Document Number: N4453

Date:

2015-04-12

Reply To Christopher Kohlhoff <chris@kohlhoff.com>

Resumable Expressions

1 Introduction

This paper proposes resumable expressions, a pure language extension for coroutines with the

following features:

Lightweight, efficient, “stackless” coroutines. Memory use is exactly what is
required. There is no need for reserved stack space.

Cheaply composable. Composition within a resumable expression can be as cheap as
a function call, and includes the opportunity for inlining.

No hidden memory allocations. The memory representation of a resumable
expression can be wherever you need it: on the stack, a global, or a member of a
possibly heap-allocated object.

Only one new keyword. Inspired by constexpr, a new resumable keyword that: 1)
introduces a resumable expression; 2) marks a resumable function; and 3) when
following the break keyword, defines a suspension point.

And perhaps most importantly:

Avoids viral flow control keywords. Keywords like await and yield are not
required. Coroutines are structured like normal code, and suspend down, which
means that as a consequence the language extension...

Enables code reuse between stackless and stackful coroutines, and normal threads.
Provides a building block for implementing resumable flow control patterns,
including (but not limited to) await and yield.

A resumable function looks like this:

resumable void print_1_to(int n)

t for (int i = 1;;) Indicates that the function is resumable
{
std::cout << i << std::endl;
if (++1i > n) break;
break resumable; — Suspends execution of the
} resumable function at this point
}

and is used in a resumable expression like this:

resumable auto r = print_1_to(5); — Declares a resumable object named r to evaluate

while (!r.ready()) the resumable expression print_1_to(5)
{ \
std::cout << "resuming ... ”; The ready function returns false until the
r.resume(); resumable expression completes normally
} \
to output: No code associated with the resumable
expression executes until we call resume()
resuming ... 1
resuming ... 2
resuming ... 3
resuming ... 4
resuming ... 5

N4453 - Resumable Expressions

2 Background

In Urbana, the committee discussed the alternative coroutines models put before it, namely
stackless coroutines and stackful coroutines.

One outcome of this discussion was an acceptance that each model addresses different use
cases, even if there is some overlap. Supporting these distinct uses is desirable, and as such
both models remain on the table.

Another outcome was a determination that the two models were different enough that it was
not worth trying to reconcile their syntax. Whereas stackful coroutines lend themselves to a
pure library implementation, both of the stackless proposals on offer introduced new control
flow keywords: await and yield.

Even so, a vocal minority maintained that the two models are not so fundamentally different
as to require a wholly different syntax. As we shall see below, introducing a new syntax,
purely for stackless coroutines, comes with significant costs in terms of maintainability and
usability.

3 Introducing resumable expressions

In this paper we will introduce a new stackless coroutine proposal that addresses these
limitations: resumable expressions. Modelled on constexpr, resumable expressions allow us to
develop lightweight resumable functions without peppering our code with special-purpose
keywords.

For example, when composing asynchronous operations it is no longer necessary to mark
each asynchronous call with the keyword await.

Example using N4286 resumable functions Equivalent using resumable expressions
std: :future<void> tcp_reader(int total) resumable void tcp_reader(int total)
{ {
char buf[64 * 1024]; char buf[64 * 1024];
auto conn = auto conn =
await Tcp::Connect("127.0.0.1”, 1337); Tcp::Connect("127.0.0.17, 1337);
do do
{ {
auto bytesRead = auto bytesRead =
await conn.read(buf, sizeof(buf)); conn.read(buf, sizeof(buf));
total -= bytesRead; total -= bytesRead;
} }
while (total > 0); while (total > 0);
} }

In the resumable expressions version of this example, the asynchronous operations
Tcp::Connect() and conn.read() are resumable functions. This means that we can call them
directly, and efficiently, just as though they were normal functions. There is no need to use a
future object to await their completion. Likewise, a resumable caller may incorporate our
tcp_reader() function into a larger asynchronous composition with the same cost as a
normal function call.

Similarly, when writing generators, we no longer need to use the yield keyword to generate
each value. The equivalent semantics can be obtained using normal functions or function
objects.

N4453 - Resumable Expressions

Example using N4286 resumable functions Equivalent using resumable expressions
generator<int> fib(int n) generator<int> fib(int n)
{ {
return {
[=](auto yield) mutable
{
int a = 0; int a = 0;
int b = 1; int b = 1;
while (n-- > @) while (n-- > 0)
{ {
yield a; yield(a);
auto next = a + b; auto next = a + b;
a =b; a = b;
b = next; b = next;
¥ ¥
}
s
¥ ¥

However, when using resumable expressions we are not required to use a type-erased
container to represent the resumable function object.

