Executors and schedulers, revision 5

Document number: ISO/IEC JTC1 SC22 WG21 N4414
Supersedes: ISO/IEC JTC1 SC22 WG21 N4143
ISO/IEC JTC1 SC22 WG21 N3785
ISO/IEC JTC1 SC22 WG21 N3731
ISO/IEC JTC1 SC22 WG21 N3378=12-0068
ISO/IEC JTC1 SC22 WG21 N3562
Date: 2015-04-10
Authors: Chris Mysen
Reply-to: Chris Mysen <mysen@google.com>

I. Motivation

This proposal is a small set of revisions and some clarifications on the wording in N4143
presented by Chandler Carruth in Urbana. The core design principle are around creating a
simple framework for task execution that can resolve the core issues with thread lifetime in
std: :async and provide a clear set of definitions about what the responsibilities and
functionalities are of any executor.

As such, the proposed design here is a fairly minimal subset of executor functionality which
simplifies many of the core use cases for task execution. This is not meant to be the only or
final executor interface, but rather is the core interface. This document will cover some of the
possibilities for extension of the interface, but does not propose those as part of the core.

It should be noted that the particular design of a given executor can have a large impact on
the performance trade-offs and behaviors of the executor, for example a standard thread pool
is relatively simple with reasonable sequencing of tasks due to a global queue, but a
work-stealing thread pool can be high performance for small tasks and for parallel functions,
at the cost of complexity and task ordering. Or a priority queue based thread pool can provide
better control over task ordering, but at increased risk of priority inversions. As such, the
proposal is that the core interface be generic enough to handle many of the common use
cases, but proposes several executor implementations which have been found to be useful in
many common contexts.

Il. Design

Il.1. Reference Implementations

A reference implementation for this design is WIP in the following location:
e https://github.com/ccmysen/executors_r5

https://github.com/ccmysen/executors_r5

There are two related reference implementations of this design. The first is the core/minimal
set presented in N4143 (revision 4 of this paper), the second has some additional functionality
(including timers) from the Redmond paper.

e https://github.com/ccmysen/executors_r4

e https://github.com/arturl/executors

I1.2. Core Design Philosophy

There has been significant discussion around the role of an executor and the basic
requirements around it. This proposal revolves around the principle that the primary role of an
executor is to provide a context in which to execute tasks. This context should trivially be able
to be passed between functions and objects. And this context is responsible for maintaining
and cleaning up the resources associated with task execution (including the tasks
themselves). The actual policies of execution are defined by the concrete executor
implementations.

As such, the core executor interface only provides a mechanism for adding tasks to an
executor for subsequent execution. Despite the simplicity of this interface, the abstraction is
still quite powerful and several complex behaviors can be implemented on top of this
interface.

Additional behaviors of the concrete executors (such as querying executor state or variations
of functions to add tasks) are considered to be extensions of this core behavior and are thus
out of scope of the core executor interface.

Moreover, the design approach outlined in this paper is such that an executor includes the
context in which tasks are executing and is not strictly a lightweight object. This is opposed to
what is proposed in N4156 in which the context is decoupled from the execution interface.
The statement there is that the context has-a executor, whereas the statement here is that the
context is-a executor.

Il.3. Motivating Examples

There are number of simple and moderately difficult use cases which are intended to be made
simple with the executor programming model. It is primarily intended to be a task concurrency
model but can also be used for a number of parallelism use cases given more specialized
executor models. It is important to think of executors as an important part in answering a set
of questions:

1. What to execute
2. When to execute it

https://github.com/ccmysen/executors_r4
https://github.com/arturl/executors

3. Where to execute it (the context to execute it in)
4. How to execute it (the policies/parameters to apply to execution)

The most trivial use case is the equivalent of std::async with slightly less painful blocking
behavior (what and where):

auto fut = std::spawn(std::system executor::get executor(),
std: :make package ([&] { /* do some work */ return x; });

/* do a bunch of stuff */
async_result = fut.get();

So this is pretty trivial, but handles the common use case.

But of course use cases are more complex than that, and many of the modifications on this
core behavior either are looking for more complex sequences of events, for more efficiency,
or for stronger guarantees of execution.

Let’s say that you had a sequence of operations you wanted to run in a way to constrain
resource usage (for example to maximize parallel usage of a database) and then wait for
them all to complete. You can use thread_pools plus latches to do your thing by attaching
continuations to the executor.

void finish transaction() ({}
std::thread pool executor<> db executor (MAX ACCESSES) ;
latch done (NUM QUERY TASKS) ;
for (int i = 0; 1 < NUM_QUERY TASKS; ++1i) {
std::spawn (db_executor, tasks[i], [&done] { done.arrive(); }
}
done.wait () ;
finish transaction();

Another variation on this is to do a number of parallel tasks to prepare an image for rendering
on screen. In this sequence, there are 3 stage, 2 processing stages and 1 rendering stage, all
running on independent executors to control various behaviors (first one is on the
system_executor, the second on a bounded executor to limit parallelism for performance
reasons, and the last on the gui_executor which has a specific requirement for which thread
executes).

Note that this example uses a proposed in N4224 (Supplements to C++ Latches) called a
flex_latch which has a notification callback which runs in the context of the last arriving thread.

template <typename Exec, typename Completion>
void start processing(Execé& exec, inputslé& input, outputslé& output,

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4224.html

Completioné&& comp) {
flex latch* 1 = flex latch::create self deleting(
forward<Completion> (comp), input.size());
for (auto inp : input) {
std: :spawn (exec,
[&inp] { /* process input */, [1] { l->arrive(); }

) ;

template <typename Exec, typename Completion>
void stage? (Exec& exec, inputs2& input, image& output,
Completion&& comp) {
flex latch* 1 = flex latch::create self deleting(
forward<Completion> (comp), input.size());
for (auto inp : input) {
std: :spawn (exec,
[&inp] { /* process input */, [1] { l->arrive(); }
) i

}
void render gui (imageé& img) {
/* do rendering */

// Hook everything up
std::thread pool executor<> tpe (STAGE2 PARALLEISM) ;
auto render task = std::wrap(GUI::get executor(),
std::bind(&render gui, out image));
start processing(
std::system executor::get executor(),
inl, outl,
std::bind(&stage2, tpe, in2, out image, render task));

The above example is getting somewhat complex and for very complex chains of processing
you would likely use a higher level construct to coordinate tasks, but you can see that even
reasonably complex actions can be expressed in fairly simple sequences.

More motivating examples are shown inline below to explain the various concepts proposed
here.

