
N3718 Transactional Memory Support for C++

Transactional Memory Support for C++
Authors: Victor Luchangco, victor.luchangco@oracle.com

Jens Maurer, jens.maurer@gmx.net
Mark Moir, mark.moir@oracle.com
with other members of the transactional memory study group (SG5), including:

Hans Boehm, hans.boehm@hp.com
Justin Gottschlich, justin.gottschlich@intel.com
Maged Michael, magedm@us.ibm.com
Torvald Riegel, triegel@redhat.com
Michael Scott, scott@cs.rochester.edu
Tatiana Shpeisman, tatiana.shpeisman@intel.com
Michael Spear, spear@cse.lehigh.edu
Michael Wong, michaelw@ca.ibm.com

Document number: N3718
Date: 2013-08-30
Project: Programming Language C++, Evolution Working Group
Reply-to: Michael Wong, michaelw@ca.ibm.com (Chair of SG5)
Revision: 1

1 Introduction

Transactional memory supports a programming style that is intended to facilitate parallel execution with a
comparatively gentle learning curve. This document describes a proposal developed by SG5 to introduce
transactional constructs into C++ as a Technical Specification. It is based in part on the Draft Specification
for Transactional Constructs in C++ (Version 1.1) published by the Transactional Memory Specification
Drafting Group in February 2012. This proposal represents a pragmatic basic set of features, and omits
or simplifies a number of controversial or complicated features from the Draft Specification. Our goal
has been to focus the SG5’s efforts towards a basic set of features that is useful and can support progress
towards possible inclusion in the C++ standard. Reflecting this goal, for the first time, we present precise
wording changes relative to the Working Draft of the C++ Standard (N3690) to implement this proposal.
This document consists of an informal overview of the proposal, several illustrative examples, a summary of
some of the discussion in SG5 and the earlier drafting group about design choices, and the above-mentioned
wording changes.

2 Overview

Sections of code may be designated as atomic transactions, which appear to execute atomically. Thus,
when reasoning about the behavior of their programs, programmers need not consider executions in which
operations by other threads are interleaved with the operations of an atomic transaction. Some operations are
prohibited within atomic transactions because it is impossible, difficult, or expensive to support executing
them in atomic transactions; such operations are called transaction-unsafe.

Distinct from atomic transactions, relaxed transactions behave as if all relaxed transactions were pro-
tected by a single special mutex, and no atomic transaction appears to take effect while this mutex is held.
In contrast to atomic transactions, there are no restrictions on what code can be executed within relaxed
transactions. However, there is no guarantee that relaxed transactions appear to execute atomically, and

1

N3718 Transactional Memory Support for C++

implementations must serialize relaxed transactions in at least some cases, thus reducing parallelism and
scalability. The relationship between atomic transactions and relaxed transactions is discussed in section 7.1.

A transaction is expressed as a compound statement (its body) with a special keyword prefix. An atomic
transaction statement also specifies how to handle exceptions that escape the transaction.

Data races Operations executed within transactions (atomic or relaxed) do not form a data race with each
other. However, they may form a data race with operations outside transactions. As usual, programs with
data races have undefined semantics. (See proposed wording changes for 1.10 [intro.multithread].)

Exceptions When an exception escapes an atomic transaction (i.e., it is thrown but not caught by the
transaction), the effects of operations executed by the transaction may take effect or be discarded, or the
transaction may call std::abort . This behavior is specified by an additional keyword in the atomic
transaction statement, as described in section 3. An atomic transaction whose effects are discarded due to
an escaping exception is said to be canceled. An atomic transaction that completes without its effects being
discarded, and without calling std::abort , is said to be committed. (See proposed wording changes for
15.2 [except.ctor].)

Transaction-safety As mentioned above, transaction-unsafe operations cannot be executed in an atomic
transaction. This restriction applies not only to code in the body of an atomic transaction, but also to code in
the body of functions called (directly or indirectly) within the atomic transaction. To support static checking
of this restriction, a keyword is provided to declare that a function or function pointer is transaction-safe,
and the type of a function or function pointer is augmented to specify whether it is transaction-safe.

