Stroustrup Comparison Thoughts N4476

WG21-N4476
2015-4-9

Thoughts about Comparisons (R2)

Bjarne Stroustrup (bs@ms.com)

Abstract

This is a summary of some of the discussions of my Default Comparisons proposal. It lists the various

proposals and compares them according to a set of criteria.

The proposal is to generate == and other comparison functions by default provided the class doesn’t

have features that indicate that it is not a simple value type (such as a user-defined assighnment, pointers

members, or virtual functions).

1 Introduction
Status quo: when | decide that “I want the usual comparison functions”, | have to write 6 function

definitions; that is about 18 lines of code (depending on your layout style).

Default definitions: Oleg Smolsky proposed to simplify that by generating the 6 functions from 6
default comparison function definitions; that is, about 6 lines of code:

bool operator==(const X&, const X&) = default;
Library support: Andrew Tomazos points out that through metaprogramming we can write the 6
functions in a stereotyped way using six library functions. That is, about 6 lines of code
(assuming a compact layout style for these function definitions) plus about 40 lines of library
code (using proposed type traits):

bool operator==(const X& a, const& b) { return default_eq(a,b); }
Operator base: Richard Smith suggested that the default definition solutions could be simplified
by using a base class that defaulted the comparisons. That would move the 6 functions to the
standard library, and the user would just add a base:

struct Thing : with_default_comparison<Thing>{ ... };
Operator requests: | proposed the ability to explicitly say “I want the usual comparison
functions” That is, one or two (short) lines of code, depending on proposal details:

default ==;
Built-in comparisons: Daveed Vandevoorde and Matt Austern (I think) and others (incl. me)
suggested that we could get “the usual comparison functions” by simply always generating them
if used (like we do assignments and destructors). That is, no user code.

All proposals (I think) include constraints to stop generation if the class involved is somehow deemed

“wrong” for the default comparisons.

Stroustrup Comparison Thoughts N4476

Everyone agrees that there are benefits from explicitly saying “we want the default 6 functions” beyond
the shortening of the code (e.g., stability — after possibly after recompilation of user code — of a class to
which we have added a data member).

| have named the approaches to avoid repeating their properties and to avoid the discussing getting too
personal.

How do we decide which approach is right/best?
Consider a set of suggested criteria

e Easytoread

e Easyto write

e Easytoteach

e Better generated code

e More stable ABI

e Don't be intrusive

e Don’t break encapsulation
e Fewer faulty operations
e Smaller language change
e Compatible

e Isit worthwhile?

Most have (in many variations) been used in the discussion of this issue. However, they are general and
as “motherhood and apple pie” principles generally agreed upon. However, their exact meaning, their
applicability to a particular feature, and the balance among them often prove controversial.

2 Evaluation

It is clear from the voluminous discussion of the comparison proposals that no detail or technical
principle can be assumed to be generally agreed upon or considered simple. This is dangerous for the
evolution of C++ in general, but let me try to address the issues in the context of the comparison
proposals.

2.1 Easy to read

All proposals, as well as status quo, can be deemed “easy to read.” After all, this is a relatively small
problem that we are trying to solve (even if it does emerge thousands of times in large code bases). All
proposals avoid the problem with status quo that adding a member to a class can make an explicitly
written definition of == give wrong results if the new member isn’t added to the comparisons.

Proposals where the programmer specify function declarations require the reader to look at about 6
lines of code. These lines can be mistyped or contain variants that a reader does not expect (e.g. pass by
value vs. pass-by-const-reference). In large bodies of stereotypical code, errors (such as an inverted
condition) are hard to notice. Thus, care must be taken.

2

Stroustrup Comparison Thoughts N4476

Proposals that require function definitions offer more opportunity for errors and surprises (and require
more reading of source text).

default ==; is really easy to read. The only problem may be to find it in the code (roughly like the default
definitions and library support approaches).

No notation at all is (obviously) the easiest to read, but requires that the reader understands the
language rule. For an initial period of time, that would be a surprise to experienced C++ programmers.
Most programmers — especially new programmers — simply wouldn’t notice. Their problem has always
been that they don’t understand why == doesn’t currently work. The issue with < is similar to that of ==,
but the implementation is not quite as trivial and can more often be improved upon by a programmer
(using status quo techniques).

2.2 Easy to write
The less you have to write, the easier it is to write and the fewer mistakes you can make. Not writing
anything is best.