11.3. Core executor

The core executor API as proposed is composed of a single function (plus a copy and move
constructor):

void spawn (Funcé&é&) ;

Any class which implements this core interface could be considered an executor. This is
actually simpler even than std::async which takes arguments and a launch policy. In effect it
makes the statement: “launch this function in this context and according to the policy of the
executor”. Depending on the executor implementation, the context and policies vary, but the
visible behavior is effectively the same, which is to release the function to the executor and let
the caller continue without knowledge of what happened.

This simple interface may seem trivial, but many of the interesting behaviors required of an
executor can be layered on top of this and the core interface doesn’t prevent implementations
from having a richer interface, but rather makes a statement that any class implementing the
executor interface is capable of executing work within the context and policies defined by that
class. This allows an executor which is a layer on top of a separate construct (you can, for
example layer an executor on top of some form of prioritized thread pool where the executor
defines which priority to run tasks at, or an executor can represent a serialization of tasks run
in a GUI thread).

Il.3.a. Copyability

The expectation is that an executor be copyable and moveable. This has some implications
for implementers, namely, if a particular executor contains some form of shared state (e.g.
queues, or a pool of threads), you would then have to make the shared state have shared
ownership (with semantics similar to std::shared_ptr). Some implementations can skip the
shared ownership when the executor is guaranteed to live beyond the life of any caller (e.g.
with a system_executor which is guaranteed to live until destruction of the program).

The approach of shared state makes the general assumption that the underlying executor
state become shared resources and requires that the executor implementations manage that
shared state on behalf of all potential owners. For example serial_executor, which can be
implemented with a shared queue, might maintain a reference count of the shared owners.
On the other hand, system executor, which has pre-defined lifetime semantics, need not
keep such a reference count.

Il.3.a.1. Alternative Ownership Semantics

Optimizations to allow for single-owner semantics could also be provided in cases where
reference counting is undesirable for performance reasons (and where there is a clear
owner). The previously proposed approach allows for more performant options as the
non-copyable executor is made explicit, but this was deemed undesirable due to complexity in
the interface. The Kohlhoff proposals split the context out completely and require that contexts
be able to create copyable executors which is another variation on the non-copyable/copyable
split. All of these proposals require references/pointers to the non-copyable state, but it is
exposed in different ways. In the case where no copying is required (for example, a class with
an internal thread pool), the pointer overhead is unnecessary and in which case, the only
option would be to separate the copyable and non-copyable executors into separate
concepts.

Another reasonable approach would be to assume all copies are pure references initially and
provide a make_shared() function which creates a shared_ptr-like executor on top of the
underlying executor. So in the common case, the caller making the executor would by default
own it and all copies would assume the context lifetime would be guaranteed by the owner.

For example, you could see code like the following:
{
thread pool executor tpe (NUM THREADS) ;
// run tasks has a weak copy of the executor
run_ tasks (tpe);
// run_ something else also only has a weak copy
run_something else (tpe);
// Thread pools implicitly join on pending tasks by default.

Or if the pool is a shared resource, you would do something like the following:
// Will release ownership when this is deleted
this.tpe = executor::make shared(
new thread pool executor (NUM THREADS) ;
// Has shared ownership of tpe
run_tasks (tpe);
// Has shared ownership of tpe
run_something else (tpe);

And with this every copy would take ownership of the pool and the last owner would
effectively become responsible for shutting down the executor. This comes at the expense of
needing to know if a particular executor has shared state, or making trivial executors with no
shared state into executors with shared state (for example, a wrapper which pre-defines some
parameters over an existing executor but is trivially copyable).

[1.3.b. Parallelism

It should be noted that this interface does not make guarantees about the parallelism provided
by the executor (and in fact the executor is allowed to run in the caller’'s thread if the executor
policy allows it). This interface also does not make guarantees about the ordering of function
execution when multiple calls are made to spawn. Parallelism and ordering are traits of the
underlying context.

[I.3.c. is-a vs. has-a

There is a discussion in N4242 about whether a thread_pool has-a executor or is-a executor.
The discussion focuses on the Java interface where ExecutorService is-a Executor, but that in
C++ it should really be modeled in a has-a relationship due to the non-reference semantics of
C++.

The argument which is given here is that an executor is a context within which tasks are
executed. As such, things like thread pool contexts or a thread-per-task contexts are
executors, they don’t have executors. This becomes more apparent when you have adapter
classes which modify the behavior of underlying contexts. serial executor, which
enforces serial execution ordering, is a context with specific policies of execution, though it
wraps another executor to do this.

The key is that these contexts also have implementation specific interfaces which do not
control execution which need to be part of the context but don’t necessarily need to be part of
the executor interface. For example, shutdown options could be provided by many executor
implementations (thread pools often have different shutdown options depending). And how to
expose these in general ways without polluting the core executor interface is important.

Java does this in a rather unclean way using the ExecutorService interface, which in practice
has multiple behaviors placed in the single interface (it has lifetime management, submit with
futures, and invoking multiple callables). But in the case that shutdown semantics were
desired, it would be trivial to extend the interface specifically for heavyweight executors to
either create a handle for shutdown or to expose shutdown semantics (as is done in the
thread_pool_executor here). Note though that many executors may not have a shutdown
process (system_executor, loop_executor, serial_executor).

[l.3.d. Executor Types

The executor types proposed here are very similar to the executors in N3785, with two
notable changes. The proposed executors are as follows:

[I.3.d.1. thread per task executor

Behaves like the default behavior of std::async in which a new thread is created for each
spawned task. Upon completion of the task the thread is destroyed.

[I.3.d.2. thread pool executor

A simple thread pool class which constructs a pool of threads which run all tasks. Tasks are
enqueued to avoid blocking on this pool of threads. Upon destruction of the executor, queued
tasks are drained and the threads joined.

[I.3.d.3. 1oop_executor

An executor for which queued tasks are accumulated until the execution functions are called
(Loop (), run queued closures(), try run one closure ()), at which point
execution takes over the calling thread and run some or all of the queued closures (closures
added after loop has started will wait until the next call to the execution functions).

[I.3.d.4. serial executor

An executor wrapper object which ensures that all queued functions are run sequentially
where a given function cannot start until the previously queued one completes. This
guarantees serial ordering of tasks but it does not guarantee that the tasks will all run on the
same thread.

[1.3.d.5. system executor

A special executor which behaves like a pool of threads but with singleton semantics. This is
intended to be the default executor for most use cases and allows for delegation to a library
defined singleton executor. Provides a reasonable alternative to std::async in the general
case. It is expected that the system_executor would comply with the “concurrent” execution
agent concept, which means that there should be an eventual guarantee of forward progress.