To reduce the burden of declaring functions transaction-safe, a function is implicitly declared transaction-
safe if its definition does not contain any transaction-unsafe code and it is not explicitly declared transaction-
unsafe. Furthermore, unless declared otherwise, a non-virtual function whose definition is unavailable is
assumed to be transaction-safe. This assumption is checked at link time. This assumption does not apply
to virtual functions, or to functions accessed through function pointers, as the callee is not generally known
statically to the caller. (See proposed wording changes for 8.4.4 [dcl.fct.def.tx].)

3 Atomic Transactions

An atomic transaction statement can be written in one of the following forms:

transaction atomic noexcept { body }
transaction atomic commit on escape { body }
transaction atomic cancel on escape { body }

(See proposed wording changes for 6.x [stmt.tx].) The keyword following transaction atomic is
called its transaction exception specifier. It specifies the behavior when an exception escapes the transaction:

noexcept: std::abort is called; no side effects of the transaction can be observed.

commit on escape: The transaction is committed and the exception is thrown.

cancel on escape: If the exception is transaction-safe (defined below), the transaction is canceled
and the exception is thrown. Otherwise, std::abort is called. In either case, no side effects
of the transaction can be observed. An exception is transaction-safe if its type is bad alloc ,
bad array length , bad array new length , bad cast , bad typeid , or a scalar type.
(See proposed wording changes for clause 18.)

2

N3718 Transactional Memory Support for C++

Comment: The set of transaction-safe exceptions was deliberately chosen to be small initially, and may be
expanded in the future.

Code within the body of an atomic transaction must be transaction-safe; that is, it must not be transaction-
unsafe. Code is transaction-unsafe if:

• it is a relaxed transaction statement;

• it contains an initialization of, assignment to, or a read from a volatile object;

• it is an unsafe asm declaration (the definition of an unsafe asm declaration is implementation-defined);
or

• it contains a function call to a transaction-unsafe function, or through a function pointer that is not
transaction-safe (see section 5).

(See proposed wording changes for 8.4.4 [dcl.fct.def.tx].)

Note: Atomic transactions may be nested.

Note: The dynamic initialization of function-local statics is transaction-safe (assuming the code in the
initialization expression is transaction-safe) even though it likely involves some nonatomic synchronization
under the covers. However, see section 7.14.

Comment: The proposed wording changes do not yet guarantee that this initialization will be transaction-
safe, and so need to be amended.

Note: Synchronization via locks and atomic objects is not allowed within transactions (operations on these
objects are calls to transaction-unsafe functions).

Comment: This restriction may be relaxed in a future revision of the Technical Specification.

Jumping into the body of an atomic transaction using goto or switch is prohibited. (See proposed
wording changes for clause 6.)

The body of an atomic transaction appears to take effect atomically: no other thread sees any interme-
diate states of an atomic transaction, nor does the thread executing an atomic transaction see the effects of
any operations of other threads interleaved between the steps within the transaction.

A memory access within an atomic transaction does not race with any other memory access in an atomic
transaction or a relaxed transaction. However, a memory access within an atomic transaction does race with
conflicting memory accesses outside any transaction, unless these accesses are synchronized using some
other mechanism. The exact rules for defining data races are defined by the memory model. (See proposed
wording changes for 1.10 [intro.multithread].)

Note: As usual, programs with data races have undefined semantics.

Note: Although it has no observable effects, a canceled transaction still participates in data races.

4 Relaxed Transactions

A relaxed transaction statement has the following form:

transaction relaxed { body }

3

N3718 Transactional Memory Support for C++

A relaxed transaction behaves as if a special mutex (one for the entire system) is acquired before exe-
cuting the body and released after the body is executed (unless the relaxed transaction statement is nested
within another relaxed transaction, in which case the mutex is not released until the end of the outermost
relaxed transaction), and no atomic transaction appears to take effect while this special mutex is held by any
other thread. (See proposed wording changes for 6.x [stmt.tx].)

Note: Any code may be executed within a relaxed transaction.

Jumping into the body of a relaxed transaction using goto or switch is prohibited.

5 Transaction-Safety for Functions

A function declaration may specify a transaction safe keyword or a transaction unsafe at-
tribute.

Declarations of function pointers and typedef declarations involving function pointers may specify the
transaction safe keyword (but not the transaction unsafe attribute). (See proposed wording
changes for 8.3.5 [dcl.fct].)

