parent, child }; class execution_context; class service_already_exists; template<class Service> Service& use_service(execution_context& ctx); template<class Service, class... Args> Service& make_service(execution_context& ctx, Args&&... args); template<class Service> bool has_service(execution_context& ctx) noexcept; template<class T> struct is_executor; struct executor_arg_t { }; constexpr executor_arg_t executor_arg = executor_arg_t(); template<class T, class Executor> struct uses_executor; template<class T, class Executor = system_executor> struct associated_executor; template<class T, class Executor = system_executor> using associated_executor_t = typename associated_executor<T, Executor>::type; // get_associated_executor: template<class T> associated_executor_t<T> get_associated_executor(const T& t) noexcept; template<class T, class Executor> associated_executor_t<T, Executor> get_associated_executor(const T& t, const Executor& ex) noexcept; template<class T, class ExecutionContext> associated_executor_t<T, typename ExecutionContext::executor_type> get_associated_executor(const T& t, ExecutionContext& ctx) noexcept; template<class T, class Executor> class executor_binder; template<class T, class Executor, class Signature> class async_result<executor_binder<T, Executor>, Signature>; template<class T, class Executor, class ProtoAllocator> struct associated_allocator<executor_binder<T, Executor>, ProtoAllocator>; template<class T, class Executor, class Executor1> struct associated_executor<executor_binder<T, Executor>, Executor1>; // bind_executor: template<class Executor, class T> executor_binder<decay_t<T>, Executor> bind_executor(const Executor& ex, T&& t); template<class ExecutionContext, class T> executor_binder<decay_t<T>, typename ExecutionContext::executor_type> bind_executor(ExecutionContext& ctx, T&& t); template<class Executor> class executor_work_guard; // make_work_guard: template<class Executor> executor_work_guard<Executor> make_work_guard(const Executor& ex); template<class ExecutionContext> executor_work_guard<typename ExecutionContext::executor_type> make_work_guard(ExecutionContext& ctx); template<class T> executor_work_guard<associated_executor_t<T>> make_work_guard(const T& t); template<class T, class U> auto make_work_guard(const T& t, U&& u) -> decltype(make_work_guard(get_associated_executor(t, forward<U>(u)))); class system_executor; class system_context; bool operator==(const system_executor&, const system_executor&); bool operator!=(const system_executor&, const system_executor&); class bad_executor; class executor; bool operator==(const executor& a, const executor& b) noexcept; bool operator==(const executor& e, nullptr_t) noexcept; bool operator==(nullptr_t, const executor& e) noexcept; bool operator!=(const executor& a, const executor& b) noexcept; bool operator!=(const executor& e, nullptr_t) noexcept; bool operator!=(nullptr_t, const executor& e) noexcept; // dispatch: template<class CompletionToken> DEDUCED dispatch(CompletionToken&& token); template<class Executor, class CompletionToken> DEDUCED dispatch(const Executor& ex, CompletionToken&& token); template<class ExecutionContext, class CompletionToken> DEDUCED dispatch(ExecutionContext& ctx, CompletionToken&& token); // post: template<class CompletionToken> DEDUCED post(CompletionToken&& token); template<class Executor, class CompletionToken> DEDUCED post(const Executor& ex, CompletionToken&& token); template<class ExecutionContext, class CompletionToken> DEDUCED post(ExecutionContext& ctx, CompletionToken&& token); // defer: template<class CompletionToken> DEDUCED defer(CompletionToken&& token); template<class Executor, class CompletionToken> DEDUCED defer(const Executor& ex, CompletionToken&& token); template<class ExecutionContext, class CompletionToken> DEDUCED defer(ExecutionContext& ctx, CompletionToken&& token); template<class Executor> class strand; template<class Executor> bool operator==(const strand<Executor>& a, const strand<Executor>& b); template<class Executor> bool operator!=(const strand<Executor>& a, const strand<Executor>& b); template<class ProtoAllocator = allocator<void>> class use_future_t; constexpr use_future_t<> use_future = use_future_t<>(); template<class ProtoAllocator, class Result, class... Args> class async_result<use_future_t<ProtoAllocator>, Result(Args...)>; template<class R, class... Args, class Signature> class async_result<packaged_task<Result(Args...)>, Signature>; } // inline namespace v1 } // namespace net } // namespace experimental template<class Allocator> struct uses_allocator<experimental::net::v1::executor, Allocator> : true_type {}; } // namespace std
[async.reqmts.proto.allocator]
A type A
meets the proto-allocator
requirements if A
is
CopyConstructible
(C++Std
[copyconstructible]), Destructible
(C++Std [destructible]), and allocator_traits<A>::rebind_alloc<U>
meets the allocator requirements
(C++Std [allocator.requirements]), where U
is an object type. [Note: For example, std::allocator<void>
meets the proto-allocator requirements but not the allocator requirements.
—end note] No constructor, comparison operator, copy
operation, move operation, or swap operation on these types shall exit
via an exception.
The library describes a standard set of requirements for executors.
A type meeting the Executor
requirements embodies a set of rules for determining how submitted function
objects are to be executed.
A type X
meets the Executor
requirements if it satisfies
the requirements of CopyConstructible
(C++Std [copyconstructible]) and Destructible
(C++Std [destructible]), as well as the additional requirements listed
below.
No constructor, comparison operator, copy operation, move operation,
swap operation, or member functions context
,
on_work_started
, and
on_work_finished
on these
types shall exit via an exception.
The executor copy constructor, comparison operators, and other member functions defined in these requirements shall not introduce data races as a result of concurrent calls to those functions from different threads.
In the table below, x1
and x2
denote values
of type X
, cx1
and cx2
denote (possibly const) values of type X
,
mx1
denotes an xvalue
of type X
, f
denotes a MoveConstructible
(C++Std [moveconstructible]) function object callable with zero arguments,
a
denotes a (possibly
const) value of type A
meeting the Allocator
requirements (C++Std [allocator.requirements]), and u
denotes an identifier.
Table 3. Executor requirements
expression |
type |
assertion/note |
---|---|---|
|
Shall not exit via an exception. | |
|
Shall not exit via an exception. | |
|
|
Returns |
|
|
Same as |
|
|
Shall not exit via an exception. |
|
Shall not exit via an exception. | |
|
Shall not exit via an exception. | |
|
Effects: Creates an object | |
|
Effects: Creates an object |
[async.reqmts.executioncontext]
A type X
meets the ExecutionContext
requirements if it
is publicly and unambiguously derived from execution_context
,
and satisfies the additional requirements listed below.
In the table below, x
denotes a value of type X
.
Table 4. ExecutionContext requirements
expression |
return type |
assertion/note |
---|---|---|
|
type meeting | |
|
Destroys all unexecuted function objects that were submitted via an executor object that is associated with the execution context. | |
|
|
Returns an executor object that is associated with the execution context. |
A class is a service if it is publicly and unambiguously
derived from execution_context::service
,
or if it is publicly and unambiguously derived from another service.
For a service S
, S::key_type
shall be valid and denote
a type (C++Std [temp.deduct]), is_base_of_v<typename
S::key_type,
S>
shall be true
, and S
shall satisfy the Destructible
requirements (C++Std [destructible]).
The first parameter of all service constructors shall be an lvalue reference
to execution_context
.
This parameter denotes the execution_context
object that represents a set of services, of which the service object
will be a member. [Note: These constructors may
be called by the make_service
function. —end note]
A service shall provide an explicit constructor with a single parameter
of lvalue reference to execution_context
.
[Note: This constructor may be called by the use_service
function. —end
note]
[Example:
class my_service : public execution_context::service { public: typedef my_service key_type; explicit my_service(execution_context& ctx); my_service(execution_context& ctx, int some_value); private: virtual void shutdown() noexcept override; ... };
—end example]
A service's shutdown
member function shall destroy all copies of user-defined function objects
that are held by the service.
A type satisfies the signature requirements if it is a call signature (C++Std [func.def]).
An associator defines a relationship between different types and objects where, given:
— a source object s
of
type S
,
— type requirements R
,
and
— a candidate object c
of type C
meeting the
type requirements R
an associated type A
meeting the type requirements R
may be computed, and an associated object a
of type A
may be obtained.
An associator shall be a class template that takes two template type
arguments. The first template argument is the source type S
. The second template argument is
the candidate type C
.
The second template argument shall be defaulted to some default candidate
type D
that satisfies
the type requirements R
.
An associator shall additionally satisfy the requirements in the table
below. In this table, X
is a class template that meets the associator requirements, S
is the source type, s
is a (possibly const) value of type
S
, C
is the candidate type, c
is a (possibly const) value of type C
,
D
is the default candidate
type, and d
is a (possibly
const) value of type D
that is the default candidate object.
Table 5. Associator requirements
expression |
return type |
assertion/note |
---|---|---|
|
| |
|
The associated type. | |
|
|
Returns |
|
|
Returns the associated object. |
The associator's primary template shall be defined. A program may partially
specialize the associator class template for some user-defined type
S
.
Finally, the associator shall provide the following type alias and function template in the enclosing namespace:
template<class S, class C = D> using X_t = typename X<S, C>::type; template<class S, class C = D> typename X<S, C>::type get_X(const S& s, const C& c = d) { return X<S, C>::get(s, c); }
where X
is replaced with the
name of the associator class template. [Note: This
function template is provided as a convenience, to automatically deduce
the source and candidate types. —end note]
This section uses the names Alloc1
,
Alloc2
, alloc1
, alloc2
,
Args
, CompletionHandler
,
completion_handler
,
Executor1
, Executor2
, ex1
,
ex2
, f
,
i
, N
,
Signature
, token
, Ti
,
ti
, work1
,
and work2
as placeholders
for specifying the requirements below.
An initiating function is a function which may be called to start an asynchronous operation. A completion handler is a function object that will be invoked, at most once, with the result of the asynchronous operation.
The lifecycle of an asynchronous operation is comprised of the following events and phases:
— Event 1: The asynchronous operation is started by a call to the initiating function.
— Phase 1: The asynchronous operation is now outstanding.
— Event 2: The externally observable side effects of the asynchronous operation, if any, are fully established. The completion handler is submitted to an executor.
— Phase 2: The asynchronous operation is now completed.
— Event 3: The completion handler is called with the result of the asynchronous operation.
In this Technical Specification, all functions with the prefix async_
are initiating functions.
Initiating functions:
— are function templates with template parameter CompletionToken
;
— accept, as the final parameter, a completion token
object token
of type
CompletionToken
;
— specify a completion signature, which is a call
signature (C++Std [func.def]) Signature
that determines the arguments to the completion handler.
An initiating function determines the type CompletionHandler
of its completion handler function object by performing typename async_result<decay_t<CompletionToken>, Signature>::completion_handler_type
.
The completion handler object completion_handler
is initialized with forward<CompletionToken>(token)
. [Note: No other
requirements are placed on the type CompletionToken
.
—end note]
The type CompletionHandler
must satisfy the requirements of Destructible
(C++Std [destructible]) and MoveConstructible
(C++Std [moveconstructible]), and be callable with the specified call
signature.
In this Technical Specification, all initiating functions specify a
Completion signature element that defines the
call signature Signature
.
The Completion signature elements in this Technical
Specification have named parameters, and the results of an asynchronous
operation are specified in terms of these names.
[async.reqmts.async.return.type]
The return type of an initiating function is typename
async_result<decay_t<CompletionToken>,
Signature>::return_type
.
For the sake of exposition, this Technical Specification sometimes
annotates functions with a return type DEDUCED
. For every function
declaration that returns DEDUCED
, the meaning is equivalent to
specifying the return type as typename
async_result<decay_t<CompletionToken>,
Signature>::return_type
.
[async.reqmts.async.return.value]
An initiating function produces its return type as follows:
— constructing an object result
of type async_result<decay_t<CompletionToken>, Signature>
, initialized as result(completion_handler)
; and
— using result.get()
as the operand of the return statement.
[Example: Given an asynchronous operation with
Completion signature void(R1 r1, R2 r2)
, an initiating function meeting these
requirements may be implemented as follows:
template<class CompletionToken> auto async_xyz(T1 t1, T2 t2, CompletionToken&& token) { typename async_result<decay_t<CompletionToken>, void(R1, R2)>::completion_handler_type completion_handler(forward<CompletionToken>(token)); async_result<decay_t<CompletionToken>, void(R1, R2)> result(completion_handler); // initiate the operation and cause completion_handler to be invoked with // the result return result.get(); }
For convenience, initiating functions may be implemented using the
async_completion
template:
template<class CompletionToken> auto async_xyz(T1 t1, T2 t2, CompletionToken&& token) { async_completion<CompletionToken, void(R1, R2)> init(token); // initiate the operation and cause init.completion_handler to be invoked // with the result return init.result.get(); }
—end example]
Unless otherwise specified, the lifetime of arguments to initiating functions shall be treated as follows:
— If the parameter has a pointer type or has a type of lvalue reference to non-const, the implementation may assume the validity of the pointee or referent, respectively, until the completion handler is invoked. [Note: In other words, the program must guarantee the validity of the argument until the completion handler is invoked. —end note]
— Otherwise, the implementation must not assume the validity of the argument after the initiating function completes. [Note: In other words, the program is not required to guarantee the validity of the argument after the initiating function completes. —end note] The implementation may make copies of the argument, and all copies shall be destroyed no later than immediately after invocation of the completion handler.
[async.reqmts.async.non.blocking]
An initiating function shall not block (C++Std [defns.block]) the calling thread pending completion of the outstanding operation.
[Note: Initiating functions may still block the calling thread for other reasons. For example, an initiating function may lock a mutex in order to synchronize access to shared data. —end note]
[async.reqmts.async.assoc.exec]
Certain objects that participate in asynchronous operations have an associated executor. These are obtained as specified below.
An asynchronous operation has an associated executor satisfying the
Executor
requirements. If not otherwise specified by the asynchronous operation,
this associated executor is an object of type system_executor
.
All asynchronous operations in this Technical Specification have an associated executor object that is determined as follows:
— If the initiating function is a member function, the associated executor
is that returned by the get_executor
member function on the same object.
— If the initiating function is not a member function, the associated
executor is that returned by the get_executor
member function of the first argument to the initiating function.
Let Executor1
be the
type of the associated executor. Let ex1
be a value of type Executor1
,
representing the associated executor object obtained as described above.
[async.reqmts.async.handler.exec]
A completion handler object of type CompletionHandler
has an associated executor of type Executor2
satisfying the Executor requirements.
The type Executor2
is associated_executor_t<CompletionHandler, Executor1>
. Let ex2
be a value of type Executor2
obtained by performing get_associated_executor(completion_handler, ex1)
.
The implementation of an asynchronous operation shall maintain an object
work1
of type executor_work_guard<Executor1>
,
initialized with work1(ex1)
and with work1.owns_work() == true
, until the asynchronous operation
has completed.
The implementation of an asynchronous operation shall maintain an object
work2
of type executor_work_guard<Executor2>
,
initialized with work2(ex2)
and with work2.owns_work() == true
, until the asynchronous operation
has completed and completion_handler
has been submitted for execution.
Asynchronous operations may allocate memory. [Note:
Such as a data structure to store copies of the completion_handler
object and the initiating function's arguments. —end note]
Let Alloc1
be a type,
satisfying the ProtoAllocator
requirements,
that represents the asynchronous operation's default allocation strategy.
[Note: Typically std::allocator<void>
. —end note]
Let alloc1
be a value
of type Alloc1
.
A completion handler object of type CompletionHandler
has an associated allocator object alloc2
of type Alloc2
satisfying
the ProtoAllocator
requirements. The type Alloc2
is associated_allocator_t<CompletionHandler, Alloc1>
. Let alloc2
be a value of type Alloc2
obtained by performing get_associated_allocator(completion_handler, alloc1)
.
The asynchronous operations defined in this Technical Specification:
— If required, allocate memory using only the completion handler's associated allocator.
— Prior to completion handler execution, deallocate any memory allocated using the completion handler's associated allocator.
[Note: The implementation may perform operating system or underlying API calls that perform memory allocations not using the associated allocator. Invocations of the allocator functions may not introduce data races (See C++Std [res.on.data.races]). —end note]
[async.reqmts.async.completion]
Let Args...
be the argument types of the completion signature Signature
and let N
be sizeof...(Args)
.
Let i
be in the range [0
,N
).
Let Ti
be the i
th
type in Args...
and let ti
be the i
th
completion handler argument associated with Ti
.
Let f
be a function
object, callable as f()
, that invokes completion_handler
as if by completion_handler(forward<T0>(t0),
..., forward<TN-1>(tN-1))
.
If an asynchonous operation completes immediately (that is, within
the thread of execution calling the initiating function, and before
the initiating function returns), the completion handler shall be submitted
for execution as if by performing ex2.post(std::move(f), alloc2)
. Otherwise, the completion handler
shall be submitted for execution as if by performing ex2.dispatch(std::move(f), alloc2)
.