It should be noted that the requirement of forward progress is intended to ensure that code
will not deadlock due to insufficient resources (which can occur if you have dependencies in
tasks).

It is understood that requiring a forward progress guarantee can significantly complicate the
implementation of the system executor due to the need to be able to detect a lack of progress.
In practice, several heavyweight thread pool implementations (including the microsoft thread

pools, as well as google internal ones) have this guarantee. It is acknowledged that on certain
platforms it may be challenging to provide a system executor with a true guarantee of
progress (embedded environments). It is also acknowledged that “eventual guarantee of
forward progress” does not guarantee it be performant under all situations (for example,
detection of lack of forward progress can take significant amount of time.

In terms of termination, the system executor is expected to shut down at some point after
completion of the program, but at which point is undefined. The result is that static destructors
should not rely on the continued existence of the system_executor. The system executor is
not guaranteed to complete all pending tasks before shutdown nor it it required to wait for
running tasks to complete.

The system_executor is not constructible and thus exports the singleton interface
system executor::get executor().

It should be noted that the inline_executor has been removed due to the fact that it changes

the semantics of the spawn() function in which it effectively blocks the caller until the actual
function is run, which is significantly different from the core semantic of the spawn() function.

[l.3.e. executor: :work

Because of the queueing behaviors of most executor implementations, a type erased function
wrapper must be provided to executors. In the original paper, this was done with

std: : function, but this prevented move-only types from being usable with executors due
to std: : function being copyable but not moveable. This prevents, for example, a

std: :packaged task from being used with executors.

Because of this, the library proposes a special wrapper object which can accept copyable or
move-only functions and creates a single type erased function-object from it. This is implied in
the templated executors, but is the type used in the type-erased executors in lieu of requiring
both std::function and std::packaged_task spawn functions. That said it is somewhat
duplicative and the only reason to expose it is because of the type erased interface.

One alternative here are to only support function<void()> in the type erased interface, though
this means that the erased type is not compatible with the template version, which would
mean that there would be some divergence in behaviors depending on which interface you
chose to use.

[I.3.f. Type Erasing Executor Wrapper

Because executors conform to a concept rather than to a type hierarchy, a type erasing
wrapper are also provided to adapt executors to code which does not want to add a template
parameter for the executor.

This executor-erasing wrapper (called executor) exports a similar (but not strictly the same)
interface to the normal executors:
template <typename Exec> executor (Execé& exec);

void spawn (std::executor::worké&& fn);

Note that this uses the executor: :work defined above explicitly, but can construct it on the
fly and basically behaves like the unerased executor.

void execute (std::executor& ex) {
ex.spawn ([] { func(); });

II.4. Helpers And Adapters

11.4.a. Spawn Helper Free Functions

Much like std::async, a small number of free functions is provided to extend the behavior of
the default executor spawn function (which normally detaches from the caller completely). The
helper functions allow for spawning with a future and the other for attaching a continuation.

Note that std::async went in a design path where the destructor of the async future blocks
waiting for the async thread to complete. There are several documents (N3679, N3451, and
others) which cover the problems with this from a programming model perspective. The
approach taken here is to treat futures like any client-side use of future (which is that it will not
block in the destructor waiting for tasks to complete). As such, it is the job of the executor to
manage thread lifetime and the job of the packaged_task/future to manage their own shared
state.

Some code which wants to asynchronously do some work and get the value later:
auto fut = std::spawn (pool,

std::make package([] { return /* do stuff */ }));
fut.get (),

And some code which uses a continuation to wait for multiple tasks to complete:
latch 1(2);
std: :spawn (pool,

[1 { /* do some work */,

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3679.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3451.pdf

[&1] { l.arrive(); 1});
l.wait ()

And there is a proposal in progress which would further allow a notification on a latch (called a
flex_latch), which would behave roughly as follows:
void finalize () {
// finish up work
}
flex latch 1(2, &finalize);
std: :spawn (pool,
[] { /* do some work */,
[&1] { l.arrive(); 1}):;

Note that std: :spawn (exec, func, continuation) also takes ownership of the
lifetime of the passed objects, so if the passed functions are move-only, this will encapsulate
them and take ownership for as long as the task needs to be alive (as is the case with the

native executor spawn). As such, this is not equivalent to:

pool.spawn([&] { func(); continuation(); 1});

11.4.b. Executor Object Wrapper Free Functions

In addition to the spawn helper functions, there is one simple additional helper which enables
wrapping objects in an executor and providing a consistent interface for querying the executor
associated with this object. This also provides a special behavior for callables in which
enables the wrapped object to be called (which spawns the callable on the wrapped
executor). This enables an Active Object pattern in which an callable declares where it should
execute. This is enabled by the fact that the executor interface has a main method for pushing
work. This helper is effectively a small wrapper which packages a function in a wrapper which
can either be unwrapped or can be called to post the object onto the contained executor via
the wrap function:

template <typename T>
executor wrapper<T>&& wrap (T&& obj);

An example of an active object is where the completion of one task causes a new task to be
spawned on another executor (extending the previous latch example):

gul executor ge;
void compute image (output image, block id);
void draw (result) {

. do some drawing ..

}
auto draw task = std::wrap(ge, std::bind(draw, final image));
flex latch completion (NUM BLOCKS, draw_ task);
for (int 1 = 0; i < NUM BLOCKS; ++1) {
std::spawn(std::system executor::get executor(),
bind (compute image, final image, 1),
[&completion] { completion.arive(); }
)

A variation on this could be one in which a particular function must always be run in a
particular executor (for example, if there is a dedicated pool of high priority threads for
handling network 10). In the following example the fact that responder must run in a different
context is hidden from the caller who simply knows that there is a response callback provided
to it.

network executor ne = network::get executor();
void respond(byte* response, size t size) { /* respond */ }
auto responder = std::wrap(ne, respond);

process data(data, responder) {

responder (response, size); // packages args and spawns on
// network executor ne

Because this has been made generic, you can also wrap objects for the behavior of being
able to retrieve the executor which it is associated with:

thread pool network pool (NETWORK POOL SIZE) ;

network interface ni(network pool, ..)

network context = std::wrap(network pool, ni);

void respond(byte* response, size t size) { /* respond */ }

auto responder = std::wrap(network context::get executor (), respond);

process data(data, responder) {
responder (response, size);
This concept behaves similarly to the wrap proposal in N4242, though the invocation of the

callable is somewhat different in that the version presented here invokes spawn on the
wrapped executor and provides a separate means to invoke the underlying callable. This

concept is not strictly needed by the executor class, but provides a convenient mechanism for
making a complete statement about execution (what to execute, where to execute it, and how
to execute it).