However, maybe you really do want to write something? Maybe you do want to choose between pass-
by-value and pass-by-reference? Maybe you want to decorate with noexcept, inline, or extern “C”?
Maybe you want to return a result that is not bool? The default definition approach may allow that
(depending on proposal details). The library support (I think), operator request, and built-in comparisons
approaches fall back on status quo for “non-default properties” of a comparison, just as they do for
comparisons for which the default semantics is not wanted.

The default definition and library support approaches simply beg for people to use macros to shorten
the definitions to something that looks very like the operator request notation, say EQ_OPERS(Thing) or
DEFAULT_COMPARISONS(Thing). This may also help readability, but as ever macros complicate tool
support and there would almost certainly be many variants of these macros in the various code bases.

2.3 Easy to teach

The built-in comparisons approach it trivial to teach. It is basically what non-C/C++-expects assume
anyway. The operator request is almost as easy. The other approaches and status quo are roughly
equivalent to each other. That is, they differ in readability and time needed to write, but the basic
approach to teaching is the same.

2.4 Better generated code

There is no reason for the different approaches should give quality-of-code differences. As with status
quo, the default definition approach gives the programmer control over the argument passing and
inlining. With the library support approach, | suspect we would eventually get the equivalent to the
default definition approach, but that might require a bit of tweaking of the library code to avoid having
to fall back to status quo.

In the operator request and built-in comparisons approaches, the code generation is up to the
implementation (like for generated assignment). This should be optimal.

Stroustrup Comparison Thoughts N4476

2.5 More stable ABI

On the surface, the default definitions and library support approaches have no ABI problems. Basically
the programmer is in control and the rules unchanged. However, that is in itself a problem. Do we want
to inline an ==? If not, we have no serious ABI problems. However, == (and <) can be performance
critical and for small comparison operations inlining is essential.

Should inlining/noninlining be under user control? If so, how? | don’t think this has been discussed in
sufficient detail, but by giving control to the compiler, the operator request, and built-in comparisons
approaches eliminate the problem (by reducing it to a previously solved problem: implementation of
structure assignment).

A comparison is part of what makes many common (user-supplied) types useful to the standard library.

Denying them a place in an ABI seriously lowers the utility of such an ABI and forces programmer to use
C-style ABIs and to limit their vocabulary to what C can support. This is a serious real-world problem and
leads to under-use of C++’s abstraction facilities.

The operator request and built-in comparisons approaches are a small step in the right direction.

2.6 Don’t be intrusive
In modern C++, we generally try to define features that can be used in combination without
modification. For example, we minimize binding by using free standing functions, such as

bool operator==(const T&, const T&);
Rather than requiring every T to have a

bool T::operator(const T&)
Member.

The operator request and built-in comparisons and default definitions approaches support that. The
other approaches do not: They are intrusive. Possibly, the library support approach could be modified to
support non-intrusiveness. However, it is not necessarily easy to write a comparison operator
nonintrusively: If the data members are not public it cannot be done in a standard way without language
support (as done for the operator request and built-in comparisons approaches).

2.7 Don’t break encapsulation

All approaches could follow the “the language should not do anything a programmer can’t write today”
guideline. However, that’s a library writer’s limitation. | see no reason for a language facility to obey it.
Stronger: we put into the language what can be better provided there than in a library.

Does generating == for a class “break encapsulation” because it involves access to private (and/or
protected) members? No. By definition, anything done by the language obeys the language’s rules. To
claim that a generated == breaks encapsulation is to claim that a generated = or constructor breaks
encapsulation. My view is that operations such as constructors, destructors, assignments, and — yes —

Stroustrup Comparison Thoughts N4476

comparisons are part of the fabric of the language, part of what makes a type a type, and therefore not
bound by the rules guiding a programmer (designing a new use of a type). | am on slightly firmer ground
here for == than for <, but ordering (when needed) is fundamental.

This question will come back with a vengeance when we consider more general compile-time reflection.
Certainly, generating an output operation from a type by examining its private data members is far more
dubious, yet useful.

2.8 Fewer faulty operations

Generating a “bad” comparison is — well — bad. This can (easily) happen with status quo. If | write six
operations there is a fair chance that | get something wrong (e.g., | might accidentally invert a
condition). Fortunately, unit testing is rather easy for this particular problem. However, if the
programmer does not write a function definition, this problem is eliminated.

A particularly nasty variant of the “the programmer gets it wrong” problem is the opportunity to forget
about a member when hand-writing constructors, assignments, and comparisons. This is especially
common/dangerous for simple classes (just a set of data members) and during maintenance (rather
than in the initial implementation. When adding a member it is easy to forget to update a constructor,
assignment, or comparison.