A function is transaction-unsafe if

• any of its declarations specifies the transaction unsafe attribute,

• it is a virtual function that does not specify the transaction safe keyword and does not override
a function whose declaration specifies the transaction safe keyword,

• any of its parameters are declared volatile,

• it is a constructor or destructor whose corresponding class has a non-static volatile data member, or

• its definition contains transaction-unsafe code as defined in section 3.

Note: This definition covers lambdas and implicitly defined member functions.

Note: A function with multiple declarations is transaction-unsafe if any of its declarations satisfies the
definition above.

No declaration of a transaction-unsafe function may specify the transaction safe keyword. A
function is transaction-safe if it is not transaction-unsafe. The transaction-safety of a function is part of its
type.

Note: A transaction-safe function cannot overload a transaction-unsafe function with the same signature,
and vice versa.

A function pointer is transaction-safe if it is declared with the transaction safe keyword. A call
through a function pointer is transaction-unsafe unless the function pointer is transaction-safe.

A transaction-safe function pointer is implicitly convertible to an ordinary (i.e., not transaction-safe)
function pointer; such conversion is treated as an identity conversion in overloading resolution. (See pro-
posed wording changes for 4.14 [conv.tx] and clause 13.)

A compiler-generated constructor/destructor/assignment operator for a class is transaction-unsafe if any
of the corresponding operations on any of the class’s direct base classes is transaction-unsafe.

A member function declared with the transaction safe keyword or transaction unsafe
attribute in a base class preserves that attribute in any derived class, unless that member is redefined or
overridden. Functions brought into a class via a using declaration preserve the attribute in the original

4

N3718 Transactional Memory Support for C++

scope. A virtual function of transaction-safe type must not be overridden by a virtual function of transaction-
unsafe type. (See proposed wording changes for 10.3 [class.virtual].)

Because a compilation unit might not contain all declarations of a function, the transaction safety of a
function is confirmed only at link time in some cases.

Transaction-Safety of Functions in the Standard Library Certain functions in the standard library are
designated as transaction-safe. See the proposed wording for details.

Comment: The set of transaction-safe standard library functions was deliberately chosen to be small ini-
tially, and may be expanded in the future.

6 Examples

The first example below illustrates how transactions can elegantly solve a generic programming problem
that is not possible to solve with locks. Subsequent examples are intended to clarify the features specified
in this proposal.

6.1 Example illustrating importance of transactions for generic programming

Below we show an attempt to use locks for generic programming, and explain a fundamental problem with
it. After that, we show how the same problem can be elegantly solved using transactions. These examples
are based on examples in Generic Programming Needs Transactional Memory by Justin Gottschlich and
Hans Boehm (TRANSACT 2013).

template <typename T> class log {
class concurrent_sack public:
{ ...
public: void add(string const &s) {

... lock_guard<recursive_mutex> _(m_);
void set(T const &obj) { l_ += s;

lock_guard<mutex> _(m_); }
item_ = obj; void lock() { m_.lock(); }

} void unlock() { m_.unlock(); }
T const & get() const { private:

lock_guard<mutex> _(m_); recursive_mutex m_;
return item_; string l_;

} } L;
private:

T item_;
mutex m_;

};

class T {
public:

...
T& operator=(T const &rhs) {

if (!check_invariants(rhs))
{ L.add("T invariant error"); }

}
bool check_invariants(T const& rhs)
{ return /* type-specific check */; }

5

N3718 Transactional Memory Support for C++

string to_str() const { return "..."; }
};

Given the declarations above, the following program results in deadlock. There is no way to order the
locks to avoid this.

// Globally define sack
concurrent_sack<T> sack;

Thread 1 Thread 2
-------- --------

// acquires L.m_
lock_guard<log> _(L);

// acquires sack::m_
sack.set(T());

// tries to acquire sack::m_
// (deadlock)
L.add(sack.get().to_str());
L.add("...");

// tries to acquire L.m_ (deadlock)
// if T::operator==()’s call to
// check_invariants() returns false

Next we revisit the same problem using transactions.

template <typename T>
class concurrent_sack
{
public:

...
void set(T const &obj) {

transaction_atomic cancel_on_escape { item_ = obj; }
}
T const & get() const {

transaction_atomic cancel_on_escape { return item_; }
}

private:
T item_;

};

class log {
public:

...
void add(string const &s) {

transaction_atomic cancel_on_escape { l_ += s; }
}

private:
string l_;

} L;

class T {
public:

...