[async.reqmts.async.exceptions]
Completion handlers are permitted to throw exceptions. The effect of any exception propagated from the execution of a completion handler is determined by the executor which is executing the completion handler.
The async_result
class
template is a customization point for asynchronous operations. Template
parameter CompletionToken
specifies the model used to obtain the result of the asynchronous operation.
Template parameter Signature
is the call signature (C++Std [func.def]) for the completion handler type
invoked on completion of the asynchronous operation. The async_result
template:
— transforms a CompletionToken
into a completion handler type that is based on a Signature
;
and
— determines the return type and return value of an asynchronous operation's initiating function.
namespace std { namespace experimental { namespace net { inline namespace v1 { template<class CompletionToken, class Signature, class = void> class async_result { public: typedef CompletionToken completion_handler_type; typedef void return_type; explicit async_result(completion_handler_type&) {} async_result(const async_result&) = delete; async_result& operator=(const async_result&) = delete; return_type get() {} }; } // inline namespace v1 } // namespace net } // namespace experimental } // namespace std
The template parameter CompletionToken
shall be an object type. The template parameter Signature
shall be a call signature (C++Std [func.def]).
Specializations of async_result
shall satisfy the Destructible
requirements (C++Std [destructible]) in addition to the requirements in
the table below. In this table, R
is a specialization of async_result
;
r
is a modifiable lvalue
of type R
; and h
is a modifiable lvalue of type R::completion_handler_type
.
Table 6. async_result specialization requirements
Expression |
Return type |
Requirement |
---|---|---|
|
A type satisfying | |
|
| |
| ||
|
|
[Note: An asynchronous operation's initiating
function uses the |
Class template async_completion
is provided as a convenience, to simplify the implementation of asynchronous
operations that use async_result
.
namespace std { namespace experimental { namespace net { inline namespace v1 { template<class CompletionToken, class Signature> struct async_completion { typedef async_result<decay_t<CompletionToken>, Signature>::completion_handler_type completion_handler_type; explicit async_completion(CompletionToken& t); async_completion(const async_completion&) = delete; async_completion& operator=(const async_completion&) = delete; see below completion_handler; async_result<decay_t<CompletionToken>, Signature> result; }; } // inline namespace v1 } // namespace net } // namespace experimental } // namespace std
The template parameter Signature
shall be a call signature (C++Std [func.def]).
explicit async_completion(CompletionToken& t);
Effects: If
CompletionToken
andcompletion_handler_type
are the same type, bindscompletion_handler
tot
; otherwise, initializescompletion_handler
with the result offorward<CompletionToken>(t)
. Initializesresult
withcompletion_handler
.
see below completion_handler;
Type:
completion_handler_type&
ifCompletionToken
andcompletion_handler_type
are the same type; otherwise,completion_handler_type
.
Class template associated_allocator
is an associator for the
ProtoAllocator
type requirements, with default candidate type allocator<void>
and default candidate object allocator<void>()
.
namespace std { namespace experimental { namespace net { inline namespace v1 { template<class T, class ProtoAllocator = allocator<void>> struct associated_allocator { typedef see below type; static type get(const T& t, const ProtoAllocator& a = ProtoAllocator()) noexcept; }; } // inline namespace v1 } // namespace net } // namespace experimental } // namespace std
Specializations of associated_allocator
shall satisfy the requirements in the table below. In this table, X
is a specialization of associated_allocator
for the template
parameters T
and ProtoAllocator
; t
is a value of (possibly const) T
;
and a
is an object of type
ProtoAllocator
.
Table 7. associated_allocator specialization requirements
Expression |
Return type |
Note |
---|---|---|
|
A type meeting the proto-allocator requirements. | |
|
|
Shall not exit via an exception. |
|
|
Shall not exit via an exception. |
typedef see below type;
Type: If
T
has a nested typeallocator_type
,typename T::allocator_type
. OtherwiseProtoAllocator
.
type get(const T& t, const ProtoAllocator& a = ProtoAllocator()) noexcept;
Returns: If
T
has a nested typeallocator_type
,t.get_allocator()
. Otherwisea
.
template<class T> associated_allocator_t<T> get_associated_allocator(const T& t) noexcept;
Returns:
associated_allocator<T>::get(t)
.
template<class T, class ProtoAllocator> associated_allocator_t<T, ProtoAllocator> get_associated_allocator(const T& t, const ProtoAllocator& a) noexcept;
Returns:
associated_allocator<T, ProtoAllocator>::get(t, a)
.
Class execution_context
implements an extensible, type-safe, polymorphic set of services, indexed
by service type.
namespace std { namespace experimental { namespace net { inline namespace v1 { class execution_context { public: class service; // construct / copy / destroy: execution_context(); execution_context(const execution_context&) = delete; execution_context& operator=(const execution_context&) = delete; virtual ~execution_context(); // execution context operations: void notify_fork(fork_event e); protected: // execution context protected operations: void shutdown() noexcept; void destroy() noexcept; }; // service access: template<class Service> typename Service::key_type& use_service(execution_context& ctx); template<class Service, class... Args> Service& make_service(execution_context& ctx, Args&&... args); template<class Service> bool has_service(const execution_context& ctx) noexcept; class service_already_exists : public logic_error { }; } // inline namespace v1 } // namespace net } // namespace experimental } // namespace std
Access to the services of an execution_context
is via three function templates, use_service<>
, make_service<>
and has_service<>
.
In a call to use_service<Service>()
, the type argument chooses a service.
If the service is not present in an execution_context
,
an object of type Service
is created and added to the execution_context
.
A program can check if an execution_context
implements a particular service with the function template has_service<Service>()
.
Service objects may be explicitly added to an execution_context
using the function template make_service<Service>()
. If the service is already present,
make_service
exits via
an exception of type service_already_exists
.
Once a service reference is obtained from an execution_context
object by calling use_service<>
, that reference remains usable
until a call to destroy()
.
execution_context();
Effects: Creates an object of class
execution_context
which contains no services. [Note: An implementation might preload services of internal service types for its own use. —end note]
~execution_context();
Effects: Destroys an object of class
execution_context
. Performsshutdown()
followed bydestroy()
.
void notify_fork(fork_event e);
Effects: For each service object
svc
in the set:
— Ife == fork_event::prepare
, performssvc->notify_fork(e)
in reverse order of addition to the set.
— Otherwise, performssvc->notify_fork(e)
in order of addition to the set.
void shutdown() noexcept;
Effects: For each service object
svc
in theexecution_context
set, in reverse order of addition to the set, performssvc->shutdown()
. For each service in the set,svc->shutdown()
is called only once irrespective of the number of calls toshutdown
on theexecution_context
.
void destroy() noexcept;
Effects: Destroys each service object in the
execution_context
set, and removes it from the set, in reverse order of addition to the set.
The functions use_service
,
make_service
, and has_service
do not introduce data races
as a result of concurrent calls to those functions from different threads.
template<class Service> typename Service::key_type& use_service(execution_context& ctx);
Effects: If an object of type
Service::key_type
does not already exist in theexecution_context
set identified byctx
, creates an object of typeService
, initialized asService(ctx)
, and adds it to the set.
Returns: A reference to the corresponding service of
ctx
.
Notes: The reference returned remains valid until a call to
destroy
.
template<class Service, class... Args> Service& make_service(execution_context& ctx, Args&&... args);
Requires: A service object of type
Service::key_type
does not already exist in theexecution_context
set identified byctx
.
Effects: Creates an object of type
Service
, initialized asService(ctx, forward<Args>(args)...)
, and adds it to theexecution_context
set identified byctx
.
Throws:
service_already_exists
if a corresponding service object of typeKey
is already present in the set.
Notes: The reference returned remains valid until a call to
destroy
.
template<class Service> bool has_service(const execution_context& ctx) noexcept;
Returns:
true
if an object of typeService::key_type
is present inctx
, otherwisefalse
.
namespace std { namespace experimental { namespace net { inline namespace v1 { class execution_context::service { protected: // construct / copy / destroy: explicit service(execution_context& owner); service(const service&) = delete; service& operator=(const service&) = delete; virtual ~service(); // service observers: execution_context& context() noexcept; private: // service operations: virtual void shutdown() noexcept = 0; virtual void notify_fork(fork_event e) {} execution_context& context_; // exposition only }; } // inline namespace v1 } // namespace net } // namespace experimental } // namespace std explicit service(execution_context& owner);
Postconditions:
std::addressof(context_) == std::addressof(owner)
.
execution_context& context() noexcept;
Returns:
context_
.
The class template is_executor
can be used to detect executor types satisfying the Executor
type requirements.
namespace std { namespace experimental { namespace net { inline namespace v1 { template<class T> struct is_executor; } // inline namespace v1 } // namespace net } // namespace experimental } // namespace std
T
shall be a complete type.
Class template is_executor
is a UnaryTypeTrait (C++Std [meta.rqmts]) with a BaseCharacteristic of
true_type
if the type
T
meets the syntactic requirements
for Executor
,
otherwise false_type
.
namespace std { namespace experimental { namespace net { inline namespace v1 { struct executor_arg_t { }; constexpr executor_arg_t executor_arg = executor_arg_t(); } // inline namespace v1 } // namespace net } // namespace experimental } // namespace std
The executor_arg_t
struct
is an empty structure type used as a unique type to disambiguate constructor
and function overloading. Specifically, types may have constructors with
executor_arg_t
as the first
argument, immediately followed by an argument of a type that satisfies
the Executor requirements.
namespace std { namespace experimental { namespace net { inline namespace v1 { template<class T, class Executor> struct uses_executor; } // inline namespace v1 } // namespace net } // namespace experimental } // namespace std
Remark: Detects whether T
has a nested executor_type
that is convertible from Executor
.
Meets the BinaryTypeTrait
requirements (C++Std [meta.rqmts]). The implementation provides a definition
that is derived from true_type
if a type T::executor_type
exists and is_convertible<Executor,
T::executor_type>::value !=
false
, otherwise it is derived
from false_type
. A program
may specialize this template to derive from true_type
for a user-defined type T
that does not have a nested executor_type
but nonetheless can be constructed with an executor if the first argument
of a constructor has type executor_arg_t
and the second argument has type Executor
.
Uses-executor construction with executor Executor
refers to the construction
of an object obj
of type
T
, using constructor
arguments v1,
v2,
..., vN
of types V1,
V2,
..., VN
,
respectively, and an executor ex
of type Executor
, according
to the following rules:
— if uses_executor<T, Executor>::value
is true
and is_constructible<T, executor_arg_t, Executor, V1, V2, ..., VN>::value
is true
,
then obj
is initialized
as obj(executor_arg,
ex,
v1,
v2,
..., vN)
;
— otherwise, obj
is initialized
as obj(v1, v2, ..., vN)
.
Class template associated_allocator
is an associator for the
Executor
type requirements, with default candidate type system_executor
and default candidate object system_executor()
.
namespace std { namespace experimental { namespace net { inline namespace v1 { template<class T, class Executor = system_executor> struct associated_executor { typedef see below type; static type get(const T& t, const Executor& e = Executor()) noexcept; }; } // inline namespace v1 } // namespace net } // namespace experimental } // namespace std
Specializations of associated_executor
shall satisfy the requirements in the table below. In this table, X
is a specialization of associated_executor
for the template
parameters T
and Executor
; t
is a value of (possibly const) T
;
and e
is an object of type
Executor
.
Table 8. associated_executor specialization requirements
Expression |
Return type |
Note |
---|---|---|
|
A type meeting Executor requirements. | |
|
|
Shall not exit via an exception. |
|
|
Shall not exit via an exception. |
typedef see below type;
Type: If
T
has a nested typeexecutor_type
,typename T::executor_type
. OtherwiseExecutor
.
type get(const T& t, const Executor& e = Executor()) noexcept;
Returns: If
T
has a nested typeexecutor_type
,t.get_executor()
. Otherwisee
.
template<class T> associated_executor_t<T> get_associated_executor(const T& t) noexcept;
Returns:
associated_executor<T>::get(t)
.
template<class T, class Executor> associated_executor_t<T, Executor> get_associated_executor(const T& t, const Executor& ex) noexcept;
Returns:
associated_executor<T, Executor>::get(t, ex)
.
Remarks: This function shall not participate in overload resolution unless
is_executor<Executor>::value
istrue
.
template<class T, class ExecutionContext> associated_executor_t<T, typename ExecutionContext::executor_type> get_associated_executor(const T& t, ExecutionContext& ctx) noexcept;
Returns:
get_associated_executor(t, ctx.get_executor())
.
Remarks: This function shall not participate in overload resolution unless
is_convertible<ExecutionContext&, execution_context&>::value
istrue
.
executor_binder<T, Executor>
binds an executor of type Executor
satisfying Executor
requirements to an object or function of type T
.
namespace std { namespace experimental { namespace net { inline namespace v1 { template<class T, class Executor> class executor_binder { public: // types: typedef T target_type; typedef Executor executor_type; // construct / copy / destroy: executor_binder(T t, const Executor& ex); executor_binder(const executor_binder& other) = default; executor_binder(executor_binder&& other) = default; template<class U, class OtherExecutor> executor_binder(const executor_binder<U, OtherExecutor>& other); template<class U, class OtherExecutor> executor_binder(executor_binder<U, OtherExecutor>&& other); template<class U, class OtherExecutor> executor_binder(executor_arg_t, const Executor& ex, const executor_binder<U, OtherExecutor>& other); template<class U, class OtherExecutor> executor_binder(executor_arg_t, const Executor& ex, executor_binder<U, OtherExecutor>&& other); ~executor_binder(); // executor binder access: T& get() noexcept; const T& get() const noexcept; executor_type get_executor() const noexcept; // executor binder invocation: template<class... Args> result_of_t<T&(Args&&...)> operator()(Args&&... args); template<class... Args> result_of_t<const T&(Args&&...)> operator()(Args&&... args) const; private: Executor ex_; // exposition only T target_; // exposition only }; template<class T, class Executor, class Signature> class async_result<executor_binder<T, Executor>, Signature>; template<class T, class Executor, class ProtoAllocator> struct associated_allocator<executor_binder<T, Executor>, ProtoAllocator>; template<class T, class Executor, class Executor1> struct associated_executor<executor_binder<T, Executor>, Executor1>; } // inline namespace v1 } // namespace net } // namespace experimental } // namespace std
executor_binder(T t, const Executor& ex);
Effects: Initializes
ex_
withex
. Initializestarget_
by performing uses-executor construction, using the constructor argumentstd::move(t)
and the executorex_
.
template<class U, class OtherExecutor> executor_binder(const executor_binder<U, OtherExecutor>& other);
Requires: If
U
is not convertible toT
, or ifOtherExecutor
is not convertible toExecutor
, the program is ill-formed.
Effects: Initializes
ex_
withother.get_executor()
. Initializestarget_
by performing uses-executor construction, using the constructor argumentother.get()
and the executorex_
.
template<class U, class OtherExecutor> executor_binder(executor_binder<U, OtherExecutor>&& other);
Requires: If
U
is not convertible toT
, or ifOtherExecutor
is not convertible toExecutor
, the program is ill-formed.
Effects: Initializes
ex_
withother.get_executor()
. Initializestarget_
by performing uses-executor construction, using the constructor argumentstd::move(other.get())
and the executorex_
.
template<class U, class OtherExecutor> executor_binder(executor_arg_t, const Executor& ex, const executor_binder<U, OtherExecutor>& other);
Requires: If
U
is not convertible toT
the program is ill-formed.
Effects: Initializes
ex_
withex
. Initializestarget_
by performing uses-executor construction, using the constructor argumentother.get()
and the executorex_
.
template<class U, class OtherExecutor> executor_binder(executor_arg_t, const Executor& ex, executor_binder<U, OtherExecutor>&& other);
Requires:
U
isT
or convertible toT
.
Effects: Initializes
ex_
withex
. Initializestarget_
by performing uses-executor construction, using the constructor argumentstd::move(other.get())
and the executorex_
.
T& get() noexcept; const T& get() const noexcept;
Returns:
target_
.
executor_type get_executor() const noexcept;
Returns:
executor_
.
[async.exec.binder.invocation]
template<class... Args> result_of_t<T&(Args&&...)> operator()(Args&&... args); template<class... Args> result_of_t<const T&(Args&&...)> operator()(Args&&... args) const;
Returns:
INVOKE
(get(), forward<Args>(args)...)
(C++Std [func.require]).
[async.exec.binder.async.result]
namespace std { namespace experimental { namespace net { inline namespace v1 { template<class T, class Executor, class Signature> class async_result<executor_binder<T, Executor>, Signature> { public: typedef executor_binder< typename async_result<T, Signature>::completion_handler_type, Executor> completion_handler_type; typedef typename async_result<T, Signature>::return_type return_type; explicit async_result(completion_handler_type& h); async_result(const async_result&) = delete; async_result& operator=(const async_result&) = delete; return_type get(); private: async_result<T, Signature> target_; // exposition only }; } // inline namespace v1 } // namespace net } // namespace experimental } // namespace std explicit async_result(completion_handler_type& h);
Effects: Initializes
target_
astarget_(h.get())
.
return_type get();
Returns:
target_.get()
.