Example using N4286 resumable functions Equivalent using resumable expressions

template <class OutputIterator>

generator<int> fib(int n) void fib(int n, OutputIterator out)

{ {
int a = 0; int a = 0;
int b = 1; int b = 1;
while (n-- > @) while (n-- > 0)
{ {
yield a; *out++ = a;
auto next = a + b; auto next = a + b;
a =b; a =b;
b = next; b = next;
} }
} }

Notice anything? That's right: there is nothing specifically resumable about the version on the
right. It is a plain ol” function template, and it works equally well when called as either a
resumable function or as a regular function. However, there is no magic here: we are simply
delegating suspension of the resumable function down to the output iterator’s assignment
operator.

But isn’t this the downward suspension we already get with stackful coroutines? The
difference is that, being stackless, resumable expressions are truly lightweight. Memory usage
is exactly that required to represent the resumable function’s maximum stack depth, and no
more.

With nothing more than compiler support, resumable expressions provide a set of primitives
on which we can build rich library abstractions for lightweight and efficient coroutines. And,
perhaps more importantly, resumable expressions let us share library abstractions between
stackless coroutines, stackful coroutines, and normal thread-based code.

4 Suspension models for coroutines and resumable
functions

The key characteristic of a coroutine or resumable function is that it is able to suspend its own
execution. Control can pass out of a function body in such a way that it can be later resumed

N4453 - Resumable Expressions

at the same point. N4232 Stackful Coroutines and Stackless Resumable Functions describes two
models of function suspension: down and up-and-out.

The down model is used by stackful coroutines, such as the Boost.Coroutine library and
N3985 A proposal to add coroutines to the C++ standard library. To suspend, a resumable function
simply performs an ordinary function call to what looks like an ordinary library function. The
mechanics of suspension are delegated to this function.

void down_foo()

{
// ... do some work ...
suspend(); // suspend execution without returning from down_foo()
// ... resume here and do more work ...

}

The up-and-out model is used by stackless coroutines, such as N4286 Resumable Functions, and
N4244 Resumable Lambdas. In this model a resumable function suspends and returns control to
the caller. This is achieved with the help of new keywords, such as await and yield, which
act like a non-terminating return.

generator<int> up_and_out_foo()

{
// ... do some work ...
yield 42; // suspend execution and return 42
// ... resume here and do more work ...

}

4.1 Up-and-out goes viral

These two suspension models have significantly different implications when we try to
compose them in a call stack.

In the down model, stack composition is trivial. There is no requirement that the suspend()
library function be called directly. We are able to interpose other functions into the call stack
between our resumable function and the suspension point.

void down_bar()

{

// ... do some work ...

down_foo(); // suspension occurs inside down_foo()

// ... do more work here after returning from down_foo() ...
¥

With up-and-out, however, all functions in the stack must be explicitly marked as resumable.
A caller suspends its own execution before invoking a callee. Only after the callee returns,
and is in its terminal state, will the caller continue. This control flow is automatically
managed by the new keywords, await and yield.

generator<int> up_and_out_bar()

{

// ... do some work ...

int a = await up_and_out_foo(); // suspend until up_and_out_foo() completes

// ... resume here and do more work ...
}
As a consequence, up-and-out resumable functions have a viral impact on codebases. When
we discover that, deep in a call stack, we have a newfound need to suspend execution, we
must change all calls in that stack to be resumable.

Conversely, whenever we make a call to a resumable function we must remember to annotate
the call with an await keyword. Failure to do so can result in hard to diagnose bugs due to
the inadvertent addition of concurrency. For example:

N4453 - Resumable Expressions

std::future<void> tcp_writer(int total)

{
auto conn = await Tcp::Connect("127.0.0.1”, 1337);
for (53)
{
std::vector<char> data = generator_data();
conn.write(std: :move(data)); Oops, write is asynchronous but
. HH 5
update_connection_statistics(); we forgot to put await on this line
p— — B -
¥
¥

This code is an attempt to implement a business requirement that states that, after every
write(), we update some data via a call to update_connection_statistics(). The
requirement also stipulates that update_connection_statistics() not be called until the
side effects of the preceding write operation have been established.

Most of the time this implementation will work successfully, as the write operation completes
immediately. Occasionally, however, TCP flow control will delay the write, and consequently
the tcp_writer function will start a call to update_connection_statistics() before the
write completes.

Resumable functions using the down model do not suffer from this issue. Under the down
model, from the outside our connection’s write() looks and behaves like a normal function:

class Tcp

{
public:
/] ...
void write(std::vector<char> data);

/...
¥
That is, it does not return control to its caller until it has established its side effects.
Consequently, under the down model, we can implement our requirement without the
accidental introduction of concurrency:

void tcp_writer(int total)

{
auto conn = Tcp::Connect("127.0.0.1”, 1337);
for (53)
{

std::vector<char> data = generator_data(); Ne it vrd required on this 1
conn,wr-ite(std: :move(data)); e 0 awalt Keyworad required on this line

update_connection_statistics();
} \

}

Cannot get to this line

until write() is complete

4.2 Islands of abstraction

Even though N4286’s up-and-out resumable functions require new keywords, the overall
control flow is still the same imperative approach found elsewhere in the language. Thus, as
resumable functions pervade a codebase, developers will naturally wish to employ reusable
abstractions for coordinating them. Unfortunately, we come unstuck as soon as we try to use
the standard algorithms.