Only status quo and the library support approach leave open this possibility for errors. The three other
approaches shares with the library support approach the possibility that an operation generated
according to the language/library rules simply isn’t a good one (e.g., the < checks far too many members
or combines them in an undesirable way). However, this is the risk of generating standard versions; if
you like something else for a particular type, revert to status quo. Note that the operator requests and
built-in comparisons approaches allows the user to specify only == and/or < and have the rest
generated. The default definitions approach could have the same property.

2.9 Smaller language change
It is not easy to quantify “language change’” but

e Default definitions: We need to modify the rules for =default to cover comparison operators as
is already done for assignment (trivial, | suspect). We need to specify only the meaning
(semantics) of the operators, possibly in the form of code. We need to specify exactly what
(inline, noexcept, extern “C”, etc.) a user can write in a =default function definition.

e Library support: We need to specify a meta-program and (it seems) a few supporting classes.
This is all in the library. No core language change is needed. Conversely, the other approaches
should be core-language only. We need to specify exactly what (inline, noexcept, extern “C”,
etc.) a user can write in an comparison function definition and how/if such features are used in
the library functions.

e Operator requests: We need to specify the syntax (trivial) and the meaning (semantics) of the
operators. It is not hard to specify the semantics of == and < (N4475).

Stroustrup Comparison Thoughts N4476

e Built-in comparisons: We need to specify only the meaning (semantics) of the operators. It is not
hard to specify the semantics of == and < (N4475).

For the operator requests and built-in comparisons approaches, each implementation will have to define
an ABI. This might be an opportunity for cross-implementation cooperation.

2.10 Compatible

Adding comparisons is almost completely a pure extension. You could get an incompatibility from
someone being creative with SFINAE and Richard Smith had a real example where code took advantage
of a class not having comparisons. | conjecture than in the presence of SFINAE, no significant language
extension can be 100% compatible — after all, if | can write something with a new feature, it will
somehow be able to change the behavior of something (e.g., of a class of which a member uses my new
feature) that can be detected. For example, | can write a has_f<X>() function to detect whether an X can
be called with a function called f, so adding a function f to a program can be deemed an incompatibility.

For the comparison proposals, we can detect whether a class can be compared using ==. | suggest that
we simply ignore this. If we restrict ourselves to 100% compatible extensions, we should close up shop.
We should be very careful, but realize that a policy of 100% compatibility will prevent us from delivering
much needed facilities to the C++ community or into weasel wording. The built-in comparisons approach
should be deemed slightly less compatible than all others because no explicit action is needed by the
programmer to make its effects visible.

Consider Richard Smith’s example:
Expression e = a==b;

Where a and b are of a type Variable without a == operator. Instead, there is a function that builds an
Expression (an abstract syntax tree, | presume) from two Variables.

If we add == to Variable, we break this code. Either, the generated code causes an ambiguity with
Expression’s == (and we get a compile-time error) or Variable’s == is preferred (and we get a wrong
result (assuming that an Expression can be initialized by a bool)). For the operator requests, library
support, and default definition approaches, this is not a compatibility problem: just don’t request the
default comparisons. For the built-in comparisons approach, this is a silent breaking change and a user
of the Expression library would have to explicitly =delete the comparison operators for the library to
work correctly.

In terms of compatibility, the built-in comparisons approach is marginally weaker than any explicit
approach. However, except for “Richard’s example” and SFINA subtleties, this makes no difference.

How significant are the SFINA breakage? | suggest that it is insignificant and must be ignored.

How significant is “Richard’s example” as an example of AST use? It is clearly not negligible: Many
expert-level implementations of high-performance systems use ASTs to delay evaluation and fuse
operations. Not all rely on implicit conversions, though (here, Variable to Expression), so not all suffer

Stroustrup Comparison Thoughts N4476

this problem. Also, there is a remedy (=delete), but clearly this is a point where reasonably people can
disagree. Personally, | lean towards favoring the (by far most common cases) and generate == over the
rare (expert level) problem with some ASTs. Also, if we should “bother” anyone, we should bother a few
experts rather than a multitude of relative novices.

In the discussion, mutex and other types with “unusual semantics” were mentioned. These are not
affected because comparisons are not generated by default unless a class has default copy and move.

If we choose any explicit “opt-in” approach, many programmers will get into the habit of requesting
operators — either by default or reflexively if they get a compiler error from the lack of a comparison.
This will nullify much of the compatibility advantage of “opt-in.” | think that this point has been
underestimated in the discussions. People have assumed that an expert-level care and understanding
would be applied, but most classes are fairly trivial classes written by “average” programmers —some
with a habit of cut-and-paste and others following simple-minded rules of thumb found on the web.