[async.exec.binder.assoc.alloc]
namespace std { namespace experimental { namespace net { inline namespace v1 { template<class T, class Executor, class ProtoAllocator> struct associated_allocator<executor_binder<T, Executor>, ProtoAllocator> { typedef associated_allocator_t<T, ProtoAllocator> type; static type get(const executor_binder<T, Executor>& b, const ProtoAllocator& a = ProtoAllocator()) noexcept; }; } // inline namespace v1 } // namespace net } // namespace experimental } // namespace std static type get(const executor_binder<T, Executor>& b, const ProtoAllocator& a = ProtoAllocator()) noexcept;
Returns:
associated_allocator<T, ProtoAllocator>::get(b.get(), a)
.
[async.exec.binder.assoc.exec]
namespace std { namespace experimental { namespace net { inline namespace v1 { template<class T, class Executor, class Executor1> struct associated_executor<executor_binder<T, Executor>, Executor1> { typedef Executor type; static type get(const executor_binder<T, Executor>& b, const Executor1& e = Executor1()) noexcept; }; } // inline namespace v1 } // namespace net } // namespace experimental } // namespace std static type get(const executor_binder<T, Executor>& b, const Executor1& e = Executor1()) noexcept;
Returns:
b.get_executor()
.
template<class Executor, class T> executor_binder<decay_t<T>, Executor> bind_executor(const Executor& ex, T&& t);
Returns:
executor_binder<decay_t<T>, Executor>(forward<T>(t), ex)
.
Remarks: This function shall not participate in overload resolution unless
is_executor<Executor>::value
istrue
.
template<class ExecutionContext, class CompletionToken> executor_binder<decay_t<T>, typename ExecutionContext::executor_type> bind_executor(ExecutionContext& ctx, T&& t);
Returns:
bind_executor(ctx.get_executor(), forward<T>(t))
.
Remarks: This function shall not participate in overload resolution unless
is_convertible<ExecutionContext&, execution_context&>::value
istrue
.
namespace std { namespace experimental { namespace net { inline namespace v1 { template<class Executor> class executor_work_guard { public: // types: typedef Executor executor_type; // construct / copy / destroy: explicit executor_work_guard(const executor_type& ex) noexcept; executor_work_guard(const executor_work_guard& other) noexcept; executor_work_guard(executor_work_guard&& other) noexcept; executor_work_guard& operator=(const executor_work_guard&) = delete; ~executor_work_guard(); // executor work guard observers: executor_type get_executor() const noexcept; bool owns_work() const noexcept; // executor work guard modifiers: void reset() noexcept; private: Executor ex_; // exposition only bool owns_; // exposition only }; } // inline namespace v1 } // namespace net } // namespace experimental } // namespace std
[async.exec.work.guard.members]
explicit executor_work_guard(const executor_type& ex) noexcept;
Effects: Initializes
ex_
withex
, and then performsex_.on_work_started()
.
Postconditions:
ex == ex_
andowns_ == true
.
executor_work_guard(const executor_work_guard& other) noexcept;
Effects: Initializes
ex_
withother.ex_
. Ifother.owns_ == true
, performsex_.on_work_started()
.
Postconditions:
ex_ == other.ex_
andowns_ == other.owns_
.
executor_work_guard(executor_work_guard&& other) noexcept;
Effects: Initializes
ex_
withstd::move(other.ex_)
andowns_
withother.owns_
, and setsother.owns_
tofalse
.
~executor_work_guard();
Effects: If
owns_
istrue
, performsex_.on_work_finished()
.
executor_type get_executor() const noexcept;
Returns:
ex_
.
bool owns_work() const noexcept;
Returns:
owns_
.
void reset() noexcept;
Effects: If
owns_
istrue
, performsex_.on_work_finished()
.
Postconditions:
owns_ == false
.
template<class Executor> executor_work_guard<Executor> make_work_guard(const Executor& ex);
Returns:
executor_work_guard<Executor>(ex)
.
Remarks: This function shall not participate in overload resolution unless
is_executor<Executor>::value
istrue
.
template<class ExecutionContext> executor_work_guard<typename ExecutionContext::executor_type> make_work_guard(ExecutionContext& ctx);
Returns:
make_work_guard(ctx.get_executor())
.
Remarks: This function shall not participate in overload resolution unless
is_convertible<ExecutionContext&, execution_context&>::value
istrue
.
template<class T> executor_work_guard<associated_executor_t<T>> make_work_guard(const T& t);
Returns:
make_work_guard(get_associated_executor(t))
.
Remarks: This function shall not participate in overload resolution unless
is_executor<T>::value
isfalse
andis_convertible<T&, execution_context&>::value
isfalse
.
template<class T, class U> auto make_work_guard(const T& t, U&& u) -> decltype(make_work_guard(get_associated_executor(t, forward<U>(u))));
Returns:
make_work_guard(get_associated_executor(t, forward<U>(u)))
.
Class system_executor
represents
a set of rules where function objects are permitted to execute on any thread.
namespace std { namespace experimental { namespace net { inline namespace v1 { class system_executor { public: // constructors: system_executor() {} // executor operations: system_context& context() noexcept; void on_work_started() noexcept {} void on_work_finished() noexcept {} template<class Func, class ProtoAllocator> void dispatch(Func&& f, const ProtoAllocator& a); template<class Func, class ProtoAllocator> void post(Func&& f, const ProtoAllocator& a); template<class Func, class ProtoAllocator> void defer(Func&& f, const ProtoAllocator& a); }; bool operator==(const system_executor&, const system_executor&) noexcept; bool operator!=(const system_executor&, const system_executor&) noexcept; } // inline namespace v1 } // namespace net } // namespace experimental } // namespace std
Class system_executor
satisfies
the Destructible
(C++Std
[destructible]), DefaultConstructible
(C++Std [defaultconstructible]), and Executor
type requirements.
To satisfy the Executor
requirements for the post
and defer
member functions,
the system executor may create thread
objects to run the submitted function objects. These thread
objects are collectively referred to as system threads.
system_context& context() noexcept;
Returns: A reference to an object with static storage duration. All calls to this function return references to the same object.
template<class Func, class ProtoAllocator> void dispatch(Func&& f, const ProtoAllocator& a);
Effects: Equivalent to
DECAY_COPY
(forward<Func>(f))()
(C++Std [thread.decaycopy]).
template<class Func, class ProtoAllocator> void post(Func&& f, const ProtoAllocator& a); template<class Func, class ProtoAllocator> void defer(Func&& f, const ProtoAllocator& a);
Effects: If
context().stopped() == false
, creates an objectf1
initialized withDECAY_COPY
(forward<Func>(f))
, and callsf1
as if in a thread of execution represented by athread
object. Any exception propagated from the execution ofDECAY_COPY
(forward<Func>(f))()
results in a call tostd::terminate
.
[async.system.exec.comparisons]
bool operator==(const system_executor&, const system_executor&) noexcept;
Returns:
true
.
bool operator!=(const system_executor&, const system_executor&) noexcept;
Returns:
false
.
Class system_context
implements
the execution context associated with system_executor
objects.
namespace std { namespace experimental { namespace net { inline namespace v1 { class system_context : public execution_context { public: // types: typedef system_executor executor_type; // construct / copy / destroy: system_context() = delete; system_context(const system_context&) = delete; system_context& operator=(const system_context&) = delete; ~system_context(); // system_context operations: executor_type get_executor() noexcept; void stop(); bool stopped() const noexcept; void join(); }; } // inline namespace v1 } // namespace net } // namespace experimental } // namespace std
The class system_context
satisfies the ExecutionContext
type requirements.
The system_context
member
functions get_executor
,
stop
, and stopped
, and the system_executor
copy constructors, member functions and comparison operators, do not introduce
data races as a result of concurrent calls to those functions from different
threads of execution.
~system_context();
Effects: Performs
stop()
followed byjoin()
.
executor_type get_executor() noexcept;
Returns:
system_executor()
.
void stop();
Effects: Signals all system threads to exit as soon as possible. If a system thread is currently executing a function object, the thread will exit only after completion of that function object. Returns without waiting for the system threads to complete.
Postconditions:
stopped() == true
.
bool stopped() const noexcept;
Returns:
true
if thesystem_context
has been stopped by a prior call tostop
.
void join();
Effects: Blocks the calling thread (C++Std [defns.block]) until all system threads have completed.
Synchronization: The completion of each system thread synchronizes with (C++Std [intro.multithread]) the corresponding successful
join()
return.
An exception of type bad_executor
is thrown by executor
member
functions dispatch
, post
, and defer
when the executor object has no target.
namespace std { namespace experimental { namespace net { inline namespace v1 { class bad_executor : public exception { public: // constructor: bad_executor() noexcept; }; } // inline namespace v1 } // namespace net } // namespace experimental } // namespace std bad_executor() noexcept;
Effects: constructs a
bad_executor
object.
Postconditions:
what()
returns an implementation-defined NTBS.
The executor
class provides
a polymorphic wrapper for types that satisfy the Executor
requirements.
namespace std { namespace experimental { namespace net { inline namespace v1 { class executor { public: // construct / copy / destroy: executor() noexcept; executor(nullptr_t) noexcept; executor(const executor& e) noexcept; executor(executor&& e) noexcept; template<class Executor> executor(Executor e); template<class Executor, class ProtoAllocator> executor(allocator_arg_t, const ProtoAllocator& a, Executor e); executor& operator=(const executor& e) noexcept; executor& operator=(executor&& e) noexcept; executor& operator=(nullptr_t) noexcept; template<class Executor> executor& operator=(Executor e); ~executor(); // executor modifiers: void swap(executor& other) noexcept; template<class Executor, class ProtoAllocator> void assign(Executor e, const ProtoAllocator& a); // executor operations: execution_context& context() noexcept; void on_work_started() noexcept; void on_work_finished() noexcept; template<class Func, class ProtoAllocator> void dispatch(Func&& f, const ProtoAllocator& a); template<class Func, class ProtoAllocator> void post(Func&& f, const ProtoAllocator& a); template<class Func, class ProtoAllocator> void defer(Func&& f, const ProtoAllocator& a); // executor capacity: explicit operator bool() const noexcept; // executor target access: const type_info& target_type() const noexcept; template<class Executor> Executor* target() noexcept; template<class Executor> const Executor* target() const noexcept; }; template<> struct is_executor<executor> : true_type {}; // executor comparisons: bool operator==(const executor& a, const executor& b) noexcept; bool operator==(const executor& e, nullptr_t) noexcept; bool operator==(nullptr_t, const executor& e) noexcept; bool operator!=(const executor& a, const executor& b) noexcept; bool operator!=(const executor& e, nullptr_t) noexcept; bool operator!=(nullptr_t, const executor& e) noexcept; // executor specialized algorithms: void swap(executor& a, executor& b) noexcept; } // inline namespace v1 } // namespace net } // namespace experimental template<class Allocator> struct uses_allocator<experimental::net::v1::executor, Allocator> : true_type {}; } // namespace std
Class executor
meets the
requirements of Executor
,
DefaultConstructible
(C++Std
[defaultconstructible]), and CopyAssignable
(C++Std [copyassignable]).
[Note: To meet the noexcept
requirements for executor copy constructors and move constructors, implementations
may share a target between two or more executor
objects. —end note]
The target is the executor object that is held by the wrapper.
executor() noexcept;
Postconditions:
!*this
.
executor(nullptr_t) noexcept;
Postconditions:
!*this
.
executor(const executor& e) noexcept;
Postconditions:
!*this
if!e
; otherwise,*this
targetse.target()
or a copy ofe.target()
.
executor(executor&& e) noexcept;
Effects: If
!e
,*this
has no target; otherwise, movese.target()
or move-constructs the target ofe
into the target of*this
, leavinge
in a valid state with an unspecified value.
template<class Executor> executor(Executor e);
Effects:
*this
targets a copy ofe
initialized withstd::move(e)
.
template<class Executor, class ProtoAllocator> executor(allocator_arg_t, const ProtoAllocator& a, Executor e);
Effects:
*this
targets a copy ofe
initialized withstd::move(e)
.
A copy of the allocator argument is used to allocate memory, if necessary, for the internal data structures of the constructed
executor
object.
executor& operator=(const executor& e) noexcept;
Effects:
executor(e).swap(*this)
.
Returns:
*this
.
executor& operator=(executor&& e) noexcept;
Effects: Replaces the target of
*this
with the target ofe
, leavinge
in a valid state with an unspecified value.
Returns:
*this
.
executor& operator=(nullptr_t) noexcept;
Effects:
executor(nullptr).swap(*this)
.
Returns:
*this
.
template<class Executor> executor& operator=(Executor e);
Effects:
executor(std::move(e)).swap(*this)
.
Returns:
*this
.
~executor();
Effects: If
*this != nullptr
, releases shared ownership of, or destroys, the target of*this
.
void swap(executor& other) noexcept;
Effects: Interchanges the targets of
*this
andother
.
template<class Executor, class ProtoAllocator> void assign(Executor e, const ProtoAllocator& a);
Effects:
executor(allocator_arg, a, std::move(e)).swap(*this)
.
execution_context& context() noexcept;
Requires:
*this != nullptr
.
Returns:
e.context()
, wheree
is the target object of*this
.
void on_work_started() noexcept;
Requires:
*this != nullptr
.
Effects:
e.on_work_started()
, wheree
is the target object of*this
.
void on_work_finished() noexcept;
Requires:
*this != nullptr
.
Effects:
e.on_work_finished()
, wheree
is the target object of*this
.
template<class Func, class ProtoAllocator> void dispatch(Func&& f, const ProtoAllocator& a);
Let
e
be the target object of*this
. Leta1
be the allocator that was specified when the target was set. Letfd
be the result ofDECAY_COPY(f)
(C++Std [thread.decaycopy]).
Effects:
e.dispatch(g, a1)
, whereg
is a function object of unspecified type that, when called asg()
, performsfd()
. The allocatora
is used to allocate any memory required to implementg
.
template<class Func, class ProtoAllocator> void post(Func&& f, const ProtoAllocator& a);
Let
e
be the target object of*this
. Leta1
be the allocator that was specified when the target was set. Letfd
be the result ofDECAY_COPY(f)
.
Effects:
e.post(g, a1)
, whereg
is a function object of unspecified type that, when called asg()
, performsfd()
. The allocatora
is used to allocate any memory required to implementg
.
template<class Func, class ProtoAllocator> void defer(Func&& f, const ProtoAllocator& a);
Let
e
be the target object of*this
. Leta1
be the allocator that was specified when the target was set. Letfd
be the result ofDECAY_COPY(f)
.
Effects:
e.defer(g, a1)
, whereg
is a function object of unspecified type that, when called asg()
, performsfd()
. The allocatora
is used to allocate any memory required to implementg
.
explicit operator bool() const noexcept;
Returns:
true
if*this
has a target, otherwisefalse
.
const type_info& target_type() const noexcept;
Returns: If
*this
has a target of typeT
,typeid(T)
; otherwise,typeid(void)
.
template<class Executor> Executor* target() noexcept; template<class Executor> const Executor* target() const noexcept;
Returns: If
target_type() == typeid(Executor)
a pointer to the stored executor target; otherwise a null pointer value.
bool operator==(const executor& a, const executor& b) noexcept;
Returns:
—true
if!a
and!b
;
—true
ifa
andb
share a target;
—true
ife
andf
are the same type ande == f
, wheree
is the target ofa
andf
is the target ofb
;
— otherwisefalse
.
bool operator==(const executor& e, nullptr_t) noexcept; bool operator==(nullptr_t, const executor& e) noexcept;
Returns:
!e
.
bool operator!=(const executor& a, const executor& b) noexcept;
Returns:
!(a == b)
.
bool operator!=(const executor& e, nullptr_t) noexcept; bool operator!=(nullptr_t, const executor& e) noexcept;
Returns:
(bool) e
.
void swap(executor& a, executor& b) noexcept;
Effects:
a.swap(b)
.
template<class CompletionToken> DEDUCED dispatch(CompletionToken&& token);
Effects:
— Constructs an objectcompletion
of typeasync_completion<CompletionToken, void()>
, initialized withforward<CompletionToken>(token)
.
— Performsex.dispatch(std::move(completion.completion_handler), alloc)
, whereex
is the result ofget_associated_executor(completion.completion_handler)
, andalloc
is the result ofget_associated_allocator(completion.completion_handler)
.
Returns:
completion.result.get()
.
template<class Executor, class CompletionToken> DEDUCED dispatch(const Executor& ex, CompletionToken&& token);
Effects:
— Constructs an objectcompletion
of typeasync_completion<CompletionToken, void()>
, initialized withforward<CompletionToken>(token)
.