std::future<void> tcp_sender(std::vector<std:string> msgs)
{
auto conn = await Tcp::Connect("127.0.0.1”, 1337);
std::for_each(msgs.begin(), msgs.end(),
[&conn](const std::string& msg)
{
await conn.write(msg.data(), msg.size());

1)

Not going to work

N4453 - Resumable Expressions

We are forced to develop alternative algorithms that know about await.

template <class I, class F>
std::future<void> resumable_for_each(I begin, I end, F f)

{
for (I iter = begin; iter != end; ++iter)
await f(*iter);

}

std::future<void> tcp_sender(std::vector<std:string> msgs)

{
auto conn = await Tcp::Connect("127.0.0.1”, 1337);
resumable_for_each(msgs.begin(), msgs.end(),
[&conn](const std::string& msg)

{

await conn.write(msg.data(), msg.size());
s
¥

Over time we may end up with a complete set of await-enabled algorithms that mirror the
existing standard algorithms. These algorithms will be independent and not interoperable
with the existing algorithms. They are islands of abstraction.

4.3 A way forward

The problems presented above are purely associated with the up-and-out model of resumable
functions. Stackful coroutines, which suspend down, do not suffer from these issues.

N4232 asserts that up-and-out is in the very nature of stackless coroutines, but is that
necessarily so? Might we be able to have stackless coroutines that, syntactically, use the down
model of suspension?

5 Evaluation modes in C++

C++14 currently has two modes of evaluation:

1. Evaluation during program execution, on the abstract machine.
2. Evaluation during translation, but following the rules of the abstract machine.

The latter mode is, of course, that used by constant expressions.
More concretely, when we write:
auto x = expression ;

the compiler has the opportunity to evaluate expression using either mode. If it is able, then as
an optimisation it will evaluate it during translation. Otherwise, the value assigned to x will
be determined during program execution.

However, when we write:
constexpr auto x = expression ;

the compiler has no such freedom. By specifying constexpr we have constrained the
compiler to the mode where evaluation occurs during translation. If it is unable to do so, the
program is ill-formed and the compiler issues a diagnostic. Put another way, the constexpr
keyword in the above statement “activates” the evaluation mode for constant expression.

6 The resumable expressions approach

6.1 Underlying design principle
As of today, a C++ compiler can take the statement:

6

N4453 - Resumable Expressions

constexpr auto x = expression ;

and, during translation, transform expression into a constant that is named x. With C++14 we
also have relaxed constexpr, and expression may include calls to functions that include loops,
branches, and so on.

We can think of constexpr as a special case of a more general form. Given a suitable
identifying keyword, it is also feasible for a compiler to read:
kReyword type x = expression ;

and subsequently transform expression into some other form during translation.

6.2 Keyword resumable and the representation of a resumable object

Resumable expressions are identified by a new keyword, resumable:
resumable auto r = expression ;

This declares a new variable r, where r is a resumable object. The type is auto as the compiler
generates a corresponding class definition for r, of an unspecified type R, which looks like
this:

class R

{

public:
typedef decltype(expression) result_type;
bool ready() const noexcept;
void resume() noexcept(noexcept(expression));
result_type result();
R(const R&) = delete;
R& operator=(const R&) = delete;

} r{unspecified};

The key features of this class are described below.
typedef decltype(expression) result_type;

Identifies the type of the expression. Expressions of type void are allowed.
bool ready() const noexcept;

Returns true only when evaluation of the expression has completed and the result of
the evaluation is available.

void resume() noexcept(noexcept(expression));

Requires that ready() == false. Resumes evaluation of the expression so that it
executes until it reaches the next suspension point. Throws only if the expression
throws, i.e. any exception thrown by the expression is allowed to propagate to the
caller.

result_type result();

Requires that ready() == true. Returns the result of the evaluation. May be called at
most once.

R(const R&) = delete;
R& operator=(const R&) = delete;

The “stack” of the resumable function is stored as a data member of the class R. A
resumable function may take the address of its local variables and store them across
suspension points. Copying and moving is inhibited to prevent this local variable
aliasing from causing issues.

r{unspecified};

Any variables used in the expression are captured by reference.

N4453 - Resumable Expressions

6.3 Resumable objects as data members

Resumable objects are non-copyable and non-moveable, but we still want to be able to use
them as data members and allow them to reside within heap-allocated objects. To enable this,
the resumable keyword can be applied to non-static data members, provided the data
member has an initialisation expression.