There is another question relating to compatibility: Could we simplify the standard library be removing
the existing comparisons in favor of the defaults? Obviously, we need not do that. If we did, we would
have to examine the detailed semantics of the standard library comparisons to the defaults. | would
suspect that most of the ==s would be identical and that many of the library <s would have
optimizations. For the built-in comparisons and operator request approaches there would be the
guestion whether someone was using standard-library comparison function names (e.g., operator==)
explicitly.

2.11 Is it worthwhile?

When considering a language or standard-library extension, there is always the option of doing nothing.
That’s the easiest and most compatible solution. We add something to C++ (core language or standard
library) because we think that if may directly or indirectly (through better libraries) help many
programmers. By “many” | mean hundreds of thousands or even millions. Many features that would
help a few tens of thousands of programmers with more specialized needs have to be left off the list of
top-twenty proposals that could be handled in a given timeframe. They may fit better as special-purpose
extensions or special-purpose libraries (not standard-library components). A feature may fit into the
existing framework of the language/library (and may even complete it and remove a “wart”): aesthetics
matters because it translates into ease of use and ease teaching.

Comparisons are pretty fundamental. You can’t write any significant program without them. This is
recognized by having them as operators in the language and by having them defined 38 times for
standard library types. Not having comparisons for structs is a long-standing complaint against C and
C++. In C++, the problem is worse because we emphasize user-defined types, but more manageable
because users can often add comparisons themselves. | see adding better support for comparisons as
completing an aspect of the language (improving consistency and aesthetics) and removing a long-
standing annoyance to many novice and experiences programmers. Had C++ been defined today for the
uses we make of it, we would not have been having this discussion: Comparison operations clearly
belong in the code language. For example, see the definitions of the fundamental concepts: regular and

Stroustrup Comparison Thoughts N4476

ordered. Dennis Ritchie considered adding ==, but refrained primarily for compiler/implementation
issues that are not relevant today.

How do we decide what goes in the language and what goes into the standard library? If a facility can be
provided equally well as a library component and as a language feature, there is a strong argument for
having it as a library component (e.g., easier to prototype, to try out, and to distribute). However, library
components have implications on compile time, error messages, and the need to #include that may bias
a decisions against them. Long compile times seem to outstrip even “poor error messages” as the most
frequent user complains.

A rule of thumb (borrowed from Doug Mcllroy) is “if it is fundamentally new it should be a language
feature” also known as “if it does something different, it should look different.” Conversely, if it does
something very similar to an existing facility, it should look like that.

Is == like = (assignment) or like sqrt (square root)? If == is seen as part of the fabric of the language (like
structure assignment) it should be added in the same (or similar) way as = was (in the 1978 transition
from “K&R C” to “Classis C”). If it is just one of many things that a user might like to do with a type (like
sqrt) it should be a library function.

| see == very much like = and think that it belongs in the core language (Stepanov has == as part of the
definition of a regular type; EoP 1.5). The case for < is less clear, but | think of it as very like == from a
language-design point of view (Stepanov singles < out as the name of the natural total ordering; EoP
4.4). Thus, | think that the comparison operators belong in the core language, taking the built-in
comparisons approach or the operator requests approach.

All of the built-in types have ==.

3 Summary

Reasonable people can draw different conclusions from the analysis above. Much depends on views of
what is (or will be) common, of which kind of programmers should be served (“served first”?)? What is
the cost of “false positives” (where a unexpected comparison operation is used in real code)? What is
the cost of slightly slower compilations? How are ABIs defined? and more.

For me, after the extensive reflector discussion, the built-in comparisons approach has a slight but
significant overall edge over operator requests approach — and these two approaches on balance far
outstrips the other approaches (and status quo) for most programmers | can imagine.

4 Acknowledgements
Thanks to Oleg Smolsky for (re)raising the issue of default comparisons and to all the contributors to the
—ext debate on this issue.

Stroustrup Comparison Thoughts N4476

5. References
[Stroustrup,2015] B. Stroustrup: Default Comparisons. N4475.

	Thoughts about Comparisons (R2)
	Bjarne Stroustrup (bs@ms.com)

	Abstract
	1 Introduction
	2 Evaluation
	2.1 Easy to read
	2.2 Easy to write
	2.3 Easy to teach
	2.4 Better generated code
	2.5 More stable ABI
	2.6 Don’t be intrusive
	2.7 Don’t break encapsulation
	2.8 Fewer faulty operations
	2.9 Smaller language change
	2.10 Compatible
	2.11 Is it worthwhile?

	3 Summary
	4 Acknowledgements
	5. References