This concept of wrapping callables in different behavior can actually be used to compose
other behaviors which are desirable for executors and though not proposed here these may
be used to solve a number of common issues.

For example, capturing exceptions thrown in a task without requiring packaged_task could be
a useful abstraction given the exception forwarding challenge of executors.

template <typename Func>
class exception catcher ({
explicit exception catcher (Funcé&& func);
exception catcher (const exception catcheré& other);

template<typename.. Args>
void operator () (Args.. args);

std::exception ptr get exception();

b
template <typename Func>
exception catcher<Func>&& make catcher (Funcé&& func);

Moreover, wrappers could easily be composed:

auto e catcher = make catcher (some fun);

auto remote callable(
executor::wrap (system executor::get executor, e catcher));

lll. Design Comparisons

lll.1. Compared to N4143 (revision 4 of this proposal)

I1l.1.a system executor

In this proposal, the system executor concept has been refined somewhat to better capture
the requirements around making an async replacement.

The first change was to make clearer that the system_executor must guarantee forward
progress (e.g. it cannot be implemented as a bounded thread pool). This is to ensure that

workloads will not deadlock when using the system executor (unless there are particular
system resource limits).

The second change is to clarify the destruction semantics of a system_executor. Namely that

it will be shut down at some point before all statics are destroyed, meaning you cannot add
work to system_executor during the static destruction phase of the program.

I1l.1.b executor _ref

The concept of an executor reference was removed from the proposal and the core executor
changed to allow it to be passed by value. This has some implications for ownership
semantics of executors because executors may contain shared state. Due to this, an executor
implementation which contains shared state must also then have a mechanism for tracking
ownership. This means that the last caller to hold the executor can become responsible for
deleting it.

I11.1.c spawn() free functions

The previous proposal had a free spawn() with continuation and spawn_future() to create a
future from a packaged_task. These have been unified to both be called spawn() and a new
bare spawn(func) has been added for consistency.

I11.1.d function wrapper

The concept of a generic move-only work object which behaves like a simplified std::function
has been renamed to work and moved into the executor class, so code wishing to use it
would create an object of type executor::work.

I1l.1.e task wrapper

There has been a re-wording of the task_wrapper concept such that there is a generic wrap()
function which can wrap either objects or callable (this also encapsulates the use case
proposed by Kohlhoff). When wrapping objects, you receive a simple container which
contains the underlying data as well as a get_executor call. When wrapping a callable, you
get access to the callable but also receive a callable which takes the same parameters.

This is actually a semi generic callable -> callable transform that is a special active object
which spawns itself in the right executor upon calling.

The returned object type has been renamed to be more generic as well.

lll.3.Compared to N4242 (Executors and Asynchronous Operations, Revision 1)

There are many underlying differences between N4242 (and it's successor) and this proposal,
though the two have (intentionally) converged towards a more common solution, though there
are still some fundamental differences in behaviors and design goals between the proposals,
particularly in the complexity of the underlying concept, some of which has clear performance
or design benefits.

The most obvious of these differences are:

system_executor semantics are substantially different. In N4242 system_executor is
the executor which represents all threads in the process. In this proposal, the system
executor does not need to represent all threads, but simply a suitable default executor.
Many programming environments already provide such a default, but expect that not
all code will want to use this executor (one could treat this as the “system default
executor”).

The separation of the executor_context from the executor. This allows for a separation
of the stateful execution context (which contains run queues and threads) from the
stateless executor (which can be copied around trivially).

o

This creates a pattern for which there is basically a lightweight object (executor)
with a reference to the heavyweight object (the context) and a very friendly
connection between them. It also ends up requiring direct references between
the context and the executors to ensure that the context doesn’t get deleted
before the executors referencing it are removed. The formalization does
provide the ability couple the two so that lifetime issues don'’t arise.

In this proposal, the need for light- and heavy-weight objects is acknowledged,
but hidden. The previous version of this proposal kept them under the same
interface, but separated out references from concrete executors. This proposal
unifies them further and requires that all executors be copyable and moves the
context to be a shared state hidden behind the executor interface. This creates
some interesting questions around lifetime of the shared state, but prefers a
default behavior where shared state is treated as shared ownership unless the
implementer knows otherwise (or there is no shared state). This reflects a basic
difference in the proposals which treat the execution contexts in an is-a
relationship with executor rather than a has-a relationship.

Alternative task execution constructs.

o

N4242 provides 2 additional constructs in addition to the standard “post” to the
executor, aimed at providing different degrees of cost and latency guarantees.
m dispatch - which allows you to effectively ask for execution which

should run quickly, even at the cost of slowing other execution. This
allows for priority inversions but creates a mechanism by which you can
request work be done quickly. This request is not guaranteed to be
granted, though, and acts as more of a hint.

e One could also model this in some ways as a spawn with
potentially blocking semantics (like spawning a future and then
blocking on its completion). Logically you would want some sort
of priority mechanism to handle this though.

e The key difference which cannot be emulated is that the
executor is allowed to run this in the calling thread.

m defer - this allows you to post to an executor from within an executing
task, with the hint that this should generally only execute after the
current task is done (a continuation). In particular, defer allows the
deferred function to be placed in a thread local run queue on the same
thread as the caller (if possible).

e This approach has some nice properties w.r.t. the cost of defer.
Namely the executor can avoid notifying other threads to wake
up (if that is a reasonable semantic from a fairness perspective),
and potentially save a mutex lock/unlock pair while executing
another function.

e In some executors, this actually delegates straight to post(),
which means they are functionally equivalent. In other executors,
there is no defer implementation which has significantly different
semantics (e.g. serial_executors which has only one queue and
no thread to notify). In other executors still (e.g. thread stealing
thread pools), some of this behavior is likely to be there due to
uses of thread local queues and potential optimizations to reduce
notifications.

Of these differences, the most substantial is in the core API of the executor. The argument set
out in this proposal is that the concepts of dispatch and defer, while potentially very useful
for particular fine grained parallelism and in optimizations are not general purpose.

This is clear even in the specification in which defer is allowed (and likely commonly will) to
be implemented as post (spawn) . serial_executor (strand), for example, would behave the
same. Potentially other implementations which prefer thread fairness, or have separate
priority mechanisms would not be able to skip the thread notify either. Generally defer is a
performance optimization which you will largely only use if you are running into problems with
the overhead of the core post/spawn function and you have a specific set of behaviors
(namely you are posting onto your own executor from existing tasks). Moreover, it has some
degree of serialization semantics when posting to the local executor, but it cannot be relied on
if you are unsure of what executor you are defering to.