For example, the following template allows a zero-argument resumable function to be
captured and allocated on the heap:

template <class F>
struct resumable_wrapper

{
explicit resumable_wrapper(F f) : f_(f) {}
Ff_;
resumable auto r_ = f_();

b

template <class F>
resumable_wrapper<F>* alloc_resumable_wrapper(F f)

{

return new resumable_wrapper<F>(std: :move(f));

}

6.4 Keyword resumable applied to functions

The resumable keyword may be specified on function definitions:

resumable void foo()

{
}

The resumable keyword may also be specified on a function declaration. If a function is
declared or defined resumable then all declarations and definitions must specify the
resumable keyword.

Like constexpr or inline functions, functions marked as resumable may be defined in more
than one translation unit.

The resumable keyword may not be used on virtual functions.

6.5 The break resumable statement

A statement of the form
break resumable;

marks a suspension point in a resumable function. However, a resumable function is not
required to contain a break resumable statement. Instead, it may call another function that
contains the statement. For example:

resumable void foo()

{

break resumable;

}

resumable void bar()

{
foo();

}

A break resumable statement may occur only when evaluating a resumable expression,
otherwise the program is ill-formed. This means that a function containing this statement
cannot be called in non-resumable contexts.

N4453 - Resumable Expressions

6.5.1 Resumable and non-resumable functions

All functions, including template specializations and template instantiations, can be classified
as either resumable or non-resumable.

Any function declared with the resumable keyword is resumable.

For inline functions and functions defined within a class definition, the resumable keyword
may be omitted. The function is resumable if it contains a break resumable statement or a
call to another resumable function.

For lambdas, the resumable keyword is not used. A lambda’s function call operator is
resumable if it contains a break resumable statement or a call to another resumable function.

For function templates and member functions of a class template, the resumable keyword
may be omitted. When template instantiation occurs, a determination can be made as to
whether a function is resumable or non-resumable. It is resumable if it contains a break
resumable statement or a call to another resumable function. This permits templates to make
calls to other potentially resumable functions, dependent on a template parameter.

For a function template specialization to be resumable, it must either be inline or be declared
with the resumable keyword. Extern templates cannot be resumable.

For polymorphic lambdas, the function call operator is considered a function template and
treated as described above.

All other functions are non-resumable.

6.6 Restrictions on resumable functions

When a resumable function is used in a resumable expression, the definition of the function
must appear before the end of the translation unit.

You cannot take the address of a resumable function.
Resumable functions cannot be virtual.

Resumable functions cannot be recursive.

6.7 New evaluation mode
Let us introduce a new, third mode of evaluation:

3. Transformation to a resumable object during translation. Evaluation of the resumable
object occurs during program execution.

This is the evaluation mode used for resumable expressions. When the compiler encounters a
statement of the form:

resumable auto x = expression ;

it activates the resumable expression evaluation mode in order to transform the expression.

6.8 Evaluation mode rules

Whether a particular function can be called depends on the active evaluation mode. For
example, non-constexpr functions cannot be called when in the evaluation mode used for
constant expressions. The corresponding rules for resumable functions are shown in the table
below.

N4453 - Resumable Expressions

Active evaluation

Call to a resumable function

Call to a non-resumable function

mode

Program execution IlI-formed. OK.
The function definition is also
evaluated in program execution
mode.

Constant expression | Ill-formed. OK if the function is marked
constexpr, otherwise ill-formed.
The function definition is evaluated
in constant expression mode.

Resumable OK. OK.

expression The function definition is The function definition is evaluated

evaluated in resumable
expression mode.

in program execution mode. (This
means that such a function can
never be part of a suspended
resumable object’s call stack.)

6.9 Nested resumable expressions

A resumable function is allowed to contain a resumable expression. For example:

resumable void inner(int n)

{
for (int i = 1;;)
{

std::cout << i << std::endl;

if (++1i > n) break;
break resumable;
¥
¥

resumable void outer(int n)

{

for (int i = 1; i <= n; ++i)

{

resumable auto r = inner(i);

while (!r.ready())
{

std::cout << "inner resume ... ";

r.resume();
break resumable;
}
¥
¥

int main()

{

resumable auto r = outer(5);

while (!r.ready())
{

std::cout << "outer resume ... ";

r.resume();

}
}

10

N4453 - Resumable Expressions

However, a resumable object’s resume() member function is always non-resumable. This
allows us to nest resumable expressions without creating any confusion as to which
resumable object a break resumable statement applies to. Each resumable expression is a
self-contained object and the compiler does not need to consider the nested resumable
expression as part of the outer resumable expression’s “call stack”.

6.10 Restrictions on the standard library

Standard library functions and template specializations are resumable if, and only if, they are
explicitly specified to be so using the resumable keyword. Standard library templates may be
instantiated as either resumable or non-resumable functions unless the resumable keyword is
specified.