— Constructs a function objectf
containing as members:
• a copy of the completion handlerh
, initialized withstd::move(completion.completion_handler)
,
• anexecutor_work_guard
objectw
for the completion handler's associated executor, initialized withmake_work_guard(h)
,
and where the effect off()
is:
•w.get_executor().dispatch(std::move(h), alloc)
, wherealloc
is the result ofget_associated_allocator(h)
, followed by
•w.reset()
.
— Performsex.dispatch(std::move(f), alloc)
, wherealloc
is the result ofget_associated_allocator(completion.completion_handler)
prior to the construction off
.
Returns:
completion.result.get()
.
Remarks: This function shall not participate in overload resolution unless
is_executor<Executor>::value
istrue
.
template<class ExecutionContext, class CompletionToken> DEDUCED dispatch(ExecutionContext& ctx, CompletionToken&& token);
Returns:
std::experimental::net::dispatch(ctx.get_executor(), forward<CompletionToken>(token))
.
Remarks: This function shall not participate in overload resolution unless
is_convertible<ExecutionContext&, execution_context&>::value
istrue
.
[Note: The function post
satisfies the requirements for an asynchronous
operation. —end note]
template<class CompletionToken> DEDUCED post(CompletionToken&& token);
Effects:
— Constructs an objectcompletion
of typeasync_completion<CompletionToken, void()>
, initialized withforward<CompletionToken>(token)
.
— Performsex.post(std::move(completion.completion_handler), alloc)
, whereex
is the result ofget_associated_executor(completion.completion_handler)
, andalloc
is the result ofget_associated_allocator(completion.completion_handler)
.
Returns:
completion.result.get()
.
template<class Executor, class CompletionToken> DEDUCED post(const Executor& ex, CompletionToken&& token);
Effects:
— Constructs an objectcompletion
of typeasync_completion<CompletionToken, void()>
, initialized withforward<CompletionToken>(token)
.
— Constructs a function objectf
containing as members:
• a copy of the completion handlerh
, initialized withstd::move(completion.completion_handler)
,
• anexecutor_work_guard
objectw
for the completion handler's associated executor, initialized withmake_work_guard(h)
,
and where the effect off()
is:
•w.get_executor().dispatch(std::move(h), alloc)
, wherealloc
is the result ofget_associated_allocator(h)
, followed by
•w.reset()
.
— Performsex.post(std::move(f), alloc)
, wherealloc
is the result ofget_associated_allocator(completion.completion_handler)
prior to the construction off
.
Returns:
completion.result.get()
.
Remarks: This function shall not participate in overload resolution unless
is_executor<Executor>::value
istrue
.
template<class ExecutionContext, class CompletionToken> DEDUCED post(ExecutionContext& ctx, CompletionToken&& token);
Returns:
std::experimental::net::post(ctx.get_executor(), forward<CompletionToken>(token))
.
Remarks: This function shall not participate in overload resolution unless
is_convertible<ExecutionContext&, execution_context&>::value
istrue
.
template<class CompletionToken> DEDUCED defer(CompletionToken&& token);
Effects:
— Constructs an objectcompletion
of typeasync_completion<CompletionToken, void()>
, initialized withforward<CompletionToken>(token)
.
— Performsex.defer(std::move(completion.completion_handler), alloc)
, whereex
is the result ofget_associated_executor(completion.completion_handler)
, andalloc
is the result ofget_associated_allocator(completion.completion_handler)
.
Returns:
completion.result.get()
.
template<class Executor, class CompletionToken> DEDUCED defer(const Executor& ex, CompletionToken&& token);
Effects:
— Constructs an objectcompletion
of typeasync_completion<CompletionToken, void()>
, initialized withforward<CompletionToken>(token)
.
— Constructs a function objectf
containing as members:
• a copy of the completion handlerh
, initialized withstd::move(completion.completion_handler)
,
• anexecutor_work_guard
objectw
for the completion handler's associated executor, initialized withmake_work_guard(h)
,
and where the effect off()
is:
•w.get_executor().dispatch(std::move(h), alloc)
, wherealloc
is the result ofget_associated_allocator(h)
, followed by
•w.reset()
.
— Performsex.defer(std::move(f), alloc)
, wherealloc
is the result ofget_associated_allocator(completion.completion_handler)
prior to the construction off
.
Returns:
completion.result.get()
.
Remarks: This function shall not participate in overload resolution unless
is_executor<Executor>::value
istrue
.
template<class ExecutionContext, class CompletionToken> DEDUCED defer(ExecutionContext& ctx, CompletionToken&& token);
Returns:
std::experimental::net::defer(ctx.get_executor(), forward<CompletionToken>(token))
.
Remarks: This function shall not participate in overload resolution unless
is_convertible<ExecutionContext&, execution_context&>::value
istrue
.
The class template strand
is a wrapper around an object of type Executor
satisfying the Executor requirements.
namespace std { namespace experimental { namespace net { inline namespace v1 { template<class Executor> class strand { public: // types: typedef Executor inner_executor_type; // construct / copy / destroy: strand(); explicit strand(Executor ex); template<class ProtoAllocator> strand(allocator_arg_t, const ProtoAllocator& alloc, Executor ex); strand(const strand& other) noexcept; strand(strand&& other) noexcept; template<class OtherExecutor> strand(const strand<OtherExecutor>& other) noexcept; template<class OtherExecutor> strand(strand<OtherExecutor>&& other) noexcept; strand& operator=(const strand& other) noexcept; strand& operator=(strand&& other) noexcept; template<class OtherExecutor> strand& operator=(const strand<OtherExecutor>& other) noexcept; template<class OtherExecutor> strand& operator=(strand<OtherExecutor>&& other) noexcept; ~strand(); // strand operations: inner_executor_type get_inner_executor() const noexcept; bool running_in_this_thread() const noexcept; execution_context& context() noexcept; void on_work_started() noexcept; void on_work_finished() noexcept; template<class Func, class ProtoAllocator> void dispatch(Func&& f, const ProtoAllocator& a); template<class Func, class ProtoAllocator> void post(Func&& f, const ProtoAllocator& a); template<class Func, class ProtoAllocator> void defer(Func&& f, const ProtoAllocator& a); private: Executor inner_ex_; // exposition only }; bool operator==(const strand<Executor>& a, const strand<Executor>& b); bool operator!=(const strand<Executor>& a, const strand<Executor>& b); } // inline namespace v1 } // namespace net } // namespace experimental } // namespace std
strand<Executor>
satisfies the Executor
requirements.
A strand provides guarantees of ordering and non-concurrency. Given:
— strand objects s1
and
s2
such that s1 == s2
— a function object f1
added
to the strand s1
using
post
or defer
,
or using dispatch
when
s1.running_in_this_thread()
== false
— a function object f2
added
to the strand s2
using
post
or defer
,
or using dispatch
when
s2.running_in_this_thread()
== false
then the implementation invokes f1
and f2
such that:
— the invocation of f1
is
not concurrent with the invocation of f2
— the invocation of f1
synchronizes
with the invocation of f2
.
Furthermore, if the addition of f1
happens before the addition of f2
,
then the invocation of f1
happens before the invocation of f2
.
All member functions, except for the assignment operators and the destructor,
do not introduce data races on *this
, including its ordered, non-concurrent
state. Additionally, constructors and assignment operators do not introduce
data races on lvalue arguments.
If any function f
executed
by the strand throws an exception, the subsequent strand state is as if
f
had exited without throwing
an exception.
strand();
Effects: Constructs an object of class
strand<Executor>
that represents a unique ordered, non-concurrent state. Initializesinner_ex_
withinner_ex_()
.
Remarks: This overload shall not participate in overload resolution unless
Executor
satisfies theDefaultConstructible
requirements (C++Std [defaultconstructible]).
explicit strand(Executor ex);
Effects: Constructs an object of class
strand<Executor>
that represents a unique ordered, non-concurrent state. Initializesinner_ex_
asinner_ex_(ex)
.
template<class ProtoAllocator> strand(allocator_arg_t, const ProtoAllocator& a, Executor ex);
Effects: Constructs an object of class
strand<Executor>
that represents a unique ordered, non-concurrent state. Initializesinner_ex_
asinner_ex_(ex)
. A copy of the allocator argumenta
is used to allocate memory, if necessary, for the internal data structures of the constructed strand object.
strand(const strand& other) noexcept;
Effects: Initializes
inner_ex_
asinner_ex_(other.inner_ex_)
.
Postconditions:
—*this == other
—get_inner_executor() == other.get_inner_executor()
strand(strand&& other) noexcept;
Effects: Initializes
inner_ex_
withinner_ex_(std::move(other.inner_ex_))
.
Postconditions:
—*this
is equal to the prior value ofother
—get_inner_executor() == other.get_inner_executor()
template<class OtherExecutor> strand(const strand<OtherExecutor>& other) noexcept;
Requires:
OtherExecutor
is convertible toExecutor
.
Effects: Initializes
inner_ex_
withinner_ex_(other.inner_ex_)
.
Postconditions:
*this == other
.
template<class OtherExecutor> strand(strand<OtherExecutor>&& other) noexcept;
Requires:
OtherExecutor
is convertible toExecutor
.
Effects: Initializes
inner_ex_
withinner_ex_(std::move(other.inner_ex_))
.
Postconditions:
*this
is equal to the prior value ofother
.
strand& operator=(const strand& other) noexcept;
Requires:
Executor
isCopyAssignable
(C++Std [copyassignable]).
Postconditions:
—*this == other
—get_inner_executor() == other.get_inner_executor()
Returns:
*this
.
strand& operator=(strand&& other) noexcept;
Requires:
Executor
isMoveAssignable
(C++Std [moveassignable]).
Postconditions:
—*this
is equal to the prior value ofother
—get_inner_executor() == other.get_inner_executor()
Returns:
*this
.
template<class OtherExecutor> strand& operator=(const strand<OtherExecutor>& other) noexcept;
Requires:
OtherExecutor
is convertible toExecutor
.Executor
isCopyAssignable
(C++Std [copyassignable]).
Effects: Assigns
other.inner_ex_
toinner_ex_
.
Postconditions:
*this == other
.
Returns:
*this
.
template<class OtherExecutor> strand& operator=(strand<OtherExecutor>&& other) noexcept;
Requires:
OtherExecutor
is convertible toExecutor
.Executor
isMoveAssignable
(C++Std [moveassignable]).
Effects: Assigns
std::move(other.inner_ex_)
toinner_ex_
.
Postconditions:
*this
is equal to the prior value ofother
.
Returns:
*this
.
~strand();
Effects: Destroys an object of class
strand<Executor>
. After this destructor completes, objects that were added to the strand but have not yet been executed will be executed in a way that meets the guarantees of ordering and non-concurrency.
inner_executor_type get_inner_executor() const noexcept;
Returns:
inner_ex_
.
bool running_in_this_thread() const noexcept;
Returns:
true
if the current thread of execution is running a function that was submitted to the strand, or to any other strand objects
such thats == *this
, usingdispatch
,post
ordefer
; otherwisefalse
. [Note: That is, the current thread of execution's call chain includes a function that was submitted to the strand. —end note]
execution_context& context() noexcept;
Returns:
inner_ex_.context()
.
void on_work_started() noexcept;
Effects: Calls
inner_ex_.on_work_started()
.
void on_work_finished() noexcept;
Effects: Calls
inner_ex_.on_work_finished()
.
template<class Func, class ProtoAllocator> void dispatch(Func&& f, const ProtoAllocator& a);
Effects: If
running_in_this_thread() == true
, callsDECAY_COPY
(forward<Func>(f))()
(C++Std [thread.decaycopy]). [Note: Iff
exits via an exception, the exception propagates to the caller ofdispatch()
. —end note] Otherwise, requests invocation off
, as if by forwarding the function objectf
and allocatora
to the executorinner_ex_
, such that the guarantees of ordering and non-concurrency are met.
template<class Func, class ProtoAllocator> void post(Func&& f, const ProtoAllocator& a);
Effects: Requests invocation of
f
, as if by forwarding the function objectf
and allocatora
to the executorinner_ex_
, such that the guarantees of ordering and non-concurrency are met.
template<class Func, class ProtoAllocator> void defer(Func&& f, const ProtoAllocator& a);
Effects: Requests invocation of
f
, as if by forwarding the function objectf
and allocatora
to the executorinner_ex_
, such that the guarantees of ordering and non-concurrency are met.
bool operator==(const strand<Executor>& a, const strand<Executor>& b);
Returns:
true
, if the strand objects share the same ordered, non-concurrent state; otherwisefalse
.
bool operator!=(const strand<Executor>& a, const strand<Executor>& b);
Returns:
!(a == b)
.
The class template use_future_t
defines a set of types that, when passed as a completion
token to an asynchronous operation's initiating function, cause
the result of the asynchronous operation to be delivered via a future (C++Std
[futures.unique_future]).
namespace std { namespace experimental { namespace net { inline namespace v1 { template<class ProtoAllocator = allocator<void>> class use_future_t { public: // use_future_t types: typedef ProtoAllocator allocator_type; // use_future_t members: constexpr use_future_t() noexcept; explicit use_future_t(const allocator_type& a) noexcept; template<class OtherProtoAllocator> use_future_t<OtherProtoAllocator> rebind(const OtherProtoAllocator& a) const noexcept; allocator_type get_allocator() const noexcept; template <class F> unspecified operator()(F&& f) const; }; } // inline namespace v1 } // namespace net } // namespace experimental } // namespace std
constexpr use_future_t() noexcept;
Effects: Constructs a
use_future_t
with a default-constructed allocator.
explicit use_future_t(const allocator_type& a) noexcept;
Postconditions:
get_allocator() == a
.
template<class OtherProtoAllocator> use_future_t<OtherProtoAllocator> rebind(const OtherProtoAllocator& a) const noexcept;
Returns: A
use_future_t
object whereget_allocator() == a
.
allocator_type get_allocator() const noexcept;
Returns: The associated allocator object.
template <class F> unspecified operator()(F&& f) const;
Let
T
be a completion token type. LetH
be a completion handler type and leth
be an object of typeH
. LetFD
be the typedecay_t<F>
and letfd
be an lvalue of typeFD
constructed withforward<F>(f)
. LetArgs
...
by the completion signature ofH
and letN
besizeof
...(Args)
. Leti
be in the range [0
,N
) and letAi
be thei
th type inArgs
. Letai
be thei
th argument associated withAi
.
Returns: A completion token
t
of typeT
.
Remarks: The return type
T
satisfies theDestructible
(C++Std [destructible]) andMoveConstructible
(C++Std [moveconstructible]) requirements.
The object
h
of typeH
is an asynchronous provider with an associated shared state (C++Std [futures.state]). The effect ofh(
is to atomically store the result ofa0
, ...,aN-1
)INVOKE(fd, forward<
(C++Std [func.require]) in the shared state and make the shared state ready. IfA0
>(a0
), ..., forward<AN-1
>(aN-1
))fd
exits via an exception then that exception is atomically stored in the shared state and the shared state is made ready.
The implementation provides a partial specialization
template <class Result, class
... Args> async_result<T, Result(Args
...)>
such that:
— the nested typedefcompletion_handler_type
is a typeH
;
— the nested typedefreturn_type
isfuture<result_of_t<FD(decay_t<Args>
...)>>
; and
— when an objectr1
of typeasync_result<T, Result(Args
...)>
is constructed fromh
, the expressionr1.get()
returns a future with the same shared state ash
.
For any executor type
E
, the associated object for the associatorassociated_executor<H, E>
is an executor where, for function objects executed using the executor'sdispatch()
,post()
ordefer()
functions, any exception thrown is caught by a function object and stored in the associated shared state.
template<class ProtoAllocator, class Result, class... Args> class async_result<use_future_t<ProtoAllocator>, Result(Args...)> { typedef see below completion_handler_type; typedef see below return_type; explicit async_result(completion_handler_type& h); async_result(const async_result&) = delete; async_result& operator=(const async_result&) = delete; return_type get(); };
Let R
be the type async_result<use_future_t<ProtoAllocator>,
Result(Args...)>
.
Let F
be the nested function
object type R::completion_handler_type
.
An object t1
of type
F
is an asynchronous
provider with an associated shared state (C++Std [futures.state]). The
type F
provides F::operator()
such that the expression t1(declval<Args>()...)
is well formed.
The implementation specializes associated_executor
for F
. For function objects
executed using the associated executor's dispatch()
, post()
or defer()
functions, any exception thrown is
caught by the executor and stored in the associated shared state.
For any executor type E
,
the associated object for the associator associated_executor<F, E>
is an executor where, for function
objects executed using the executor's dispatch()
, post()
or defer()
functions, any exception thrown by
a function object is caught by the executor and stored in the associated
shared state.
When an object r1
of
type R
is constructed
from t1
, the expression
r1.get()
returns a future with the same shared state as t1
.