An alternative to forcing all implementations to create a defer() is actually to create
executors with the preferred semantics. Work stealing thread pools solve some of this by
spawning work on local queues largely at no cost to the rest of the pool. Serialization

semantics (in which a task only runs upon completion of this task) can trivially be
implemented in other ways.

Similarly, the semantics of dispatch (when it can actually be inlined, as well as if it will block
or not) are also inconsistent across implementations and calls, which makes it difficult to
reason about the behavior of this function in a generic way. Sometimes you can rely on it
blocking, sometimes not, and sometimes it will inline, sometimes not, depending on your
context and type of executor. Moreover, the semantics of this function break the meaning of
the executor, namely that you are executing work in the context of the executor (it also opens
you up to priority inversions due to executing work out of order).

The behavior provided by dipatch is not possible to emulate with wrappers and the
semantics are such that you cannot easily layer this on top of the existing spawn() function
due to the possibility of blocking the caller or running in the caller’s thread. That said explicit
blocking semantics are easily buildable with futures or other mechanisms. Other functions
could enable similar optimizations as well. For example, a function like spawn_if_ready, could
be used to let the caller decide to directly call the function if the executor cannot. It can be
argued, though, that this behavior is not general purpose and could be defined as an
extension of the core executor interface available to some subset of executors where this sort
of greedy-execution is desirable.

lll.4. Exception Handling

Exception handling has been left out explicitly as there really is not a generic way to handle
exception forwarding unless there is an explicit receiver. As such, the proposed approach for
users to handle exceptions is to either handle the exception in the task directly, or to use a
wrapper which forwards exceptions to future (packaged_task or the future-returning free
function which allows exceptions to be attached to the future object).

In essence, the raw interface to the executor is entirely fire-and-forget, in order to get a handle
to the task you must use a wrapper which creates a handle onto the task which can be used
as a communication channel.

Other proposals suggest that in some specific cases, exceptions may be allowed to escape
the executor (a loop executor for example could push exceptions to the caller as there is a
well defined handler). As such, it is up to the specific executor to define exception handling
semantics, but a reasonable behavior for a concrete executor implementation is that an
unhandled exception would result in program termination.

Future work may decide that a there should be an explicit handle to tasks provided by the
executor to allow for other communications beyond the basic data and exception handling of
future in which case that would provide a place to place exception handlers.

IV.Outstanding questions.

IV.1. Extensions of Executors
There are a few core extensions of the core concept as proposed which are feasible ways to
provide more functionality based on known use cases, each of these would modify the
interface to the executor in more executor-specialized ways. A non-comprehensive list of
variants which have been pulled from standard use cases and from the Google internal use
cases is illustrative in that it shows some of the variety in executors which may be
implemented.

Prioritized queues (non-fair task selection)

e Prioritized thread pools (threads running at different priorities)

e Dynamically sized thread pools

e GPU thread pools (batch task operations)

e Work stealing thread pools/fork join executors

e Fiber executors (user level thread executors)

e Caching thread-per-task executors (thread-per-task but with thread re-use)

e Rate-limiting executors (prevention of starvation of threads by large numbers of a
particular task type)

e Reference counted tasks (tracking when groups of tasks complete)

e Drainable executors (can accept recursively created work but not entirely new work)

e Lazy executor (executes only when results are needed - e.g. by a call to future.get())

e Executor visitor (visit upon task start or task complete - allowing behaviors like

dynamic thread counts or resource tracking)
e A number of custom executors which provide application-specific behaviors or
contexts (e.g. a backend API call executor which only handles a specific type of calls)

Notably these fall into 2 classes, functionally different execution behaviors (e.g. priorities,
fibers, GPU, dynamically sized), and behaviors which decorate existing executors (reference
counted, rate limiting, task-start notifications).

IV.2. Mechanisms for extension

There has been a lot of discussion about the Service-style extension model proposed in
N4242 as a mechanism for extending the core executor framework. This follows the
Extension-Object design pattern from Erich Gamma (link
http://st.inf.tu-dresden.de/Lehre/\WWS06-07/dpf/gamma96.pdf). Conceptually this provides a
nice simple framework for allowing objects to be extended without dirtying the core interface,
which is nice as a general purpose mechanism for adding non-core concepts to executors
with a lifetime scoped to the executor. In fact, the examples provided lie firmly in the

http://st.inf.tu-dresden.de/Lehre/WS06-07/dpf/gamma96.pdf

networking space where you have objects which change behavior over time, but in
unpredictable ways or in ways which are not considered core concepts.

This approach has 4 main caveats with it as a general model for extending executors:

e You must still explicitly bake core concepts into the APl whenever possible (the EO
paper and other discussions state this as well), so this should not be used as the
resting place for any and all non-core logic, core functionality (e.g. thread prioritization)
deserves to go in the API of the executors directly rather than through a separate
service model.

e Extensions are functionally still bound to the capabilities provided by the object on
which they are built (they look like a visitor or decorator in this way), as a result you
cannot trivially build entirely new functionality with them (priority thread pools for
example need to be natively supported by the executor because they require control
over the thread objects and internal queues).

e The implementation of a service is somewhat complex because it requires registering
objects onto the executor directly and the lifetime of those objects being scoped to the
executor. Functionally the complexity can be contained to a wrapper library which can
attach services to the object without having to mess with the core API at all, which
implies that this can be done as an independent library.

e The service concept makes it more challenging for the executor to natively support
extensions because the extensions are decoration on top of the executor (every
service is given a handle to the executor, but the reverse is not guaranteed to be true).
As such an executor which is incompatible with a particular extension can create
issues of mis-use of extensions (for example, a serial_executor is a lightweight
concept and starting a new thread for timed operations on it adds significant
overhead).

IV.3. Extending executors in this framework

The proposed design takes a significantly simpler approach to extension, with the ability to
adapt existing execution contexts to the executor interface (by implementing a copyable
wrapper class implementing the spawn function).

In practice this allows you to take custom extensions to the core interface and wrap it in the
simple spawn interface fairly cheaply. One example of this is a prioritized thread pool
supporting another parameter with a thread priority (e.g. spawn (func, 10)). You can
create an executor wrapper which captures a fixed priority and adapts the prioritized executor
to the standard executor interface. In this way you can trivially extend the executor concept
and adapt existing code to work with it silently.