7 Implementation strategy

Given a resumable function:

resumable void print_1_to(int n)

{
for (int i = 1;;)
{
std::cout << i << std::endl;
if (++1i > n) break;
break resumable;

}
}

that is used in a resumable expression:
resumable auto r = print_1_to(5);
the compiler may generate the following code to represent the resumable object r:

class R

t / The current suspension point is
int __state = 0;

- stored as a data member

int n, i;\
public:

typedef void result_type;

Local variables are stored

as data members

explicit R(int __arg@) : n(__arge) {}
bool ready() const noexcept { return __state == ~0; }
result_type result() {}

void resume() When resuming, jumps immediately
{ to the current suspension point
switch (__state)

case 0:

{ / Local variables are explicitly
for (new (&1i) int(1);;)

constructed and destroyed

{
std::cout << i << std::endl;
if (++i > n) break; / At . ints. the state i
. SLISpCﬂSlOﬂ pOlﬂ S, the state 1S
state = 1; goto __bail; case 1:;
} {— 8 - ’ 5 saved and it jumps to the end
__state = ~0; default:
_bail M \
} Once a function reaches the
} terminal state it stays there

R(const R&) = delete;
R& operator=(const R&) = delete;
} r{5};

11

N4453 - Resumable Expressions

8 Further work

8.1 Allowing copyability

By allowing copyability of resumable objects, we enable interesting use cases such as undo
stacks. Although this behaviour comes with risk associated with aliasing of local variables, an
explicit opt in may be feasible.

8.2 Overloading on resumable

It may be worth allowing multiple overloads of a function that differ only in the presence of
the resumable keyword. The selected overload is determined based on whether the current
evaluation mode is for a resumable expression or not.

9 Prototype

A prototype of the resumable expressions language extension may be found at:

This prototype emulates the runtime behaviour of resumable expressions using the
Boost.Coroutine library and suitably defined pre-processor macros. As a consequence there
are minor differences in syntax:

Proposed syntax Emulated syntax
break resumable; break_resumable;
resumable auto r = expression; resumable_expression(r, expression);

Furthermore, the prototype does not enforce the compile-time rule that break resumable
statements appear only in resumable expressions.

10 Examples

Please note that resumable expressions are a pure language feature. The examples below are
for illustrative purposes only, and the library abstractions presented are not part of the
proposal.

10.1 A simple generator

The following example is a simple generator, implemented using the resumable expression
primitives directly.

resumable void fib(int n, int& out)
{

int a = 0;

int b = 1;

while (n-- > @)

{ / Set the output value
out = a;

break resumable;——-___________

auto next = a + b; Suspend execution until the caller

a =b; has consumed the output value
b = next;
}
}

It is callable like this:

12

N4453 - Resumable Expressions

int out;

resumable auto r = fib(10, out);
while (!r.ready())

{

r.resume();
if (!r.ready())
std::cout << out << std::endl;

}

However, for typical usage patterns, like generators, we do not want to have to use these low
level primitives. Fortunately, resumable expressions allow us to build library abstractions on
top. For generators, there are two parts to this:

* An abstraction for the act of yielding a value.
* An abstraction for a generator object, to allow the generated values to be consumed.

The following two sections illustrate how we might implement this library abstraction.

10.2 Implementing “yield” in a library
To implement generators, we first want an abstraction for yielding a value. The following
example shows one possible approach:

template <class T>
struct yielder

T& out;
void operator()(T t)
{ out = t: No resumable keyword required on inline
’ functions - the use of break resumable
break resumable; .) .
} automatically makes it a resumable function
b

This is then used to implement our fib() function:

resumable void fib(int n, yielder<int> yield)
{
int a = 0;
int b = 1;
while (n-- > @)

{ / Execution of the resumable function is
yield(a);

suspended inside the function call

auto next = a + b;
a =b;
b = next;

10.3 Type-erased generators and separate compilation

The definition of a resumable function must appear before the end of any translation unit in
which it is used. What if we want our fib() function to be separately compiled? One solution
is to introduce a type-erased generator wrapper. This wrapper will present a generator as an
object from which we can conveniently consume the generated values.

// Declaration in .h file:
generator<int> fib(int n);

A type-erased wrapper for generators

13

N4453 - Resumable Expressions

// Definition in .cpp file:
generator<int> fib(int n)

{

}

A function object, similar to the previous yielder<T>
return { X example, that contains the suspension point
[=](auto yield) mutable
{
int a = 0;
int b = 1; Lambdas are automatically considered resumable
while (n-- > @) if they contain a call to a resumable function
{
yield(a);
auto next = a + b;
a = b;
b = next;
}
}
s

What follows is one possible implementation for this type-erased wrapper:

// An exception to be thrown when the generator
// completes and has no further values

class stop_generation :

std::exception {};

// The base class for all generator implementations
template <class T>
struct generator_impl_base

{

3

virtual ~generator_impl_base() {}

virtual T next() = 0;

// A concrete generator implementation
template <class T, class G>

struct generator_impl :