6

N3718 Transactional Memory Support for C++

T& operator=(T const &rhs) {
if (!check_invariants(rhs))
{ L.add("invariant error"); }

}
bool check_invariants(T const& rhs)
{ return /* type-specific check */; }
string to_str() const { return "..."; }

};

With these declarations, the problem can be solved as follows. Note that the order in which the transac-
tions are invoked does not matter, because no named locks are involved that could be misordered leading to
deadlock as shown in the prior example.

Instead, transactions are used for this generic programming example enabling the generic programmer
to build the system the way he or she believes it should be built, without leaking the implementation details
to the end programmer.

Likewise, the end programmer can program in the most natural fashion for him or her without worrying
about violating some embedded locking order within the generic programming code that he or she is using.

// Globally define sack
concurrent_sack<T> sack;

Thread 1 Thread 2
-------- --------

// begins local transaction
transaction_atomic cancel_on_escape
{

// begins sack transaction
sack.set(T());

// begins L transaction if
// T::operator=()’s call to
// check_invariants()
// returns false

// begins sack transaction,
// then L transaction
L.add(sack.get().to_str());
L.add("...");

}

6.2 Example demonstrating atomicity of atomic transactions

This simple bank account example demonstrates the atomicity of atomic transactions.

class Account {
int bal;

public:
Account(int initbal) { bal = initbal; };

void deposit(int x) {
transaction_atomic noexcept {

this.bal += x;
}

7

N3718 Transactional Memory Support for C++

};

void withdraw(int x) {
deposit(-x);

};

int balance() { return bal; }
}

void transfer(Account a1, a2; int x;) {
transaction_atomic noexcept {

a1.withdraw(x);
a2.deposit(x);

}
};

Account a1(0), a2(100);

Thread 1 Thread 2
-------- --------

transfer(a1, a2, 50); transaction_atomic noexcept {
r1 = a1.balance() + a2.balance();

}
assert(r1 == 100);

The assert cannot fire, because the transfer happens atomically and the two calls to balance happen
atomically.

6.3 Example demonstrating need for cancel-on-escape

Here, we extend the above example slightly so that transactions are logged by a function that may throw an
exception, for example due to allocation failure.

void deposit(int x) {
transaction_atomic cancel_on_escape {

log_deposit(x); // might throw
this.bal += x;

}
}

void withdraw(int x) {
deposit(-x);

}

void transfer(account a1, a2; int x;) {
try {

transaction_atomic cancel_on_escape {
a1.withdraw(x);
a2.deposit(x);

} catch (...) {
printf("Transfer failed");

}
}

8

N3718 Transactional Memory Support for C++

}

If the call from transfer() to a2.deposit() throws an exception, we should not simply commit
the transaction, because the withdrawal has happened but the deposit has not. Canceling the transaction pro-
vides an easy way to recover to a good state, without violating the invariant the transaction in transfer()
is intended to preserve. In this simple example, an error message is printed indicating that the transfer did
not happen.

6.4 Example illustrating limitation regarding types of exceptions that can escape and workaround

If log deposit() might throw an exception that is not transaction-safe, programmers can work around
this by translating the exception to one that is transaction-safe before allowing it to escape.

void deposit(int x) {
transaction_atomic cancel_on_escape {

try {
log_deposit(x); // might throw

} catch (Exception e) {
throw TamedException(e); // Produces transaction-safe exception

// based on original exception
}
this.bal += x;

}
}

6.5 Example illustrating that partial effects of cancelled transactions cannot be observed
#define TOO_BIG 17

int X = 0;

void do_something(int x) {
transaction_atomic cancel_on_escape {

X = x;
if (x > 5)

throw TOO_BIG;
}

}

Thread 1 Thread 2
-------- --------

do_something(random()); transaction_atomic noexcept {
r1 = X;

}
assert(r1 <= 5);

The assert cannot fire because a transaction that writes a value greater than 5 is canceled and therefore
its effects cannot be observed by other threads.