For example, a prioritized thread pool may look like the following:
class prioritized thread pool {

public:
template <typename Func>
void spawn (Funcé&& func, int priority);

}s

But because the standard spawn() function doesn’t support priority, you can write a wrapper
which handles this in a way that allows tasks to re-use.

template <typename Exec>
class high priority executor ({
public:
high priority executor (Exec& exec, int priority)
exec (exec), priority (priority) {}

template <typename Func>
void spawn (Funcé&& func) {
exec .spawn (forward<Func>(func), priority);

Then you can use high_priority _executor everywhere you would take a normal executor and it
would quietly adapt all calls to use priorities behind the scenes.

IV.4. Future Work

There are a number of possible future proposals which can follow onto this baseline, including
extensions from other executor proposals which have been brought to the committee. In
particular, the following interesting use cases have already been raised as future work or
tabled discussions:

e Alternative dispatching - one key difference between the current proposal and N4242
(and related proposals) is in the presence of alternative dispatch approaches (namely
the presence of dispatch () and defer ()). Functionally these serve as different
optimizations for latency or overhead.

o dispatch () in particular has semantics which are very unique (in that it may
inline function calls depending on the circumstances), and are difficult to
emulate without native executor support.

o defer () actually allows tasks to be put on a thread local queue given that
they much only be dispatched once the task which spawned them completes
and returns control to the executor. This has benefits in terms of not having to
lock/notify the executor on each defer call because the tasks don’t need to
begin yet. You can approximate the behavior of waiting for task completion for
spawn using a separate notification mechanism and in fact an executor with

thread local queues (which is a common performance optimization) would do

similar things for all post calls.
Timed/Deferred Execution - the concept of a deferred task has been removed from the
proposal to simplify the design further, but a follow on paper will likely come up to
discuss whether this is a core executor concept or something which can easily be
layered on. A more detailed discussion of the design trade-offs of a deferred interface
needs to be provided (in particular the downsides of not being able to natively support
these in the executor for certain executor types which have native handles, as do
many networking socket handling executors).
Task cancellation - a very common pattern in task parallelism mechanisms is to start
work which may not be needed right away and can be cancelled if needed. An
example of this is work which is redundant, non-critical, or expensive (e.g. a database
call with a timeout to prevent over-taxing the system).
Batch spawn - This comes up in a GPU context, but can also be used to optimize
highly parallel tasks as well (reducing the mutex overhead when adding tasks, which
can be significant). This can also be used to create task groups which can be joined
on easily without requiring the user to create additional tracking mechanisms.
Thread local queues - this is inherent to the Kohlhoff proposal because of the
presence of the defer function, but is left to future work to discuss the right design
approach here and whether it's appropriate to standardize this or if this is behavior
which is executor specific. Many high performance thread pools, for example, already
are implemented in terms of thread local queues.
Task and thread priorities - there are very common use cases for allowing threads to
take on priorities (commonly this is to allow important tasks to get to the front of the
queue or to take precedence in execution).
There is currently a proposal outstanding which formalizes concurrent and blocking
queues which are foundational to executors (http://isocpp.org/files/papers/n3533.html).
In particular the performance of the queue implementation (and reducing costs of
queue operations under high contention) can have a big effect on the performance of
the executor.
There was a comment at a previous WG to leave the return type of spawn()
unspecified, which allows for it to return a handle in the future. This should probably be
done when there is a clear meaning for the return type.
Executor shutdown semantics - there are a number of use cases where tasks span an
executor and block waiting for tasks to complete as a sort of join mechanism. There
are other cases where you want to force shut down before work completes. Some
variation on the API to allow different shutdown behaviors is likely needed.
An interface like that suggested around Execution Agents in N4156 (and related
papers) could provide a generic mechanism for checking the traits of an executor
(whether it is concurrent, parallel, or weakly parallel, as well as the behavior of thread
local storage). Discussion of whether that concept should be applied to all executors is
left for a subsequent paper but some form of execution agent traits is reasonable as.

http://isocpp.org/files/papers/n3533.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4156.pdf

VI. Proposed Wording

VI.1. Executor Concept

The executor concept represents a single spawn function which takes a function pointer or
function object and executes it according to the executor’s execution policy at some point in
the future.

Ownership of the passed function is taken by the executor, so a copyable type is copied and a
moveable type is moved to be owned by the executor. The owned function will be deleted
upon completion of execution or upon destruction of the executor.

In order to promote value semantics for executors, the executor is also copyable and
moveable. Due to shared state in many concrete executor instances (e.g. queues or thread
pools), this implies that executors will have to implement some form of reference counting on
the internal state to track ownership of the underlying shared state.

executor {

public:
executor (const executoré& other);
executor (executor&& other);

~executor () ;

template<class Func> void spawn (Funcé&& func);

}i

executor: :~executor()
Effects: Destroys the executor.

Synchronization: All closure initiations happen before the completion of the executor
destructor. [Note: This means that closure initiations don’t leak past the executor
lifetime, and programmers can protect against data races with the destruction of the
environment. There is no guarantee that all closures that have been added to the
executor will execute, only that if a closure executes it will be initiated before the
destructor executes. In some concrete subclasses the destructor may wait for task
completion and in others the destructor may discard uninitiated tasks.]

Remark: If an executor is destroyed inside a closure running on that executor object,
the behavior is undefined. [Note: one possible behavior is deadlock.]

template <class Func> void executor::spawn(Func&& func);
Effects: The specified function object shall be scheduled for execution by the executor

at some point in the future. May throw exceptions if spawn cannot complete (due to
shutdown or other conditions).

Synchronization: completion of func on a particular thread happens before
destruction of that thread’s thread-duration variables. [Note: The consequence is that
closures may use thread-duration variables, but in general such use is risky. In general
executors don’t make guarantees about which thread an individual closure executes
in.]

Error conditions: The invoked func shall not throw an exception.

Vl.1.a. thread per_ task executor

Class thread per task executor is a simple executor that executes each task (closure)
on its own std::thread instance. Tracks spawned threads

The singleton get_executor() function makes a default executor out of the
thread_per_task_executor (which is already implied in std::async).

class thread per task executor {
public:
static thread per task executor& get executor();

thread per task executor();

thread per task executor (const thread per task executoré&);
thread per task executor (thread per task executoré&é&);
~thread per task executor();

template<class Func> void spawn (Funcé&& func);

}s

thread_per_task_executor::thread_per_task_executor(
const thread_per_task_executor& other)
Effects: Creates a copy of existing thread_per_task_executor by owning a handle to
the internal shared state. Takes shared ownership of the internal shared state.

thread_per_task_executor::thread_per_task_executor(
thread_per_task_executor&& other)
Effects: Creates an executor from of an existing thread_per_task_executor and leaves
the existing executor in an unknown state.

thread_per_task_executor::get_executor()

Effects: Gets a singleton thread_per_task_executor for use across code with the
lifetime of the application.

thread_per_task_executor::thread_per_task_executor()
Effects: Creates an executor that runs each closure on a separate thread.

thread_per_task_executor::~thread_per_task_executor()
Effects: Waits for all added closures (if any) to complete, then joins and destroys the
threads.