The type of R::return_type
and the effects of F::operator()
are defined in the table below. After establishing these effects, F::operator()
makes the shared state ready. In this table, N
is
the value of sizeof...(Args)
;
let i
be in the range [0
,N
)
and let Ti
be the i
th
type in Args
; let Ui
be decay_t<Ti>
for each
type Ti
in Args
;
let Ai
be the deduced type of
the i
th argument to F::operator()
;
and let ai
be the i
th
argument to F::operator()
.
Table 9. async_result<use_future_t<ProtoAllocator>, Result(Args...)> semantics
|
|
|
|
---|---|---|---|
0 |
|
None. | |
1 |
|
|
If |
1 |
|
|
If |
1 |
all other types |
|
Atomically stores |
2 |
|
|
If |
2 |
|
|
If |
2 |
all other types |
|
Atomically stores |
>2 |
|
|
If |
>2 |
|
|
If |
>2 |
all other types |
|
Atomically stores |
[async.packaged.task.specializations]
namespace std { namespace experimental { namespace net { inline namespace v1 { template<class Result, class... Args, class Signature> class async_result<packaged_task<Result(Args...)>, Signature> { public: typedef packaged_task<Result(Args...)> completion_handler_type; typedef future<Result> return_type; explicit async_result(completion_handler_type& h); async_result(const async_result&) = delete; async_result& operator=(const async_result&) = delete; return_type get(); private: return_type future_; // exposition only }; } // inline namespace v1 } // namespace net } // namespace experimental } // namespace std explicit async_result(completion_handler_type& h);
Effects: Initializes
future_
withh.get_future()
.
return_type get();
Returns:
std::move(future_)
.
namespace std { namespace experimental { namespace net { inline namespace v1 { class io_context; } // inline namespace v1 } // namespace net } // namespace experimental } // namespace std
namespace std { namespace experimental { namespace net { inline namespace v1 { class io_context : public execution_context { public: // types: class executor_type; typedef implementation defined count_type; // construct / copy / destroy: io_context(); explicit io_context(int concurrency_hint); io_context(const io_context&) = delete; io_context& operator=(const io_context&) = delete; // io_context operations: executor_type get_executor() noexcept; count_type run(); template<class Rep, class Period> count_type run_for(const chrono::duration<Rep, Period>& rel_time); template<class Clock, class Duration> count_type run_until(const chrono::time_point<Clock, Duration>& abs_time); count_type run_one(); template<class Rep, class Period> count_type run_one_for(const chrono::duration<Rep, Period>& rel_time); template<class Clock, class Duration> count_type run_one_until(const chrono::time_point<Clock, Duration>& abs_time); count_type poll(); count_type poll_one(); void stop(); bool stopped() const noexcept; void restart(); }; } // inline namespace v1 } // namespace net } // namespace experimental } // namespace std
The class io_context
satisfies
the ExecutionContext type
requirements.
count_type
is an implementation-defined
unsigned integral type of at least 32 bits.
The io_context
member functions
run
, run_for
,
run_until
, run_one
, run_one_for
,
run_one_until
, poll
, and poll_one
are collectively referred to as the run functions.
The run functions must be called for the io_context
to perform asynchronous
operations on behalf of a C++ program. Notification that an asynchronous
operation has completed is delivered by execution of the associated completion
handler function object, as determined by the requirements for asynchronous
operations.
For an object of type io_context
,
outstanding work is defined as the sum of:
— the total number of calls to the on_work_started
function, less the total number of calls to the on_work_finished
function, to any executor of the io_context
.
— the number of function objects that have been added to the io_context
via any executor of the io_context
, but not yet executed; and
— the number of function objects that are currently being executed by the
io_context
.
If at any time the outstanding work falls to 0
,
the io_context
is stopped
as if by stop()
.
The io_context
member functions
get_executor
, stop
, and stopped
,
the run functions, and the io_context::executor_type
copy constructors, member functions and comparison operators, do not introduce
data races as a result of concurrent calls to those functions from different
threads of execution. [Note: The restart
member function is excluded from these thread safety requirements. —end
note]
[io_context.io_context.members]
io_context(); explicit io_context(int concurrency_hint);
Effects: Creates an object of class
io_context
.
Remarks: The
concurrency_hint
parameter is a suggestion to the implementation on the number of threads that should process asynchronous operations and execute function objects.
executor_type get_executor() noexcept;
Returns: An executor that may be used for submitting function objects to the
io_context
.
count_type run();
Requires: Must not be called from a thread that is currently calling a run function.
Effects: Equivalent to:
count_type n = 0; while (run_one()) if (n != numeric_limits<count_type>::max()) ++n;
Returns:
n
.
template<class Rep, class Period> count_type run_for(const chrono::duration<Rep, Period>& rel_time);
Effects: Equivalent to:
return run_until(chrono::steady_clock::now() + rel_time);
template<class Clock, class Duration> count_type run_until(const chrono::time_point<Clock, Duration>& abs_time);
Effects: Equivalent to:
count_type n = 0; while (run_one_until(abs_time)) if (n != numeric_limits<count_type>::max()) ++n;
Returns:
n
.
count_type run_one();
Requires: Must not be called from a thread that is currently calling a run function.
Effects: If the
io_context
object has no outstanding work, performsstop()
. Otherwise, blocks while the io_context has outstanding work, or until theio_context
is stopped, or until one function object has been executed.
If an executed function object throws an exception, the exception propagates to the caller of
run_one()
. Theio_context
state is as if the function object had returned normally.
Returns:
1
if a function object was executed, otherwise0
.
Notes: This function may invoke additional function objects through nested calls to the
io_context
executor'sdispatch
member function. These do not count towards the return value.
template<class Rep, class Period> count_type run_one_for(const chrono::duration<Rep, Period>& rel_time);
Effects: Equivalent to:
return run_one_until(chrono::steady_clock::now() + rel_time);
template<class Clock, class Duration> count_type run_one_until(const chrono::time_point<Clock, Duration>& abs_time);
Effects: If the
io_context
object has no outstanding work, performsstop()
. Otherwise, blocks while the io_context has outstanding work, or until the expiration of the absolute timeout (C++Std [thread.req.timing]) specified byabs_time
, or until theio_context
is stopped, or until one function object has been executed.
If an executed function object throws an exception, the exception propagates to the caller of
run_one()
. Theio_context
state is as if the function object had returned normally.
Returns:
1
if a function object was executed, otherwise0
.
Notes: This function may invoke additional function objects through nested calls to the
io_context
executor'sdispatch
member function. These do not count towards the return value.
count_type poll();
Effects: Equivalent to:
count_type n = 0; while (poll_one()) if (n != numeric_limits<count_type>::max()) ++n;
Returns:
n
.
count_type poll_one();
Effects: If the
io_context
object has no outstanding work, performsstop()
. Otherwise, if there is a function object ready for immediate execution, executes it.
If an executed function object throws an exception, the exception propagates to the caller of
poll_one()
. Theio_context
state is as if the function object had returned normally.
Returns:
1
if a function object was invoked, otherwise0
.
Notes: This function may invoke additional function objects through nested calls to the
io_context
executor'sdispatch
member function. These do not count towards the return value.
void stop();
Effects: Stops the
io_context
. Concurrent calls to any run function will end as soon as possible. If a call to a run function is currently executing a function object, the call will end only after completion of that function object. The call tostop()
returns without waiting for concurrent calls to run functions to complete.
Postconditions:
stopped() == true
.
[Note: When
stopped() == true
, subsequent calls to a run function will exit immediately with a return value of0
, without executing any function objects. Anio_context
remains in the stopped state until a call torestart()
. —end note]
bool stopped() const noexcept;
Returns:
true
if theio_context
is stopped.
void restart();
Postconditions:
stopped() == false
.
namespace std { namespace experimental { namespace net { inline namespace v1 { class io_context::executor_type { public: // construct / copy / destroy: executor_type(const executor_type& other) noexcept; executor_type(executor_type&& other) noexcept; executor_type& operator=(const executor_type& other) noexcept; executor_type& operator=(executor_type&& other) noexcept; // executor operations: bool running_in_this_thread() const noexcept; io_context& context() noexcept; void on_work_started() noexcept; void on_work_finished() noexcept; template<class Func, class ProtoAllocator> void dispatch(Func&& f, const ProtoAllocator& a); template<class Func, class ProtoAllocator> void post(Func&& f, const ProtoAllocator& a); template<class Func, class ProtoAllocator> void defer(Func&& f, const ProtoAllocator& a); }; bool operator==(const io_context::executor_type& a, const io_context::executor_type& b) noexcept; bool operator!=(const io_context::executor_type& a, const io_context::executor_type& b) noexcept; template<> struct is_executor<io_context::executor_type> : true_type {}; } // inline namespace v1 } // namespace net } // namespace experimental } // namespace std
io_context::executor_type
is a type satisfying Executor requirements. Objects of
type io_context::executor_type
are associated with an
io_context
, and function
objects submitted using the dispatch
,
post
, or defer
member functions will be executed
by the io_context
from
within a run function.]
executor_type(const executor_type& other) noexcept;
Postconditions:
*this == other
.
executor_type(executor_type&& other) noexcept;
Postconditions:
*this
is equal to the prior value ofother
.
executor_type& operator=(const executor_type& other) noexcept;
Postconditions:
*this == other
.
Returns:
*this
.
executor_type& operator=(executor_type&& other) noexcept;
Postconditions:
*this
is equal to the prior value ofother
.
Returns:
*this
.
bool running_in_this_thread() const noexcept;
Returns:
true
if the current thread of execution is calling a run function of the associatedio_context
object. [Note: That is, the current thread of execution's call chain includes a run function. —end note]
io_context& context() noexcept;
Returns: A reference to the associated
io_context
object.
void on_work_started() noexcept;
Effects: Increment the count of outstanding work associated with the
io_context
.
void on_work_finished() noexcept;
Effects: Decrement the count of outstanding work associated with the
io_context
.
template<class Func, class ProtoAllocator> void dispatch(Func&& f, const ProtoAllocator& a);
Effects: If
running_in_this_thread()
istrue
, callsDECAY_COPY
(forward<Func>(f))()
(C++Std [thread.decaycopy]). [Note: Iff
exits via an exception, the exception propagates to the caller ofdispatch()
. —end note] Otherwise, callspost(forward<Func>(f), a)
.
template<class Func, class ProtoAllocator> void post(Func&& f, const ProtoAllocator& a);
Effects: Adds
f
to theio_context
.
template<class Func, class ProtoAllocator> void defer(Func&& f, const ProtoAllocator& a);
Effects: Adds
f
to theio_context
.
bool operator==(const io_context::executor_type& a, const io_context::executor_type& b) noexcept;
Returns:
addressof(a.context()) == addressof(b.context())
.
bool operator!=(const io_context::executor_type& a, const io_context::executor_type& b) noexcept;
Returns:
!(a == b)
.
[timer] This clause defines components for performing timer operations.
[Example: Performing a synchronous wait operation on a timer:
io_context c; steady_timer t(c); t.expires_after(seconds(5)); t.wait();
—end example]
[Example: Performing an asynchronous wait operation on a timer:
void handler(error_code ec) { ... } ... io_context c; steady_timer t(c); t.expires_after(seconds(5)); t.async_wait(handler); i.run();
—end example]
#include <chrono> namespace std { namespace experimental { namespace net { inline namespace v1 { template<class Clock> struct wait_traits; template<class Clock, class WaitTraits = wait_traits<Clock>> class basic_waitable_timer; typedef basic_waitable_timer<chrono::system_clock> system_timer; typedef basic_waitable_timer<chrono::steady_clock> steady_timer; typedef basic_waitable_timer<chrono::high_resolution_clock> high_resolution_timer; } // inline namespace v1 } // namespace net } // namespace experimental } // namespace std
The basic_waitable_timer
template uses wait traits to allow programs to customize wait
and async_wait
behavior. [Note: Possible uses of wait traits include:
— To enable timers based on non-realtime clocks.
— Determining how
quickly wallclock-based timers respond to system time changes.
— Correcting for errors or rounding timeouts to boundaries.
— Preventing
duration overflow. That is, a program may set a timer's expiry e
to be Clock::max()
(meaning never reached) or Clock::min()
(meaning always in the past). As a result, computing the duration until
timer expiry as e -
Clock::now()
may cause overflow. —end note]
For a type Clock
meeting
the Clock
requirements
(C++Std [time.clock.req]), a type X
meets the WaitTraits
requirements if it satisfies the requirements listed below.
In the table below, t
denotes a (possibly const) value of type Clock::time_point
;
and d
denotes a (possibly
const) value of type Clock::duration
.
Table 10. WaitTraits requirements
expression |
return type |
assertion/note |
---|---|---|
|
|
Returns a |
|
|
Returns a |
namespace std { namespace experimental { namespace net { inline namespace v1 { template<class Clock> struct wait_traits { static typename Clock::duration to_wait_duration( const typename Clock::duration& d); static typename Clock::duration to_wait_duration( const typename Clock::time_point& t); }; } // inline namespace v1 } // namespace net } // namespace experimental } // namespace std
Class template wait_traits
satisfies the WaitTraits
type requirements. Template argument Clock
is a type meeting the Clock
requirements (C++Std [time.clock.req]).
static typename Clock::duration to_wait_duration( const typename Clock::duration& d);
Returns:
d
.
static typename Clock::duration to_wait_duration( const typename Clock::time_point& t);
Returns: Let
now
beClock::now()
. Ifnow + Clock::duration::max()
is beforet
,Clock::duration::max()
; ifnow + Clock::duration::min()
is aftert
,Clock::duration::min()
; otherwise,t - now
.
namespace std { namespace experimental { namespace net { inline namespace v1 { template<class Clock, class WaitTraits = wait_traits<Clock>> class basic_waitable_timer { public: // types: typedef io_context::executor_type executor_type; typedef Clock clock_type; typedef typename clock_type::duration duration; typedef typename clock_type::time_point time_point; typedef WaitTraits traits_type; // construct / copy / destroy: explicit basic_waitable_timer(io_context& ctx); basic_waitable_timer(io_context& ctx, const time_point& t); basic_waitable_timer(io_context& ctx, const duration& d); basic_waitable_timer(const basic_waitable_timer&) = delete; basic_waitable_timer(basic_waitable_timer&& rhs); ~basic_waitable_timer(); basic_waitable_timer& operator=(const basic_waitable_timer&) = delete; basic_waitable_timer& operator=(basic_waitable_timer&& rhs); // basic_waitable_timer operations: executor_type get_executor() noexcept; size_t cancel(); size_t cancel_one(); time_point expiry() const; size_t expires_at(const time_point& t); size_t expires_after(const duration& d); void wait(); void wait(error_code& ec); template<class CompletionToken> DEDUCED async_wait(CompletionToken&& token); }; } // inline namespace v1 } // namespace net } // namespace experimental } // namespace std
Instances of class template basic_waitable_timer
meet the requirements of Destructible
(C++Std [destructible]), MoveConstructible
(C++Std [moveconstructible]), and MoveAssignable
(C++Std [moveassignable]).
explicit basic_waitable_timer(io_context& ctx);
Effects: Equivalent to
basic_waitable_timer(ctx, time_point())
.
basic_waitable_timer(io_context& ctx, const time_point& t);
Postconditions:
—get_executor() == ctx.get_executor()
.
—expiry() == t
.
basic_waitable_timer(io_context& ctx, const duration& d);
Effects: Sets the expiry time as if by calling
expires_after(d)
.
Postconditions:
get_executor() == ctx.get_executor()
.
basic_waitable_timer(basic_waitable_timer&& rhs);
Effects: Move constructs an object of class
basic_waitable_timer<Clock, WaitTraits>
that refers to the state originally represented byrhs
.
Postconditions:
—get_executor()
is equal to the prior value ofrhs.get_executor()
.
—expiry()
returns the same value asrhs.expiry()
prior to the constructor invocation.
—rhs.expiry() == time_point()
.
~basic_waitable_timer();
Effects: Destroys the timer, cancelling any asynchronous wait operations associated with the timer as if by calling
cancel()
.
basic_waitable_timer& operator=(basic_waitable_timer&& rhs);
Effects: Cancels any outstanding asynchronous operations associated with
*this
as if by callingcancel()
, then moves into*this
the state originally represented byrhs
.
Postconditions:
—get_executor()
is equal to the prior value ofrhs.get_executor()
.
—expiry()
returns the same value asrhs.expiry()
prior to the assignment.
—rhs.expiry() == time_point()
.
Returns:
*this
.
executor_type get_executor() noexcept;
Returns: The associated executor.
size_t cancel();
Effects: Causes any outstanding asynchronous wait operations to complete. Completion handlers for canceled operations are passed an error code
ec
such thatec == errc::operation_canceled
yieldstrue
.
Returns: The number of operations that were canceled.
size_t cancel_one();
Effects: Causes the outstanding asynchronous wait operation that was initiated first, if any, to complete as soon as possible. The completion handler for the canceled operation is passed an error code
ec
such thatec == errc::operation_canceled
yieldstrue
.