9

N3718 Transactional Memory Support for C++

6.6 Examples illustrating that partial effects of transactions that cause std::abort to be
called cannot be observed

The first example shows that partial effects of a noexcept transaction that throws an exception cannot be
observed by other threads.

int X = 0;

Thread 1

transaction_atomic noexcept { Thread 2
X = 1; --------
throw 0;

} int x;
transaction_atomic noexcept {
x = X;

}
assert(X==0);

For another example, suppose Thread 1 instead executes:

transaction_atomic cancel_on_escape {
X = 1;
throw SomeFancyException();

}

Again, Thread 2’s assert cannot fire because partial effects of the cancel on escape transaction that
throws a non-transaction-safe exception cannot be observed by other threads.

6.7 Examples illustrating relaxed transactions and non-races between accesses within trans-
actions (including relaxed)

Suppose we add the following method to the Account class shown in section 6.2.

void print_balances_and_total (account a1, a2) {
transaction_relaxed {

printf("First account balance: %ld", a1.balance());
printf("Second account balance: %ld", a2.balance());
printf("Total: %ld", a1.balance() + a2.balance());

}
}

Observations:

• This program is data-race-free: all concurrent accesses are within transactions.

• The relaxed transaction cannot be replaced with an atomic transaction, as I/O is not transaction-safe
(due to calls to printf , which is a transaction-unsafe function).

• Balances will be consistent and total will equal sum of balances displayed.

• If we eliminate the relaxed transaction from this example (so the calls to balance() in
print balances and total() are not in transactions), then this program is racy.

10

N3718 Transactional Memory Support for C++

6.8 Examples illustrating use of transaction safe

A simple example explicitly declaring a function to be transaction-safe at its definition. This example is
correct only if there is no previous declaration of deposit, or if the first such declaration is also explicitly
transaction-safe.

void deposit(int x) transaction_safe { // OK, deposit is transaction-safe
transaction_atomic noexcept {

this.bal += x;
}

}

If a function is explicitly declared transaction-safe, this must (also) be included on the first declaration:

void foo();

void foo() transaction_safe { // ERROR: must be on first declaration
x++; // if included at all

}

The next example illustrates that relaxed transactions are not transaction-safe. Note that this example
fails compilation even if there are no calls to foo within transactions.

void foo() transaction_safe {
...
transaction_relaxed { // ERROR: not transaction-safe

...
}

}

6.9 Examples illustrating use of transaction unsafe

A function declared transaction-unsafe cannot subsequently be declared transaction-safe.

void foo() transaction_unsafe;

void foo() transaction_safe { // ERROR: inconsistent declarations
...

}

A function declared transaction-unsafe cannot be called in an atomic transaction.

void foo() transaction_unsafe;

void bar() {
transaction_atomic noexcept {

foo(); // ERROR: foo is explicitly transaction_unsafe
}

}

11

N3718 Transactional Memory Support for C++

6.10 Examples illustrating “safe by default” (no error)

Functions (such as foo() in the following example) that do not include any transaction-unsafe code and do
not call any functions that are not transaction-safe are implicitly transaction-safe. Furthermore, a function
called within an atomic transaction (or an explicitly transaction-safe function) is assumed to be transaction-
safe. Therefore, the following example compiles and links successfully.

common.h

void foo();

file1.cxx

#include "common.h"

void bar() {
transaction_atomic noexcept {

foo();
}

}

file2.cxx

#include "common.h"

void foo() {
// only transaction-safe stuff here

}

If common.h instead contained

void foo() transaction_safe;

the example would still compile and link successfully.

6.11 Example illustrating “safe by default” (error)

This example is similar to the one above, but the definition of foo contains transaction-unsafe code. As
before, both files compile successfully. However, they do not link successfully, because compilation of
file1.cxx assumed foo() to be transaction-safe, but its definition in file2.cxx is not.

common.h

void foo();

file1.cxx

12

N3718 Transactional Memory Support for C++

#include "common.h"

void bar() {
transaction_atomic noexcept {

foo();
}

}

file2.cxx

#include "common.h"

void foo() {
printf("unsafe"); // transaction-unsafe due to I/O

}

If common.h instead included:

void foo() transaction_safe;

then compilation of file2.cxx would fail because foo contains something transaction-unsafe (I/O).
If common.h instead included:

void foo() transaction_unsafe;

then compilation of file1.cxx would fail because foo is declared transaction-unsafe.