VI.1.b. thread pool executor
Class thread pool is a simple thread pool class that creates a fixed number of threads in
its constructor and that multiplexes closures onto them through some queueing mechanism.

class thread pool executor {

public:
// thread pools are not copyable/default constructible
thread pool executor () = delete;
thread pool executor (const thread pool executor&) = delete;

// Construct a fixed pool of N threads and start them waiting for
// work.
explicit thread pool executor(size t N);

// Drain the thread pool and wait for all unfinished tasks to
// complete.
virtual ~thread pool executor();

// optional - Force the pool to shut down without draining

// remaining queued tasks. Waits for currently running tasks to
// complete.

virtual void shutdown hard();

// Executor interface
template<class Func> void spawn (Funcé&é& func)

}i
thread_pool: :thread_pool(int num_threads)
Effects: Creates an executor that runs closures on num threads threads.

Throws: system error if the threads can’t be created and started.

thread_pool: :thread_pool(const thread_pool& other)

Effects: Creates an executor copy of an existing thread_pool by owning a handle to
the internal shared state. Takes shared ownership of the internal shared state.

thread_pool: :thread_pool(thread_pool&& other)
Effects: Creates an executor from of an existing thread_pool and leaves the existing
pool in an unknown state.

thread_pool: :~thread_pool()
Effects: Waits for all added closures (if any) to complete, then joins and destroys the
threads.

thread_pool: : shutdown_hard()

Effects: Waits only for actively running closures to complete, then joins and destroys
the threads. Non-started functions will be destroyed.

VI.1.c. system executor

The system executor is a system provided default for the common case scenario where a
programmer just wants a reasonable place to run tasks asynchronously. Thus it provides the
singleton get_executor() method to retrieve the system_executor.

This executor provides the minimal executor interface and is commonly implemented as a
growable thread pool with some sort of forward progress guarantees.

class system executor {

public:
static system executoré& get executor();
system executor (const system executoré& other);
system executor (system executor&& other);
virtual ~system executor();

public:
template<class Func> void spawn (Funcé&& func);
}
system_executor::system_executor(const system_executor& other)
Effects: copies an existing system executor by copying the handle to the shared
executor state.

system_executor::system_executor(system_executor&&)
Effects: copies internal references of system executor to this, leaves passed
system_executor in an undefined state.

static system_executor& system_executor::get_executor()
Effects: Gets a singleton system_executor for use across code with the lifetime of the
application.

system_executor: :~system_executor()

Effects: Waits for all added closures (if any) to complete, then joins and destroys the
threads.

VI.1.d. loop executor

Class loop_executor is a single-threaded executor that executes closures by taking control of
a host thread. Closures are executed via one of three closure-executing methods: 1oop (),
run_queued closures (), and try run one closure (). Closures are executed in
FIFO order. Closure-executing methods may not be called concurrently with each other, but
may be called concurrently with other member functions.

class loop executor ({

public:
loop executor();
loop executor (const loop executoré& other);
loop executor (loop executor&& other);
virtual ~loop executor();

void loop ()

void run queued closures();
void make loop exit();

bool try run one closure();

// Executor interface
template<class Func> void spawn (Funcé&& func);

}i

loop_executor: :1loop_executor()
Effects: Creates a loop_executor object. Does not spawn any threads.

loop_executor::loop_executor(const loop_executor& other)
Effects: Creates a copy of the loop_executor object by owning a handle to the internal
shared state and takes shared ownership of any underlying state.

loop_executor::loop_executor(loop_executor&& other)
Effects: Creates loop_executor object from other and takes ownership of any

underlying state.

loop_executor: :~loop_executor()
Effects: Destroys the 1oop executor object. Any closures that haven’t been
executed by a closure-executing method when the destructor runs will never be
executed.
Synchronization: Must not be called concurrently with any of the closure-executing
methods.

void loop_executor::loop()
Effects: Runs closures on the current thread until make loop exit () is called.
Requires: No closure-executing method is currently running.

void loop_executor::run_queued_closures()
Effects: Runs closures that were already queued for execution when this function was
called, returning either when all of them have been executed or when
make loop exit () is called. Does not execute any additional closures that have
been added after this function is called. Invoking make loop exit () from within a
closure run by run_queued_closures() does not affect the behavior of subsequent
closure-executing methods. [Note: this requirement disallows an implementation like
void run queued closures () { add([] () {make loop exit();});
loop () ; } because that would cause early exit from a subsequent invocation of
loop ()]
Requires: No closure-executing method is currently running.
Remarks: This function is primarily intended for testing.

bool loop_executor::try_run_one_closure()
Effects: If at least one closure is queued, this method executes the next closure and
returns.
Returns: true if a closure was run, otherwise false.
Requires: No closure-executing method is currently running.
Remarks: This function is primarily intended for testing.

void loop_executor::make_loop_exit()
Effects: Causes loop () or run_queued closures () to finish executing closures
and return as soon as the current closure has finished. There is no effect if 1oop () or
run_queued closures () isn't currently executing. [Note: make loop exit () is
typically called from a closure. After a closure-executing method has returned, it is
legal to call another closure-executing function.]

VI.1.e. serial executor

Class serial executor is an adaptor that runs its closures by scheduling them on another
(not necessarily single-threaded) executor. It runs added closures inside a series of closures
added to an underlying executor in such a way so that the closures execute serially. For any
two closures c1 and c2 added to a serial executor e, either the completion of c1
happens before the execution of c2 begins, or vice versa. If e.spawn (c1) happens before
e.spawn (c2), then c1 is executed before c2.

The number of spawn () calls on the underlying executor is unspecified, and if the underlying
executor guarantees an ordering on its closures, that ordering won't necessarily extend to
closures added through a serial executor.

template <typename Exec>
class serial executor ({
public:
explicit serial executor (const Exec& underlying executor);
serial executor (const serial executoré& other);
serial executor (serial executoré&& other);
virtual ~serial executor();

Exec& underlying executor () ;

// Executor interface
template<class Func> void spawn (Funcé&& func)

}i

serial_executor::serial_executor(const Exec& underlying_executor)
Effects: Creates a serial executor that executes closures, in an order that
respects the happens-before ordering of the serial executor::spawn () calls, by
passing the closures to underlying executor. Will make a copy of the passed
executor object. [Note: several serial executor objects may share a single
underlying executor.]

serial_ executor::serial_executor (const serial_ executor& other)
Effects: Creates a copy of the serial_executor object by owning a handle to the internal
shared state and takes shared ownership of any underlying state.

serial executor::serial_executor(serial_ executor&& other)
Effects: moves the shared state of the serial executor and the underlying executor to
this. Executor other will be left in an undefined state.

serial_executor::~serial_executor()
Effects: Finishes running any currently executing closure, then destroys all remaining
closures and returns.