Returns:
1
if an operation was cancelled, otherwise0
.
time_point expiry() const;
Returns: The expiry time associated with the timer, as previously set using
expires_at()
orexpires_after()
.
size_t expires_at(const time_point& t);
Effects: Cancels outstanding asynchronous wait operations, as if by calling
cancel()
. Sets the expiry time associated with the timer.
Returns: The number of operations that were canceled.
Postconditions:
expiry() == t
.
size_t expires_after(const duration& d);
Returns:
expires_at(clock_type::now() + d)
.
void wait(); void wait(error_code& ec);
Effects: Establishes the postcondition as if by repeatedly blocking the calling thread (C++Std [defns.block]) for the relative time produced by
WaitTraits::to_wait_duration(expiry())
.
Postconditions:
ec || expiry() <= clock_type::now()
.
template<class CompletionToken> DEDUCED async_wait(CompletionToken&& token);
Completion signature:
void(error_code ec)
.
Effects: Initiates an asynchronous wait operation to repeatedly wait for the relative time produced by
WaitTraits::to_wait_duration(e)
, wheree
is a value of typetime_point
such thate <= expiry()
. The completion handler is submitted for execution only when the conditionec || expiry() <= clock_type::now()
yieldstrue
.
[Note: To implement
async_wait
, anio_context
objectctx
may maintain a priority queue for each specialization ofbasic_waitable_timer<Clock, WaitTraits>
for which a timer object was initialized withctx
. Only the time pointe
of the earliest outstanding expiry need be passed toWaitTraits::to_wait_duration(e)
. —end note]
namespace std { namespace experimental { namespace net { inline namespace v1 { enum class stream_errc { eof = implementation defined, not_found = implementation defined }; const error_category& stream_category() noexcept; error_code make_error_code(stream_errc e) noexcept; error_condition make_error_condition(stream_errc e) noexcept; class mutable_buffer; class const_buffer; // buffer type traits: template<class T> is_mutable_buffer_sequence; template<class T> is_const_buffer_sequence; template<class T> is_dynamic_buffer; // buffer sequence access: const mutable_buffer* buffer_sequence_begin(const mutable_buffer& b); const const_buffer* buffer_sequence_begin(const const_buffer& b); const mutable_buffer* buffer_sequence_end(const mutable_buffer& b); const const_buffer* buffer_sequence_end(const const_buffer& b); template <class C> auto buffer_sequence_begin(C& c) -> decltype(c.begin()); template <class C> auto buffer_sequence_begin(const C& c) -> decltype(c.begin()); template <class C> auto buffer_sequence_end(C& c) -> decltype(c.end()); template <class C> auto buffer_sequence_end(const C& c) -> decltype(c.end()); // buffer size: template<class ConstBufferSequence> size_t buffer_size(const ConstBufferSequence& buffers) noexcept; // buffer copy: template<class MutableBufferSequence, class ConstBufferSequence> size_t buffer_copy(const MutableBufferSequence& dest, const ConstBufferSequence& source) noexcept; template<class MutableBufferSequence, class ConstBufferSequence> size_t buffer_copy(const MutableBufferSequence& dest, const ConstBufferSequence& source, max_size) noexcept; // buffer arithmetic: mutable_buffer operator+(const mutable_buffer& b, size_t n) noexcept; mutable_buffer operator+(size_t n, const mutable_buffer& b) noexcept; const_buffer operator+(const const_buffer&, size_t n) noexcept; const_buffer operator+(size_t, const const_buffer&) noexcept; // buffer creation: mutable_buffer buffer(void* p, size_t n) noexcept; const_buffer buffer(const void* p, size_t n) noexcept; mutable_buffer buffer(const mutable_buffer& b) noexcept; mutable_buffer buffer(const mutable_buffer& b, size_t n) noexcept; const_buffer buffer(const const_buffer& b) noexcept; const_buffer buffer(const const_buffer& b, size_t n) noexcept; template<class T, size_t N> mutable_buffer buffer(T (&data)[N]) noexcept; template<class T, size_t N> const_buffer buffer(const T (&data)[N]) noexcept; template<class T, size_t N> mutable_buffer buffer(array<T, N>& data) noexcept; template<class T, size_t N> const_buffer buffer(array<const T, N>& data) noexcept; template<class T, size_t N> const_buffer buffer(const array<T, N>& data) noexcept; template<class T, class Allocator> mutable_buffer buffer(vector<T, Allocator>& data) noexcept; template<class T, class Allocator> const_buffer buffer(const vector<T, Allocator>& data) noexcept; template<class CharT, class Traits, class Allocator> mutable_buffer buffer(basic_string<CharT, Traits, Allocator>& data) noexcept; template<class CharT, class Traits> const_buffer buffer(basic_string_view<CharT, Traits> data) noexcept; template<class T, size_t N> mutable_buffer buffer(T (&data)[N], size_t n) noexcept; template<class T, size_t N> const_buffer buffer(const T (&data)[N], size_t n) noexcept; template<class T, size_t N> mutable_buffer buffer(array<T, N>& data, size_t n) noexcept; template<class T, size_t N> const_buffer buffer(array<const T, N>& data, size_t n) noexcept; template<class T, size_t N> const_buffer buffer(const array<T, N>& data, size_t n) noexcept; template<class T, class Allocator> mutable_buffer buffer(vector<T, Allocator>& data, size_t n) noexcept; template<class T, class Allocator> const_buffer buffer(const vector<T, Allocator>& data, size_t n) noexcept; template<class CharT, class Traits, class Allocator> mutable_buffer buffer(basic_string<CharT, Traits, Allocator>& data, size_t n) noexcept; template<class CharT, class Traits> const_buffer buffer(basic_string_view<CharT, Traits> data, size_t n) noexcept; template<class T, Allocator> class dynamic_vector_buffer; template<class CharT, class Traits, Allocator> class dynamic_string_buffer; // dynamic buffer creation: template<class T, class Allocator> dynamic_vector_buffer<T, Allocator> dynamic_buffer(vector<T, Allocator>& vec) noexcept; template<class T, class Allocator> dynamic_vector_buffer<T, Allocator> dynamic_buffer(vector<T, Allocator>& vec, size_t n) noexcept; template<class CharT, class Traits, class Allocator> dynamic_string_buffer<CharT, Traits, Allocator> dynamic_buffer(basic_string<CharT, Traits, Allocator>& str) noexcept; template<class CharT, class Traits, class Allocator> dynamic_string_buffer<CharT, Traits, Allocator> dynamic_buffer(basic_string<CharT, Traits, Allocator>& str, size_t n) noexcept; class transfer_all; class transfer_at_least; class transfer_exactly; // synchronous read operations: template<class SyncReadStream, class MutableBufferSequence> size_t read(SyncReadStream& stream, const MutableBufferSequence& buffers); template<class SyncReadStream, class MutableBufferSequence> size_t read(SyncReadStream& stream, const MutableBufferSequence& buffers, error_code& ec); template<class SyncReadStream, class MutableBufferSequence, class CompletionCondition> size_t read(SyncReadStream& stream, const MutableBufferSequence& buffers, CompletionCondition completion_condition); template<class SyncReadStream, class MutableBufferSequence, class CompletionCondition> size_t read(SyncReadStream& stream, const MutableBufferSequence& buffers, CompletionCondition completion_condition, error_code& ec); template<class SyncReadStream, class DynamicBuffer> size_t read(SyncReadStream& stream, DynamicBuffer&& b); template<class SyncReadStream, class DynamicBuffer> size_t read(SyncReadStream& stream, DynamicBuffer&& b, error_code& ec); template<class SyncReadStream, class DynamicBuffer, class CompletionCondition> size_t read(SyncReadStream& stream, DynamicBuffer&& b, CompletionCondition completion_condition); template<class SyncReadStream, class DynamicBuffer, class CompletionCondition> size_t read(SyncReadStream& stream, DynamicBuffer&& b, CompletionCondition completion_condition, error_code& ec); // asynchronous read operations: template<class AsyncReadStream, class MutableBufferSequence, class CompletionToken> DEDUCED async_read(AsyncReadStream& stream, const MutableBufferSequence& buffers, CompletionToken&& token); template<class AsyncReadStream, class MutableBufferSequence, class CompletionCondition, class CompletionToken> DEDUCED async_read(AsyncReadStream& stream, const MutableBufferSequence& buffers, CompletionCondition completion_condition, CompletionToken&& token); template<class AsyncReadStream, class DynamicBuffer, class CompletionToken> DEDUCED async_read(AsyncReadStream& stream, DynamicBuffer&& b, CompletionToken&& token); template<class AsyncReadStream, class DynamicBuffer, class CompletionCondition, class CompletionToken> DEDUCED async_read(AsyncReadStream& stream, DynamicBuffer&& b, CompletionCondition completion_condition, CompletionToken&& token); // synchronous write operations: template<class SyncWriteStream, class ConstBufferSequence> size_t write(SyncWriteStream& stream, const ConstBufferSequence& buffers); template<class SyncWriteStream, class ConstBufferSequence> size_t write(SyncWriteStream& stream, const ConstBufferSequence& buffers, error_code& ec); template<class SyncWriteStream, class ConstBufferSequence, class CompletionCondition> size_t write(SyncWriteStream& stream, const ConstBufferSequence& buffers, CompletionCondition completion_condition); template<class SyncWriteStream, class ConstBufferSequence, class CompletionCondition> size_t write(SyncWriteStream& stream, const ConstBufferSequence& buffers, CompletionCondition completion_condition, error_code& ec); template<class SyncWriteStream, class DynamicBuffer> size_t write(SyncWriteStream& stream, DynamicBuffer&& b); template<class SyncWriteStream, class DynamicBuffer> size_t write(SyncWriteStream& stream, DynamicBuffer&& b, error_code& ec); template<class SyncWriteStream, class DynamicBuffer, class CompletionCondition> size_t write(SyncWriteStream& stream, DynamicBuffer&& b, CompletionCondition completion_condition); template<class SyncWriteStream, class DynamicBuffer, class CompletionCondition> size_t write(SyncWriteStream& stream, DynamicBuffer&& b, CompletionCondition completion_condition, error_code& ec); // asynchronous write operations: template<class AsyncWriteStream, class ConstBufferSequence, class CompletionToken> DEDUCED async_write(AsyncWriteStream& stream, const ConstBufferSequence& buffers, CompletionToken&& token); template<class AsyncWriteStream, class ConstBufferSequence, class CompletionCondition, class CompletionToken> DEDUCED async_write(AsyncWriteStream& stream, const ConstBufferSequence& buffers, CompletionCondition completion_condition, CompletionToken&& token); template<class AsyncWriteStream, class DynamicBuffer, class CompletionToken> DEDUCED async_write(AsyncWriteStream& stream, DynamicBuffer&& b, CompletionToken&& token); template<class AsyncWriteStream, class DynamicBuffer, class CompletionCondition, class CompletionToken> DEDUCED async_write(AsyncWriteStream& stream, DynamicBuffer&& b, CompletionCondition completion_condition, CompletionToken&& token); // synchronous delimited read operations: template<class SyncReadStream, class DynamicBuffer> size_t read_until(SyncReadStream& s, DynamicBuffer&& b, char delim); template<class SyncReadStream, class DynamicBuffer> size_t read_until(SyncReadStream& s, DynamicBuffer&& b, char delim, error_code& ec); template<class SyncReadStream, class DynamicBuffer> size_t read_until(SyncReadStream& s, DynamicBuffer&& b, string_view delim); template<class SyncReadStream, class DynamicBuffer> size_t read_until(SyncReadStream& s, DynamicBuffer&& b, string_view delim, error_code& ec); // asynchronous delimited read operations: template<class AsyncReadStream, class DynamicBuffer, class CompletionToken> DEDUCED async_read_until(AsyncReadStream& s, DynamicBuffer&& b, char delim, CompletionToken&& token); template<class AsyncReadStream, class DynamicBuffer, class CompletionToken> DEDUCED async_read_until(AsyncReadStream& s, DynamicBuffer&& b, string_view delim, CompletionToken&& token); } // inline namespace v1 } // namespace net } // namespace experimental template<> struct is_error_code_enum< experimental::net::v1::stream_errc> : public true_type {}; } // namespace std
[buffer.reqmts.mutablebuffersequence]
A mutable buffer sequence represents a set of memory
regions that may be used to receive the output of an operation, such
as the receive
operation
of a socket.
A type X
meets the MutableBufferSequence
requirements
if it satisfies the requirements of Destructible
(C++Std [destructible]) and CopyConstructible
(C++Std [copyconstructible]), as well as the additional requirements
listed below.
In the table below, x
denotes a (possibly const) value of type X
,
and u
denotes an identifier.
Table 11. MutableBufferSequence requirements
expression |
return type |
assertion/note |
---|---|---|
|
An iterator type meeting the requirements for bidirectional
iterators (C++Std [bidirectional.iterators]) whose value type
is convertible to | |
X u(x);
|
post: equal( std::experimental::net::buffer_sequence_begin(x), std::experimental::net::buffer_sequence_end(x), std::experimental::net::buffer_sequence_begin(u), std::experimental::net::buffer_sequence_end(u), [](const typename X::value_type& v1, const typename X::value_type& v2) { mutable_buffer b1(v1); mutable_buffer b2(v2); return b1.data() == b2.data() && b1.size() == b2.size(); })
|
[buffer.reqmts.constbuffersequence]
A constant buffer sequence represents a set of memory
regions that may be used as input to an operation, such as the send
operation of a socket.
A type X
meets the ConstBufferSequence
requirements if
it satisfies the requirements of Destructible
(C++Std [destructible]) and CopyConstructible
(C++Std [copyconstructible]), as well as the additional requirements
listed below.
In the table below, x
denotes a (possibly const) value of type X
,
and u
denotes an identifier.
Table 12. ConstBufferSequence requirements
expression |
return type |
assertion/note |
---|---|---|
|
An iterator type meeting the requirements for bidirectional
iterators (C++Std [bidirectional.iterators]) whose value type
is convertible to | |
X u(x);
|
post: equal( std::experimental::net::buffer_sequence_begin(x), std::experimental::net::buffer_sequence_end(x), std::experimental::net::buffer_sequence_begin(u), std::experimental::net::buffer_sequence_end(u), [](const typename X::value_type& v1, const typename X::value_type& v2) { const_buffer b1(v1); const_buffer b2(v2); return b1.data() == b2.data() && b1.size() == b2.size(); })
|
A dynamic buffer encapsulates memory storage that may be automatically
resized as required, where the memory is divided into two regions: readable
bytes followed by writable bytes. These memory regions are internal to
the dynamic buffer, but direct access to the elements is provided to
permit them to be efficiently used with I/O operations. [Note:
Such as the send
or
receive
operations of
a socket. The readable bytes would be used as the constant buffer sequence
for send
, and the writable
bytes used as the mutable buffer sequence for receive
.
—end note] Data written to the writable bytes of
a dynamic buffer object is appended to the readable bytes of the same
object.
A type X
meets the DynamicBuffer
requirements if it satisfies
the requirements of Destructible
(C++Std [destructible]) and MoveConstructible
(C++Std [moveconstructible]), as well as the additional requirements
listed below.
In the table below, x
denotes a value of type X
,
x1
denotes a (possibly
const) value of type X
,
and n
denotes a (possibly
const) value of type size_t
.
Table 13. DynamicBuffer requirements
expression |
type |
assertion/note |
---|---|---|
|
type meeting ConstBufferSequence requirements. |
This type represents the memory associated with the readable bytes. |
|
type meeting MutableBufferSequence requirements. |
This type represents the memory associated with the writable bytes. |
|
|
Returns the number of readable bytes. |
|
|
Returns the maximum number of bytes, both readable and writable,
that can be held by |
|
|
Returns the maximum number of bytes, both readable and writeable,
that can be held by |
|
|
Returns a constant buffer sequence |
|
|
Returns a mutable buffer sequence |
|
Appends | |
|
Removes |
A read operation is an operation that reads data
into a mutable buffer sequence argument of a type meeting MutableBufferSequence
requirements.
The mutable buffer sequence specifies memory where the data should be
placed. A read operation shall always fill a buffer in the sequence completely
before proceeding to the next.
A write operation is an operation that writes data
from a constant buffer sequence argument of a type meeting ConstBufferSequence
requirements.
The constant buffer sequence specifies memory where the data to be written
is located. A write operation shall always write a buffer in the sequence
completely before proceeding to the next.