{

3

generator_impl(G g)
: generator_(g) {}

virtual T next()
{

r_.resume();

if (r_.ready())

generator_impl_base<T>

Resume until the user-supplied
generator type yields the next value

The resumable expression has been fully evaluated,
throw stop_generation();—”””’, p X

return value_;

}

G generator_;
T value_;
resumable auto r_ = generator_(
[v = &value_](T next) {
*v = next;
break resumable;

s

meaning the generator has no more values

A resumable object may be a data member, provided it

has a resumable expression as a member initializer

™~

The user-supplied generator object is called with a
lambda that abstracts away the yield operation,
similar to the previous yielder<T> example

14

N4453 - Resumable Expressions

// The type-erased generator wrapper
template <class T>
class generator
{
public:

template <class G>

generator(G g)

: impl_(std::make_shared<generator_impl<T, G>>(std::move(g))) {}

T next() { return impl_->next(); }

private:
std::shared_ptr<generator_impl_base<T>> impl_;

b
To add support for allocators, we simply need to provide an additional constructor that
accepts an allocator:

// The type-erased generator wrapper

template <class T>

class generator

{

public:
/! ...
template <class G, class Allocator>
generator(std::allocator_arg_t, const Allocator& a, G g)

: impl_(std::allocate_shared<generator_impl<T, G>>(a, std::move(g))) {}

/! ...

s

Using the allocator is simply a matter of calling the appropriate generator<T> constructor.
The allocator does not have to be part of the fib() function’s parameter list.

// Definition in .cpp file:
generator<int> fib(int n)

{
return {
std::allocator_arg, my_allocator_obj,
[=](auto yield) mutable
{
/] ...
}
s
}

Now that our generator wrapper is complete, we can use the separately compiled fib() as
follows:

int main()

{
try
{
auto gen = fib(10);
for (55)
std::cout << gen.next() << std::endl;
¥
catch (stop_generation&)
{
¥
¥

10.4 Generic generators

So far our generator examples have been resumable functions. However, we want to be able
to write our algorithms so that they are reusable in both normal and resumable contexts. To

15

N4453 - Resumable Expressions

do this, we simply write our algorithm as a template, and make the usage of break
resumable dependent on a template parameter.

template <class OutputIterator>
void fib(int n, OutputIterator out)
{
int a = 0;
int b = 1;
while (n-- > @)
{

*out++ = a;—mm

No resumable keyword required on function templates

Whether or not it is resumable depends on
auto next = a + b; calls that involve the template parameter
a = b;
b = next;
¥
}

This generic generator can be used in normal, non-resumable code:

std::vector<int> v;
fib(10, std::back_inserter(v));
for (int i: v)

std::cout << i << std::endl;

Or, with a suitable iterator:

template <class T>
struct resumable_iterator
{
T& out;
suspending_output_iterator& operator*() { return *this; }
suspending_output_iterator& operator=(T t)
{
out = t;
break resumable;
return *this;

}
// Other members as required by OutputIterator requirements
¥
we can use our generic iterator as part of a resumable expression:
int out;
resumable auto r = fib(10, resumable_iterator<int>{out});
for (53)
{

r.resume();
if (r.ready()) break;
std::cout << out << std::endl;

}

10.5 Implementing “await” in a library

Let us assume we want to use an asynchronous operation that signals its completion via a
future. For example, we may have a function that “sleeps” for a specified length of time,
declared as:

future<void> sleep_for(std::chrono::milliseconds ms);
This particular incarnation of future<> allows us to attach a continuation using then():
sleep_for(std::chrono::millseconds(500)).then([]{ /* ... */ });

This approach quickly becomes unwieldy as our sequence of continuations evolves to more
than a simple, linear chain. Therefore, we would like to be able to use this, and other future-
based operations, within a resumable function. This would allow us apply the control flow
constructs with which we are all familiar - if, while, for, function calls, and so on - to the
problem of composing asynchronous operations.

16

N4453 - Resumable Expressions

To do this, we will define a function called await() that suspends the calling resumable
function until a future is ready. The await() function would be used as in the following

example:
resumable void print_1_to(int n)
{
for (int i = 1;;)
{
std::cout << i << std::endl;
if (++1i > n) break;
await(sleep_for(std::chrono::milliseconds(500)));—— The resumable function is suspended
} here until the future becomes ready
}
int main()
{
spawn([]{ print_1_to(10); }).get();
}

What follows is one possible implementation for the await() function. We will begin by
implementing a base class, waiter, for the representation of a running resumable function.