Exec& serial_executor::underlying_executor()
Returns: The underlying executor that was passed to the constructor.

V1.2 Type Erased Executor

Class executor a type erasing executor object which complies to the basic executor
specification with a reference to an concrete executor object. The spawn function behaves
like the templatized executor but takes in a concrete moveable function wrapper which can
erase arbitrary callable objects (including move-only objects, unlike std::function).

class executor {

public:
executor () = delete;
executor (const executoré& other);
executor (executor&& other);

template <typename Exec> executor (Exec& exec);

void spawn (executors::worké&& fn);

}i

executor: :executor(Exec& exec)
Requires: The lifetime of the underlying executor shall exceed that of the underlying
executor.
Effects: Construct a copyable executor wrapper object from a reference to an existing
executor. Maintains the reference to the executor for the lifetime of the object.

executor: :executor (const executoré& other)
Effects: constructs executor wrapper from other and maintains a shared reference to
the contained concrete executor.

executor: :executor (executoré&é& other)
Effect. constructs executor wrapper from other. Upon completion other will contain no
reference to a concrete executor.

void executor::spawn(work&& fn)
Effects: calls spawn on the underlying executor with the passed function object.

namespace executors {
class work {
public:

work

) = delete;

work (const worké&) = delete;

~WOr

(
(

work (worké&& other);
k

()

template <typename T> work (T&& t);
void operator () ()

}s
}

class

executors: :work

Optional move-only function wrapper interface which extends the std: : function
concept to allow moveable objects to be be stored in the type erasing container (and is
thus not a copyable object itself). This also can be used by executor implementations
to store tasks.

work: :work(executor: :work&& other)

work: :

Effects: move-constructor to create a wrapper from an existing wrapper object.

~work(executor: :work&& other)
Effects: destroys the callable object state contained in the work object.

template <typename T>work: :work(T&& t)

Requires: the target callable takes no parameters.
Effects: creates a new work object from an existing function or function object t.

void work: :operator()()

Effects: invokes the target with no parameters.

VI.3 Free Functions & Helper Objects

template <typename Func>
auto make package (Func&& f) -> packaged task<decltype (f()) ()>;

std: :make_package(Func&& f)

Effects: optional helper function which returns a packaged task from the passed
callable.

template <typename Exec, typename Func>
future<T> spawn (Exec&& exec, Funcé&& func);

future

<T> std::spawn(Exec&& exec)

Effects: direct analogue to the spawn function on the executor but in free function
form.

template <typename Exec, typename T>

future<T> spawn (Execé&& exec, packaged task<T()>&& func);

future<T> std::spawn(Exec&& exec, packaged_task<T()>&& func)

Effects: helper version of spawn which spawns with a packaged task object and
returns the associated future. Catches any exceptions thrown by the contained
function and sets the exceptions on the returned future.

template <typename Exec, typename Func, typename Continuation>

void spawn (Execé&& exec, Funcé&& func, Continuation&& continuation)

void std::spawn(Exec&& exec, Func&& func, Continuation&& continuation)

Requires: neither func nor continuation will throw an exception

Effects: helper which spawns a callable which combines the calls of func an
continuation serially such that continuation will only execute upon successful
completion of func. This could basically be modeled as a lambda which runs the pair
of functions [func=move (func), continuation=move (continuation)]
{ func(); continuation() }. Though this provides a convenient extension to
the standard interface with less boilerplate code.

VI.4 Executor Wrapper

Convenience interface for binding objects to an executor by encapsulating both the executor
and the object into a single object while providing access to both. This is actually a class of
wrappers which are enabled depending on the type of the object passed in. Namely
move-only types behave differently than copyable types. And both behave differently than
callables. In particular, callables enable operator () and run underlying () functions to
actually execute the callable.

template <typename Exec, typename T, typename Enable=void>

class executor wrapper {

public:
executor wrapper (Exec exec, T&& obj);
~executor wrapper();

Exec& get executor();
T& get();
i

template <typename Exec, typename T>
class executor wrapper<kExec, T,
typename std::enable if<move only<T>>::type> {
public:
executor wrapper (Exec exec, T&& obj);
~executor wrapper () ;

Execé& get executor();

T&& get ()
i

template <typename Exec, typename T>
class executor wrapper<kExec, T,
typename std::enable if<callable<T>>::type> {

class executor wrapper {

public:
executor wrapper (Exec exec, Funcé&& func);
~executor wrapper () ;

template <class ...Args>
void operator () (Args... args);

Exec& get executor();

// Allows optimizations where func is run on the same executor as
// the caller and thus doesn't need to call spawn.
template <class ...Args>
void run underlying(Args... args);
bi

executor_wrapper: :executor_wrapper(Exec exec, T&& obj)
Requires: the passed executor lives longer than the lifetime of the executor_wrapper
object
Effects: constructs an object which contains a copy of the passed executor and
contains the passed object (taking ownership of the passed object).

executor wrapper::executor wrapper (executor wrapperé&& other)
Requires: the executor contained in other lives longer than the executor_wrapper
object
Effects: constructs the object from the other object, leaves other in undefined state.

executor wrapper: :~executor_ wrapper ()
Effects: deletes the stored object

Exec& executor wrapper::get_executor()
Returns: a reference to the contained executor.

void executor wrapper::operator () (Args.. args)
Requires: the wrapper contain a callable, else this function is not enabled.
Effects: calls spawn on the contained executor with the internal func object bound to
the supplied args.

template <typename... Args>

void executor wrapper::run underlying(Args... args)
Effects: Runs the internal callable object without spawning on the contained executor.
Used for optimizations where the current context is the executor for which spawn will
be called.

template <typename Exec, typename T>
executor wrapper<Exec, typename T>&& wrap (Exec& exec, T&& obj)
Returns: an executor_wrapper object containing the passed executor and object

template <typename Exec, typename Func>

executor wrapper<Exec, typename decay<Func>::type>&& wrap (Exec& exec,
Funcé&é& func)
Returns: an executor_wrapper object containing the passed executor and function