If a read or write operation is also an asynchronous operation, the operation shall maintain one or more copies of the buffer sequence until such time as the operation no longer requires access to the memory specified by the buffers in the sequence. The program shall ensure the memory remains valid until:
— the last copy of the buffer sequence is destroyed, or
— the completion handler for the asynchronous operation is invoked,
whichever comes first.
namespace std { namespace experimental { namespace net { inline namespace v1 { class mutable_buffer { public: // constructors: mutable_buffer() noexcept; mutable_buffer(void* p, size_t n) noexcept; // members: void* data() const noexcept; size_t size() const noexcept; private: void* data_; // exposition only size_t size_; // exposition only }; } // inline namespace v1 } // namespace net } // namespace experimental } // namespace std
The mutable_buffer
class
satisfies requirements of MutableBufferSequence
, DefaultConstructible
(C++Std [defaultconstructible]),
and CopyAssignable
(C++Std
[copyassignable]).
mutable_buffer() noexcept;
Postconditions:
data_ == nullptr
andsize_ == 0
.
mutable_buffer(void* p, size_t n) noexcept;
Postconditions:
data_ == p
andsize_ == n
.
void* data() const noexcept;
Returns:
data_
.
size_t size() const noexcept;
Returns:
size_
.
namespace std { namespace experimental { namespace net { inline namespace v1 { class const_buffer { public: // constructors: const_buffer() noexcept; const_buffer(const void* p, size_t n) noexcept; const_buffer(const mutable_buffer& b) noexcept; // members: const void* data() const noexcept; size_t size() const noexcept; private: const void* data_; // exposition only size_t size_; // exposition only }; } // inline namespace v1 } // namespace net } // namespace experimental } // namespace std
The const_buffer
class
satisfies requirements of ConstBufferSequence
, DefaultConstructible
(C++Std [defaultconstructible]),
and CopyAssignable
(C++Std
[copyassignable]).
const_buffer() noexcept;
Postconditions:
data_ == nullptr
andsize_ == 0
.
const_buffer(const void* p, size_t n) noexcept;
Postconditions:
data_ == p
andsize_ == n
.
const_buffer(const mutable_buffer& b);
Postconditions:
data_ == b.data_
andsize_ == b.size_
.
const void* data() const noexcept;
Returns:
data_
.
size_t size() const noexcept;
Returns:
size_
.
namespace std { namespace experimental { namespace net { inline namespace v1 { template<class T> is_mutable_buffer_sequence; template<class T> is_const_buffer_sequence; template<class T> is_dynamic_buffer; } // inline namespace v1 } // namespace net } // namespace experimental } // namespace std
This sub-clause contains templates that may be used to query the properties
of a type at compile time. Each of these templates is a UnaryTypeTrait
(C++Std [meta.rqmts]) with a BaseCharacteristic of true_type
if the corresponding condition is true, otherwise false_type
.
Table 14. Buffer type traits
Template |
Condition |
Preconditions |
---|---|---|
|
|
|
|
|
|
|
|
|
const mutable_buffer* buffer_sequence_begin(const mutable_buffer& b); const const_buffer* buffer_sequence_begin(const const_buffer& b);
Returns:
std::addressof(b)
.
const mutable_buffer* buffer_sequence_end(const mutable_buffer& b); const const_buffer* buffer_sequence_end(const const_buffer& b);
Returns:
std::addressof(b) + 1
.
template <class C> auto buffer_sequence_begin(C& c) -> decltype(c.begin()); template <class C> auto buffer_sequence_begin(const C& c) -> decltype(c.begin());
Returns:
c.begin()
.
template <class C> auto buffer_sequence_end(C& c) -> decltype(c.end()); template <class C> auto buffer_sequence_end(const C& c) -> decltype(c.end());
Returns:
c.end()
.
template<class ConstBufferSequence> size_t buffer_size(const ConstBufferSequence& buffers) noexcept;
Returns: The total size of all buffers in the sequence, as if computed as follows:
size_t total_size = 0; auto i = std::experimental::net::buffer_sequence_begin(buffers); auto end = std::experimental::net::buffer_sequence_end(buffers); for (; i != end; ++i) { const_buffer b(v); total_size += b.size(); } return total_size;
template<class MutableBufferSequence, class ConstBufferSequence> size_t buffer_copy(const MutableBufferSequence& dest, const ConstBufferSequence& source) noexcept; template<class MutableBufferSequence, class ConstBufferSequence> size_t buffer_copy(const MutableBufferSequence& dest, const ConstBufferSequence& source, size_t max_size) noexcept;
Effects: Copies bytes from the buffer sequence
source
to the buffer sequencedest
, as if by calls tomemcpy
.
The number of bytes copied is the lesser of:
—buffer_size(dest)
;
—buffer_size(source)
; and
—max_size
, if specified.
The mutable buffer sequence
dest
specifies memory where the data should be placed. The operation always fills a buffer in the sequence completely before proceeding to the next.
The constant buffer sequence
source
specifies memory where the data to be written is located. The operation always copies a buffer in the sequence completely before proceeding to the next.
Returns: The number of bytes copied from
source
todest
.
mutable_buffer operator+(const mutable_buffer& b, size_t n) noexcept; mutable_buffer operator+(size_t n, const mutable_buffer& b) noexcept;
Returns: A
mutable_buffer
equivalent tomutable_buffer( static_cast<char*>(b.data()) + min(n, b.size()), b.size() - min(n, b.size()));
const_buffer operator+(const const_buffer& b, size_t n) noexcept; const_buffer operator+(size_t n, const const_buffer& b) noexcept;
Returns: A
const_buffer
equivalent toconst_buffer( static_cast<const char*>(b.data()) + min(n, b.size()), b.size() - min(n, b.size()));
In the functions below, T
must be a trivially copyable or standard-layout type (C++Std [basic.types]).
For the function overloads below that accept an argument of type vector<>
,
the buffer objects returned are invalidated by any vector operation that
also invalidates all references, pointers and iterators referring to the
elements in the sequence (C++Std [vector]).
For the function overloads below that accept an argument of type basic_string<>
,
the buffer objects returned are invalidated according to the rules defined
for invalidation of references, pointers and iterators referring to elements
of the sequence (C++Std [string.require]).
mutable_buffer buffer(void* p, size_t n) noexcept;
Returns:
mutable_buffer(p, n)
.
const_buffer buffer(const void* p, size_t n) noexcept;
Returns:
const_buffer(p, n)
.
mutable_buffer buffer(const mutable_buffer& b) noexcept;
Returns:
b
.
mutable_buffer buffer(const mutable_buffer& b, size_t n) noexcept;
Returns:
mutable_buffer(b.data(), min(b.size(), n))
.
const_buffer buffer(const const_buffer& b) noexcept;
Returns:
b
.
const_buffer buffer(const const_buffer& b, size_t n) noexcept;
Returns:
const_buffer(b.data(), min(b.size(), n))
.
template<class T, size_t N> mutable_buffer buffer(T (&data)[N]) noexcept; template<class T, size_t N> const_buffer buffer(const T (&data)[N]) noexcept; template<class T, size_t N> mutable_buffer buffer(array<T, N>& data) noexcept; template<class T, size_t N> const_buffer buffer(array<const T, N>& data) noexcept; template<class T, size_t N> const_buffer buffer(const array<T, N>& data) noexcept; template<class T, class Allocator> mutable_buffer buffer(vector<T, Allocator>& data) noexcept; template<class T, class Allocator> const_buffer buffer(const vector<T, Allocator>& data) noexcept; template<class CharT, class Traits, class Allocator> mutable_buffer buffer(basic_string<CharT, Traits, Allocator>& data) noexcept; template<class CharT, class Traits> const_buffer buffer(basic_string_view<CharT, Traits> data) noexcept;
Returns:
buffer( begin(data) != end(data) ? std::addressof(*begin(data)) : nullptr, (end(data) - begin(data)) * sizeof(*begin(data)));
template<class T, size_t N> mutable_buffer buffer(T (&data)[N], size_t n) noexcept; template<class T, size_t N> const_buffer buffer(const T (&data)[N], size_t n) noexcept; template<class T, size_t N> mutable_buffer buffer(array<T, N>& data, size_t n) noexcept; template<class T, size_t N> const_buffer buffer(array<const T, N>& data, size_t n) noexcept; template<class T, size_t N> const_buffer buffer(const array<T, N>& data, size_t n) noexcept; template<class T, class Allocator> mutable_buffer buffer(vector<T, Allocator>& data, size_t n) noexcept; template<class T, class Allocator> const_buffer buffer(const vector<T, Allocator>& data, size_t n) noexcept; template<class CharT, class Traits, class Allocator> mutable_buffer buffer(basic_string<CharT, Traits, Allocator>& data, size_t n) noexcept; template<class CharT, class Traits> const_buffer buffer(basic_string_view<CharT, Traits> data, size_t n) noexcept;
Returns:
buffer(buffer(data), n)
.
Class template dynamic_vector_buffer
is an adaptor used to automatically grow or shrink a vector
object, to reflect the data successfully transferred in an I/O operation.
namespace std { namespace experimental { namespace net { inline namespace v1 { template<class T, class Allocator> class dynamic_vector_buffer { public: // types: typedef const_buffer const_buffers_type; typedef mutable_buffer mutable_buffers_type; // constructors: explicit dynamic_vector_buffer(vector<T, Allocator>& vec) noexcept; dynamic_vector_buffer(vector<T, Allocator>& vec, size_t maximum_size) noexcept; dynamic_vector_buffer(dynamic_vector_buffer&&) = default; // members: size_t size() const noexcept; size_t max_size() const noexcept; size_t capacity() const noexcept; const_buffers_type data() const noexcept; mutable_buffers_type prepare(size_t n); void commit(size_t n); void consume(size_t n); private: vector<T, Allocator>& vec_; // exposition only size_t size_; // exposition only const size_t max_size_; // exposition only }; } // inline namespace v1 } // namespace net } // namespace experimental } // namespace std
The dynamic_vector_buffer
class template meets the requirements of DynamicBuffer
.
The dynamic_vector_buffer
class template requires that T
is a trivially copyable or standard-layout type (C++Std [basic.types])
and that sizeof(T) ==
1
.
explicit dynamic_vector_buffer(vector<T, Allocator>& vec) noexcept;
Effects: Initializes
vec_
withvec
,size_
withvec.size()
, andmax_size_
withvec.max_size()
.
dynamic_vector_buffer(vector<T, Allocator>& vec, size_t maximum_size) noexcept;
Requires:
vec.size() <= maximum_size
.
Effects: Initializes
vec_
withvec
,size_
withvec.size()
, andmax_size_
withmaximum_size
.
size_t size() const noexcept;
Returns:
size_
.
size_t max_size() const noexcept;
Returns:
max_size_
.
size_t capacity() const noexcept;
Returns:
vec_.capacity()
.
const_buffers_type data() const noexcept;
Returns:
buffer(vec_, size_)
.
mutable_buffers_type prepare(size_t n);
Effects: Performs
vec_.resize(size_ + n)
.
Returns:
buffer(buffer(vec_) + size_, n)
.
Throws:
length_error
ifsize() + n
exceedsmax_size()
.
void commit(size_t n);
Effects: Performs:
size_ += min(n, vec_.size() - size_); vec_.resize(size_);
void consume(size_t n);
Effects: Performs:
size_t m = min(n, size_); vec_.erase(vec_.begin(), vec_.begin() + m); size_ -= m;
Class template dynamic_string_buffer
is an adaptor used to automatically grow or shrink a basic_string
object, to reflect the data successfully transferred in an I/O operation.
namespace std { namespace experimental { namespace net { inline namespace v1 { template<class CharT, class Traits, class Allocator> class dynamic_string_buffer { public: // types: typedef const_buffer const_buffers_type; typedef mutable_buffer mutable_buffers_type; // constructors: explicit dynamic_string_buffer(basic_string<CharT, Traits, Allocator>& str) noexcept; dynamic_string_buffer(basic_string<CharT, Traits, Allocator>& str, size_t maximum_size) noexcept; dynamic_string_buffer(dynamic_string_buffer&&) = default; // members: size_t size() const noexcept; size_t max_size() const noexcept; size_t capacity() const noexcept; const_buffers_type data() const noexcept; mutable_buffers_type prepare(size_t n); void commit(size_t n) noexcept; void consume(size_t n); private: basic_string<CharT, Traits, Allocator>& str_; // exposition only size_t size_; // exposition only const size_t max_size_; // exposition only }; } // inline namespace v1 } // namespace net } // namespace experimental } // namespace std
The dynamic_string_buffer
class template meets the requirements of DynamicBuffer
.
The dynamic_string_buffer
class template requires that sizeof(CharT) == 1
.
explicit dynamic_string_buffer(basic_string<CharT, Traits, Allocator>& str) noexcept;
Effects: Initializes
str_
withstr
,size_
withstr.size()
, andmax_size_
withstr.max_size()
.
dynamic_string_buffer(basic_string<CharT, Traits, Allocator>& str, size_t maximum_size) noexcept;
Requires:
str.size() <= maximum_size
.
Effects: Initializes
str_
withstr
,size_
withstr.size()
, andmax_size_
withmaximum_size
.
size_t size() const noexcept;
Returns:
size_
.
size_t max_size() const noexcept;
Returns:
max_size_
.
size_t capacity() const noexcept;
Returns:
str_.capacity()
.
const_buffers_type data() const noexcept;
Returns:
buffer(str_, size_)
.
mutable_buffers_type prepare(size_t n);
Effects: Performs
str_.resize(size_ + n)
.
Returns:
buffer(buffer(str_) + size_, n)
.
Throws:
length_error
ifsize() + n
exceedsmax_size()
.
void commit(size_t n) noexcept;
Effects: Performs:
size_ += min(n, str_.size() - size_); str_.resize(size_);
void consume(size_t n);
Effects: Performs:
size_t m = min(n, size_); str_.erase(m); size_ -= m;
template<class T, class Allocator> dynamic_vector_buffer<T, Allocator> dynamic_buffer(vector<T, Allocator>& vec) noexcept;
Returns:
dynamic_vector_buffer<T, Allocator>(vec)
.
template<class T, class Allocator> dynamic_vector_buffer<T, Allocator> dynamic_buffer(vector<T, Allocator>& vec, size_t n) noexcept;
Returns:
dynamic_vector_buffer<T, Allocator>(vec, n)
.
template<class CharT, class Traits, class Allocator> dynamic_string_buffer<CharT, Traits, Allocator> dynamic_buffer(basic_string<CharT, Traits, Allocator>& str) noexcept;
Returns:
dynamic_string_buffer<CharT, Traits, Allocator>(str)
.
template<class CharT, class Traits, class Allocator> dynamic_string_buffer<CharT, Traits, Allocator> dynamic_buffer(basic_string<CharT, Traits, Allocator>& str, size_t n) noexcept;
Returns:
dynamic_string_buffer<CharT, Traits, Allocator>(str, n)
.
[buffer.stream.reqmts.syncreadstream]
A type X
meets the SyncReadStream
requirements if it satisfies
the requirements listed below.
In the table below, a
denotes a value of type X
,
mb
denotes a (possibly
const) value satisfying the MutableBufferSequence
requirements,
and ec
denotes an object
of type error_code
.
Table 15. SyncReadStream requirements
operation |
type |
semantics, pre/post-conditions |
---|---|---|
|
|
Meets the requirements for a read
operation. |
[buffer.stream.reqmts.asyncreadstream]
A type X
meets the AsyncReadStream
requirements if it
satisfies the requirements listed below.
In the table below, a
denotes a value of type X
,
mb
denotes a (possibly
const) value satisfying the MutableBufferSequence
requirements,
and t
is a completion
token.
Table 16. AsyncReadStream requirements
operation |
type |
semantics, pre/post-conditions |
---|---|---|
|
A type satisfying the Executor requirements. |
Returns the associated I/O executor. |
|
The return type is determined according to the requirements for an asynchronous operation. |
Meets the requirements for a read
operation and an asynchronous
operation with completion signature |
[buffer.stream.reqmts.syncwritestream]
A type X
meets the SyncWriteStream
requirements if it
satisfies the requirements listed below.
In the table below, a
denotes a value of type X
,
cb
denotes a (possibly
const) value satisfying the ConstBufferSequence
requirements,
and ec
denotes an object
of type error_code
.
Table 17. SyncWriteStream requirements
operation |
type |
semantics, pre/post-conditions |
---|---|---|
|
|
Meets the requirements for a write
operation. |
[buffer.stream.reqmts.asyncwritestream]
A type X
meets the AsyncWriteStream
requirements if it
satisfies the requirements listed below.
In the table below, a
denotes a value of type X
,
cb
denotes a (possibly
const) value satisfying the ConstBufferSequence
requirements,
and t
is a completion
token.
Table 18. AsyncWriteStream requirements
operation |
type |
semantics, pre/post-conditions |
---|---|---|
|
A type satisfying the Executor requirements. |
Returns the associated I/O executor. |
|
The return type is determined according to the requirements for an asynchronous operation. |
Meets the requirements for a write
operation and an asynchronous
operation with completion signature |
[buffer.stream.reqmts.completioncondition]
A completion condition is a function object that
is used with the algorithms read
, async_read
, write
, and async_write
to determine when
the algorithm has completed transferring data.
A type X
meets the CompletionCondition
requirements if
it satisfies the requirements of Destructible
(C++Std [destructible]) and CopyConstructible
(C++Std [copyconstructible]), as well as the additional requirements
listed below.