class waiter :
public std::enable_shared_from_this<waiter>

{
public:
virtual ~waiter() {} This function runs the resumable function
until it is suspended by waiting on a future
void run()
{
struct state_saver A thread-local variable keeps track
{ of the active resumable function
waiter* prev = active_waiter_;
~state_saver() { active_waiter_ = prev; }
} saver; A mutex ensures that the resumable function
active_waiter_ = this; can run from only one thread at a time
std::lock_guard<std::mutex> lock(mutex_);
nested_resumption_ = false; This member is used to detect when an
do_run(); ~)) o await() call completes immediately
} The derived class implements this virtual
function to run the concrete resumable function
resumable void suspend() This function suspends the resumable function
{ until it is woken by a call to resume ()
assert(active_waiter_ == this);\
if (!nested_resumption_)
{ It may be called only by the currently active resumable function
active_waiter_ = nullptr;
break_resumable; —— 8
} - ? As long as there has been no nested call to resume(),
} then the resumable function suspends itself

void resume() NS This function resumes a resumable

{ function when the future becomes ready
if (active_waiter_ == this)
nested_resumption_ = truej——1m~701
else If the current thread is already running the resumable
run(); function, indicate that a nested resumption has occurred
}

Otherwise, call run() to resume running
the resumable function from this thread

17

N4453 - Resumable Expressions

static waiter* active()
return active_waiter_;

}

private:
virtual void do_run() = ©;

std::mutex mutex_;
bool nested_resumption_ = false;
static __thread waiter* active_waiter_;

3

Next we have a class template, derived from waiter, as the concrete representation of a

resumable function.

template <class F>
class waiter_impl : public waiter
{
public:
explicit waiter_impl(F f) :
f_(std::move(f)) {}

This function is called from waiter: :run
private:
virtual void do_run()

{ It keeps the resumable expression
while (active() == this && !r_.ready()) / executing until it waits on a future or

r_.resume(); until the expression is fully evaluated

Ff_; / A resumable object that evaluates the
resumable auto r_ = f_(); function object f_ as a resumable expression
b

Next we implement a spawn() function to create a new waiter for a given
function, start it, and return a future to allow us to wait for it to complete.

template <class F>
void launch_waiter(F f)
{
std: :make_shared<waiter_impl<F>>(std::move(f))->run();

}

template <class Resumable>
auto spawn(Resumable r,
typename std::enable_if<
std::is_same<
typename std::result_of<Resumable()>::type,
void
>::value
>::type* = 0)
{
promise<typename std::result_of<Resumable()>::type> p;
auto f = p.get_future();

18

resumable

N4453 - Resumable Expressions

launch_waiter(
[r = std::move(r), p = std::move(p)]() mutable
{
try
{
r();
p.set_value();
}
catch (...)
{
p.set_exception(std::current_exception());
}
s

return f;
}
The implementation of await() is straightforward.

template <class T>
resumable T await(future<T> f)

{ / First get the currently active
waiter* this_waiter = waiter::active(); resumable function
sumae

assert(this_waiter != nullptr);

future<T> result;
f.then([w = this_waiter->shared_from_this(),
&result](auto f)

/ Then attach a continuation to the future to
save the result and resume the function

{

result = std::move(f);
w->resume();

s

/ Suspend the resumable function until the continuation is invoked
this_waiter->suspend();

return result.get();

Finally, return the result contained in the future

10.6 Separate compilation of asynchronous operations

As noted above, the definition of a resumable function must appear before the end of any
translation unit in which it is used. Should we wish to use separate compilation for our
resumable function, we can trivially do so by using the spawn() function defined above.

// Declaration in .h file:
future<void> print_1_to(int n);

// Definition in .cpp file:
future<void> print_1_to(int n)

{
return spawn([n]
{
for (int i = 1;;)
{
std::cout << i << std::endl;
if (++1i > n) break;
await(sleep_for(std::chrono::milliseconds(500)));
}
s
}

We can then compose this operation using our await() function.

resumable void print_numbers()

{
await(print_1_to(10));
await(print_1_to(5));
¥

19

N4453 - Resumable Expressions

10.7 Efficient composition of asynchronous operations

When separate compilation is not required, we can achieve more efficient composition by
simply calling other resumable functions directly, just as you would any other function.

resumable void print_1_to(int n)

{
for (int i = 1;;)
{
std::cout << i << std::endl;
if (++1i > n) break;
await(sleep_for(std::chrono::milliseconds(500)));
}
}

resumable void print_numbers()

{
print_1_to(10);
print_1_to(5);
}

Using the “normal” function call idiom for composition brings several advantages:

* it limits the viral proliferation of await() throughout our source code;
* we do not have to worry about forgetting to call await(); and
* itis as cheap as an inlined function call.