In the table below, x
denotes a value of type X
,
ec
denotes a (possibly
const) value of type error_code
,
and n
denotes a (possibly
const) value of type size_t
.
Table 19. CompletionCondition requirements
expression |
return type |
assertion/note |
---|---|---|
|
|
Let |
The class transfer_all
is a completion condition that is used to specify that a read or write
operation should continue until all of the data has been transferred, or
until an error occurs.
namespace std { namespace experimental { namespace net { inline namespace v1 { class transfer_all { public: size_t operator()(const error_code& ec, size_t) const; }; } // inline namespace v1 } // namespace net } // namespace experimental } // namespace std
The class transfer_all
satisfies the CompletionCondition
requirements.
size_t operator()(const error_code& ec, size_t) const;
Returns: If
!ec
, an unspecified non-zero value. Otherwise0
.
[buffer.stream.transfer.at.least]
The class transfer_at_least
is a completion condition that is used to specify that a read or write
operation should continue until a minimum number of bytes has been transferred,
or until an error occurs.
namespace std { namespace experimental { namespace net { inline namespace v1 { class transfer_at_least { public: explicit transfer_at_least(size_t m); size_t operator()(const error_code& ec, size_t s) const; private: size_t minimum_; // exposition only }; } // inline namespace v1 } // namespace net } // namespace experimental } // namespace std
The class transfer_at_least
satisfies the CompletionCondition
requirements.
explicit transfer_at_least(size_t m);
Postconditions:
minimum_ == m
.
size_t operator()(const error_code& ec, size_t n) const;
Returns: If
!ec && n < minimum_
, an unspecified non-zero value. Otherwise0
.
[buffer.stream.transfer.exactly]
The class transfer_exactly
is a completion condition that is used to specify that a read or write
operation should continue until an exact number of bytes has been transferred,
or until an error occurs.
namespace std { namespace experimental { namespace net { inline namespace v1 { class transfer_exactly { public: explicit transfer_exactly(size_t e); size_t operator()(const error_code& ec, size_t s) const; private: size_t exact_; // exposition only }; } // inline namespace v1 } // namespace net } // namespace experimental } // namespace std
The class transfer_exactly
satisfies the CompletionCondition
requirements.
explicit transfer_exactly(size_t e);
Postconditions:
exact_ == e
.
size_t operator()(const error_code& ec, size_t n) const;
Returns: If
!ec && n < exact_
, the result ofmin(exact_ - n, N)
, whereN
is an unspecified non-zero value. Otherwise0
.
template<class SyncReadStream, class MutableBufferSequence> size_t read(SyncReadStream& stream, const MutableBufferSequence& buffers); template<class SyncReadStream, class MutableBufferSequence> size_t read(SyncReadStream& stream, const MutableBufferSequence& buffers, error_code& ec); template<class SyncReadStream, class MutableBufferSequence, class CompletionCondition> size_t read(SyncReadStream& stream, const MutableBufferSequence& buffers, CompletionCondition completion_condition); template<class SyncReadStream, class MutableBufferSequence, class CompletionCondition> size_t read(SyncReadStream& stream, const MutableBufferSequence& buffers, CompletionCondition completion_condition, error_code& ec);
Effects: Clears
ec
, then reads data from the buffer-oriented synchronous read stream objectstream
by performing zero or more calls to the stream'sread_some
member function.
The
completion_condition
parameter specifies a completion condition to be called prior to each call to the stream'sread_some
member function. The completion condition is passed theerror_code
value from the most recentread_some
call, and the total number of bytes transferred in the synchronous read operation so far. The completion condition return value specifies the maximum number of bytes to be read on the subsequentread_some
call. Overloads where a completion condition is not specified behave as if called with an object of classtransfer_all
.
The synchronous read operation continues until:
— the total number of bytes transferred is equal to
buffer_size(buffers)
; or
— the completion condition returns
0
.
On return,
ec
contains theerror_code
value from the most recentread_some
call.
Returns: The total number of bytes transferred in the synchronous read operation.
Remarks: This function shall not participate in overload resolution unless
is_mutable_buffer_sequence<MutableBufferSequence>::value
istrue
.
template<class SyncReadStream, class DynamicBuffer> size_t read(SyncReadStream& stream, DynamicBuffer&& b); template<class SyncReadStream, class DynamicBuffer> size_t read(SyncReadStream& stream, DynamicBuffer&& b, error_code& ec); template<class SyncReadStream, class DynamicBuffer, class CompletionCondition> size_t read(SyncReadStream& stream, DynamicBuffer&& b, CompletionCondition completion_condition); template<class SyncReadStream, class DynamicBuffer, class CompletionCondition> size_t read(SyncReadStream& stream, DynamicBuffer&& b, CompletionCondition completion_condition, error_code& ec);
Effects: Clears
ec
, then reads data from the synchronous read stream objectstream
by performing zero or more calls to the stream'sread_some
member function.
Data is placed into the dynamic buffer object
b
. A mutable buffer sequence is obtained prior to eachread_some
call usingb.prepare(N)
, whereN
is an unspecified value less than or equal tob.max_size() - b.size()
. [Note: Implementations are encouraged to useb.capacity()
when determiningN
, to minimize the number ofread_some
calls performed on the stream. —end note] After eachread_some
call, the implementation performsb.commit(n)
, wheren
is the return value fromread_some
.
The
completion_condition
parameter specifies a completion condition to be called prior to each call to the stream'sread_some
member function. The completion condition is passed theerror_code
value from the most recentread_some
call, and the total number of bytes transferred in the synchronous read operation so far. The completion condition return value specifies the maximum number of bytes to be read on the subsequentread_some
call. Overloads where a completion condition is not specified behave as if called with an object of classtransfer_all
.
The synchronous read operation continues until:
—
b.size() == b.max_size()
; or
— the completion condition returns
0
.
On return,
ec
contains theerror_code
value from the most recentread_some
call.
Returns: The total number of bytes transferred in the synchronous read operation.
Remarks: This function shall not participate in overload resolution unless
is_dynamic_buffer<DynamicBuffer>::value
istrue
.
template<class AsyncReadStream, class MutableBufferSequence, class CompletionToken> DEDUCED async_read(AsyncReadStream& stream, const MutableBufferSequence& buffers, CompletionToken&& token); template<class AsyncReadStream, class MutableBufferSequence, class CompletionCondition, class CompletionToken> DEDUCED async_read(AsyncReadStream& stream, const MutableBufferSequence& buffers, CompletionCondition completion_condition, CompletionToken&& token);
Completion signature:
void(error_code ec, size_t n)
.
Effects: Reads data from the buffer-oriented asynchronous read stream object
stream
by invoking the stream'sasync_read_some
member function (henceforth referred to as asynchronous read_some operations) zero or more times.
The
completion_condition
parameter specifies a completion condition to be called prior to each asynchronous read_some operation. The completion condition is passed theerror_code
value from the most recent asynchronous read_some operation, and the total number of bytes transferred in the asynchronous read operation so far. The completion condition return value specifies the maximum number of bytes to be read on the subsequent asynchronous read_some operation. Overloads where a completion condition is not specified behave as if called with an object of classtransfer_all
.
This asynchronous read operation is outstanding until:
— the total number of bytes transferred is equal to
buffer_size(buffers)
; or
— the completion condition returns
0
.
The program shall ensure the
AsyncReadStream
objectstream
is valid until the completion handler for the asynchronous operation is invoked.
On completion of the asynchronous operation,
ec
is theerror_code
value from the most recent asynchronous read_some operation, andn
is the total number of bytes transferred.
Remarks: This function shall not participate in overload resolution unless
is_mutable_buffer_sequence<MutableBufferSequence>::value
istrue
.
template<class AsyncReadStream, class DynamicBuffer, class CompletionToken> DEDUCED async_read(AsyncReadStream& stream, DynamicBuffer&& b, CompletionToken&& token); template<class AsyncReadStream, class DynamicBuffer, class CompletionCondition, class CompletionToken> DEDUCED async_read(AsyncReadStream& stream, DynamicBuffer&& b, CompletionCondition completion_condition, CompletionToken&& token);
Completion signature:
void(error_code ec, size_t n)
.
Effects: Initiates an asynchronous operation to read data from the buffer-oriented asynchronous read stream object
stream
by performing one or more asynchronous read_some operations on the stream.
Data is placed into the dynamic buffer object
b
. A mutable buffer sequence is obtained prior to eachasync_read_some
call usingb.prepare(N)
, whereN
is an unspecified value such thatN
is less than or equal tob.max_size() - b.size()
. [Note: Implementations are encouraged to useb.capacity()
when determiningN
, to minimize the number of asynchronous read_some operations performed on the stream. —end note] After the completion of each asynchronous read_some operation, the implementation performsb.commit(n)
, wheren
is the value passed to the asynchronous read_some operation's completion handler.
The
completion_condition
parameter specifies a completion condition to be called prior to each asynchronous read_some operation. The completion condition is passed theerror_code
value from the most recent asynchronous read_some operation, and the total number of bytes transferred in the asynchronous read operation so far. The completion condition return value specifies the maximum number of bytes to be read on the subsequent asynchronous read_some operation. Overloads where a completion condition is not specified behave as if called with an object of classtransfer_all
.
The asynchronous read operation is outstanding until:
—
b.size() == b.max_size()
; or
— the completion condition returns
0
.
The program shall ensure the
AsyncReadStream
objectstream
is valid until the completion handler for the asynchronous operation is invoked.
On completion of the asynchronous operation,
ec
is theerror_code
value from the most recent asynchronous read_some operation, andn
is the total number of bytes transferred.
Remarks: This function shall not participate in overload resolution unless
is_dynamic_buffer<DynamicBuffer>::value
istrue
.
template<class SyncWriteStream, class ConstBufferSequence> size_t write(SyncWriteStream& stream, const ConstBufferSequence& buffers); template<class SyncWriteStream, class ConstBufferSequence> size_t write(SyncWriteStream& stream, const ConstBufferSequence& buffers, error_code& ec); template<class SyncWriteStream, class ConstBufferSequence, class CompletionCondition> size_t write(SyncWriteStream& stream, const ConstBufferSequence& buffers, CompletionCondition completion_condition); template<class SyncWriteStream, class ConstBufferSequence, class CompletionCondition> size_t write(SyncWriteStream& stream, const ConstBufferSequence& buffers, CompletionCondition completion_condition, error_code& ec);
Effects: Writes data to the buffer-oriented synchronous write stream object
stream
by performing zero or more calls to the stream'swrite_some
member function.
The
completion_condition
parameter specifies a completion condition to be called prior to each call to the stream'swrite_some
member function. The completion condition is passed theerror_code
value from the most recentwrite_some
call, and the total number of bytes transferred in the synchronous write operation so far. The completion condition return value specifies the maximum number of bytes to be written on the subsequentwrite_some
call. Overloads where a completion condition is not specified behave as if called with an object of classtransfer_all
.
The synchronous write operation continues until:
— the total number of bytes transferred is equal to
buffer_size(buffers)
; or
— the completion condition returns
0
.
On return,
ec
contains theerror_code
value from the most recentwrite_some
call.
Returns: The total number of bytes transferred in the synchronous write operation.
Remarks: This function shall not participate in overload resolution unless
is_const_buffer_sequence<ConstBufferSequence>::value
istrue
.
template<class SyncWriteStream, class DynamicBuffer> size_t write(SyncWriteStream& stream, DynamicBuffer&& b); template<class SyncWriteStream, class DynamicBuffer> size_t write(SyncWriteStream& stream, DynamicBuffer&& b, error_code& ec); template<class SyncWriteStream, class DynamicBuffer, class CompletionCondition> size_t write(SyncWriteStream& stream, DynamicBuffer&& b, CompletionCondition completion_condition); template<class SyncWriteStream, class DynamicBuffer, class CompletionCondition> size_t write(SyncWriteStream& stream, DynamicBuffer&& b, CompletionCondition completion_condition, error_code& ec);
Effects: Writes data to the synchronous write stream object
stream
by performing zero or more calls to the stream'swrite_some
member function.
Data is written from the dynamic buffer object
b
. A constant buffer sequence is obtained usingb.data()
. After the data has been written to the stream, the implementation performsb.consume(n)
, wheren
is the number of bytes successfully written.
The
completion_condition
parameter specifies a completion condition to be called after each call to the stream'swrite_some
member function. The completion condition is passed theerror_code
value from the most recentwrite_some
call, and the total number of bytes transferred in the synchronous write operation so far. The completion condition return value specifies the maximum number of bytes to be written on the subsequentwrite_some
call. Overloads where a completion condition is not specified behave as if called with an object of classtransfer_all
.
The synchronous write operation continues until:
—
b.size() == 0
; or
— the completion condition returns
0
.
On return,
ec
contains theerror_code
value from the most recentwrite_some
call.
Returns: The total number of bytes transferred in the synchronous write operation.
Remarks: This function shall not participate in overload resolution unless
is_dynamic_buffer<DynamicBuffer>::value
istrue
.
template<class AsyncWriteStream, class ConstBufferSequence, class CompletionToken> DEDUCED async_write(AsyncWriteStream& stream, const ConstBufferSequence& buffers, CompletionToken&& token); template<class AsyncWriteStream, class ConstBufferSequence, class CompletionCondition, class CompletionToken> DEDUCED async_write(AsyncWriteStream& stream, const ConstBufferSequence& buffers, CompletionCondition completion_condition, CompletionToken&& token);
Completion signature:
void(error_code ec, size_t n)
.
Effects: Initiates an asynchronous operation to write data to the buffer-oriented asynchronous write stream object
stream
by performing zero or more asynchronous operations on the stream using the stream'sasync_write_some
member function (henceforth referred to as asynchronous write_some operations).
The
completion_condition
parameter specifies a completion condition to be called prior to each asynchronous write_some operation. The completion condition is passed theerror_code
value from the most recent asynchronous write_some operation, and the total number of bytes transferred in the asynchronous write operation so far. The completion condition return value specifies the maximum number of bytes to be written on the subsequent asynchronous write_some operation. Overloads where a completion condition is not specified behave as if called with an object of classtransfer_all
.
The asynchronous write operation continues until:
— the total number of bytes transferred is equal to
buffer_size(buffers)
; or
— the completion condition returns
0
.
The program must ensure the
AsyncWriteStream
objectstream
is valid until the completion handler for the asynchronous operation is invoked.
On completion of the asynchronous operation,
ec
is theerror_code
value from the most recent asynchronous write_some operation, andn
is the total number of bytes transferred.
Remarks: This function shall not participate in overload resolution unless
is_const_buffer_sequence<ConstBufferSequence>::value
istrue
.
template<class AsyncWriteStream, class DynamicBuffer, class CompletionToken> DEDUCED async_write(AsyncWriteStream& stream, DynamicBuffer&& b, CompletionToken&& token); template<class AsyncWriteStream, class DynamicBuffer, class CompletionCondition, class CompletionToken> DEDUCED async_write(AsyncWriteStream& stream, DynamicBuffer&& b, CompletionCondition completion_condition, CompletionToken&& token);
Completion signature:
void(error_code ec, size_t n)
.
Effects: Initiates an asynchronous operation to write data to the buffer-oriented asynchronous write stream object
stream
by performing zero or more asynchronous write_some operations on the stream.
Data is written from the dynamic buffer object
b
. A constant buffer sequence is obtained usingb.data()
. After the data has been written to the stream, the implementation performsb.consume(n)
, wheren
is the number of bytes successfully written.
The
completion_condition
parameter specifies a completion condition to be called prior to each asynchronous write_some operation. The completion condition is passed theerror_code
value from the most recent asynchronous write_some operation, and the total number of bytes transferred in the asynchronous write operation so far. The completion condition return value specifies the maximum number of bytes to be written on the subsequent asynchronous write_some operation. Overloads where a completion condition is not specified behave as if called with an object of classtransfer_all
.
The asynchronous write operation continues until:
—
b.size() == 0
; or
— the completion condition returns
0
.
The program must ensure both the
AsyncWriteStream
objectstream
and the memory associated with the dynamic bufferb
are valid until the completion handler for the asynchronous operation is invoked.
On completion of the asynchronous operation,
ec
is theerror_code
value from the most recent asynchronous write_some operation, andn
is the total number of bytes transferred.
Remarks: This function shall not participate in overload resolution unless
is_dynamic_buffer<DynamicBuffer>::value
istrue
.
template<class SyncReadStream, class DynamicBuffer> size_t read_until(SyncReadStream& s, DynamicBuffer&& b, char delim); template<class SyncReadStream, class DynamicBuffer> size_t read_until(SyncReadStream& s, DynamicBuffer&& b, char delim, error_code& ec); template<class SyncReadStream, class DynamicBuffer> size_t read_until(SyncReadStream& s, DynamicBuffer&& b, string_view delim); template<class SyncReadStream, class DynamicBuffer> size_t read_until(SyncReadStream& s,