Furthermore, since function templates may be used in either resumable or non-resumable
contexts, we can easily reuse generic algorithms.

resumable void print_numbers()

{
std::vector<int> v = {1, 2, 3, 4, 5 };
std::for_each(v.begin(), v.end(), []1(int n){ print_1_to(n); });
¥

10.8 Integrating asynchronous operations that use completion handlers

Asynchronous operations using Boost.Asio’s completion token mechanism! may be seamlessly
integrated by building on the same infrastructure as await().

resumable void echo(tcp::socket socket)

(use_await, the initiating function
for (53) suspends the current resumable function
) . .
{ until the operation completes

When we pass the completion token

char data[1024];
size_t n = socket.async_read_some(buffer(data), use_await);
async_write(socket, buffer(data, n), use_await);
}
}

Once the operation completes, the initiating

function returns the result of the operation

To implement this we begin by defining the completion token type.

constexpr struct use_await_t

{
constexpr use_await_t() {}
} use_await;

Our completion token has a corresponding completion handler type:

1See

20

N4453 - Resumable Expressions

template <class... Args>

struct await_handler;

which we associate with our completion token by specializing the handler_type trait. This
trait generates a completion handler type given a completion token and a call signature.
template <class R, class... Args>

struct handler_type<use_await_t, R(Args...)>

{
typedef await_handler<Args...> type;

b
For brevity, we will show only the await_handler<> partial specialization that implements a
completion handler that has an error_code as its first argument.

template <class... Args>

struct await_handler<std::error_code, Args...>
{ The function call operator is invoked when
await_handler(use_await_t) {} the asynchronous operation completes
void operator()(const std::error_code& ec, Args... args) Any error is captured
{ as an exception
if (ec)
*this->exception_ = std::make_exception_ptr(std::system_error(ec));
else

this->result_->reset(std::make_tuple(std::forward<Args>(args)...));

\ Otherwise, the result is

Then we can resume running packaged in a tuple

this->waiter_->resume(); —

}

the resumable function

typedef std::tuple<std::decay_t<Args>::type...> tuple_type;
std::shared_ptr<waiter> waiter_;
boost::optional<tuple_type>* result_ = nullptr;
std::exception_ptr* exception_ = nullptr;

3

Next, we require some helper functions to unpack the tuple that contains the result. This
result will be returned from the initiating function.

template <class... T>

inline std::tuple<T...> get_await_result(std::tuple<T...>& t)
{ \

If the tuple contains two or
return std::move(t); ple cc S two ¢

} more elements we use it as-is

template <class T>

inline T get_await_result(std::tuple<T>& t)——0 1

{ If the tuple contains just one
return std::move(std::get<0>(t)); element we use that

}

inline void get_await_result(std::tuple<>& t) —m— _

{ For empty tuples we return void

}

We finish by specializing the async_result trait, which is used to associate the completion
handler with the initiating function’s return type and value.

template <class... Args>
class async_result<await_handler<Args...>>

{

public:
typedef typename await_handler<Args...>::tuple_type tuple_type;
typedef decltype(get_await_result(std::declval<tuple_type&>())) type;

21

N4453 - Resumable Expressions

explicit async_result(await_handler<Args...>& handler)—”'/’— This constructor is called just before

{

assert(waiter::active() != nullptr);

handler.waiter_ = waiter::active()->shared_from_this();\\\\

handler.result_ = &result_;

handler.exception_ = &exception_;

/

resumable type get()

{
waiter::active()->suspend();
if (exception_)
std: :rethrow_exception(exception_);
return get_await_result(result_.get()); ——
}
private:

the asynchronous operation starts

Store the current resumable
function (waiter), and space for the
result, into the completion handler

This function is called just before

the initiating function returns

boost::optional<tuple_type> result_;

std::exception_ptr exception_;

3

10.9 Generic asynchronous operations

Suspend the resumable function until
the completion handler is invoked

Return the result of the asynchronous operation

Ideally, we want to be able to compose our asynchronous operations as generic algorithms

that work equally well with resumable expressions, stackful coroutines, and normal threads.

The solution is the same as we saw above for generators: we write our algorithm as a

template, and make the usage of break resumable dependent on a template parameter.

We can achieve this by defining new synchronous completion token type requirements, which
are a refinement of N4045’s completion token requirements. These new requirements behave

as illustrated in the code below.

template <class SyncCompletionToken>
void echo(tcp::socket& socket, SyncCompletionToken token)

{
for (53)
{
char data[1024];

size_t n = _socket.async_read_some(buffer(data), token); the operation is complete ...

async_write(socket;
¥
¥

ta, n), token);

A synchronous completion token

When the token is passed to an
asynchronous operation, the

initiating function suspends until

... and then returns the result

The use_await completion token we implemented above is one implementation of the

synchronous completion token requirements.

echo(my_socket, use_await);

Boost.Asio’s stackful coroutine support provides another implementation.

[1(yield_context yield) {
/! ...
echo(my_socket, yield);
¥

Finally, N4045 section 7.5, Synchronous execution contexts, shows a possible synchronous

completion token implementation that blocks the current thread.

echo(my_socket, block);

22

N4453 - Resumable Expressions

11 Acknowledgements

The author would like to thank Jamie Allsop, Botond Ballo, Thorsten Ottosen, Geoffrey
Romer, Nevin Liber, and Nate Wilson for their feedback on this proposal.

23