6.12 Examples illustrating transaction-safe function pointers

The following example illustrates combinations of transaction-safe and transaction-unsafe function and
function pointers.

void (*fp)();
void (*tsfp)() transaction_safe;

void safefunc() {
// nothing that is transaction-unsafe

}

void unsafefunc() {
printf("Hello");

}

void bar() {
fp = &unsafefunc; // OK
fp = &safefunc; // OK
tsfp = &unsafefunc; // ERROR: can’t assign transaction-unsafe function

// to transaction-safe function pointer
tsfp = &safefunc; // OK
fp = tsfp; // OK: implicit conversion
tsfp = fp; // ERROR: can’t assign transaction-unsafe function

// pointer to transaction-safe one

13

N3718 Transactional Memory Support for C++

(*fp)(); // OK
(*tsfp)(); // OK
transaction_atomic noexcept {

(*tsfp)(); // OK
(*fp)(); // ERROR: call through fp transaction-unsafe

// because fp is not transaction-safe
}

}

6.13 Example illustrating function-local static initialization in atomic transactions

Consider this example:

std::pair<int,int> f(int i) {
static int x = i;
static int y = i;
return std::pair(x,y);

}

Thread 0 Thread 1
-------- --------

transaction_atomic noexcept { f(1);
auto r1 = f(0);

}

Because the transaction is atomic, it is not possible for r1 to get (0,1): if Thread 0 initializes x to 0,
then f(1)’s attempt to initialize x comes after Thread 0’s transaction has completed, so Thread 1 does not
initialize y before Thread 0 does (but see section 7.14).

In contrast, of Thread 0 instead used a relaxed transaction, it would be possible for r1 to get (0,1). This
is because Thread 1’s call to f(1) could start after Thread 0’s relaxed transaction has initialized x but has
not yet initialized y. There is no synchronization in the program to prevent this possibility, whereas the re-
quirement for atomic transactions to be atomic does. (We note that concurrent, unsynchronized initialization
of the same function-local static variable is explicitly not racy; see C++ standard section 6.7 paragraph 4.)

6.14 Example illustrating lambdas in transactions

Lambdas that contain only transaction-safe code are transaction-safe.

transaction_atomic noexcept {
[](int x){ return x*x; }(1);

}

6.15 Examples illustrating virtual functions and overriding

A member function declared with a transaction safe keyword or transaction unsafe attribute
in a base class preserves that attribute in any derived class, unless that member is redefined or overridden.
Functions brought into a class via a using declaration preserve the attribute in the original scope. A virtual
function of transaction-safe type must not be overridden by a virtual function of transaction-unsafe type.

struct B {
virtual int f() {

14

N3718 Transactional Memory Support for C++

printf("not safe"); // not transaction-safe
return 0;

}

virtual int g() transaction_safe {
return 1; // OK, transaction-safe definition

}

virtual int h() {
return 1; // not transaction-safe; must be explicit on

} // virtual functions
}:

struct D : B {
virtual int f() transaction_safe { // OK, transaction-safe override

// of transaction-unsafe virtual function
return 5; // OK, transaction-safe definition

}

virtual int g() { // implicitly declared transaction-safe
printf("not safe"); // ERROR: call to transaction-unsafe function
return 0;

}

virtual int h() transaction_safe { // ERROR: overridden virtual
// function not explicitly
// transaction-safe

return 5;
}

}:

The following example demonstrates that a function inherited from a base class remains transaction-safe;
the same is true for transaction-unsafe.

struct B {
void f() transaction_safe;

};

struct D : B {
// when naming B::f through D, B::f stays transaction_safe

};

void g() {
transaction_atomic {

D d;
d->f(); // ok, call to transaction-safe function

}
}

7 Discussion of Various Issues

The proposal described in this document was developed by SG5, based in part on the Draft Specification
for Transactional Constructs in C++ (Version 1.1) published by the Transactional Memory Specification

15

N3718 Transactional Memory Support for C++

Drafting Group in February 2012. We have deliberately scaled back the proposal in the Draft Specification,
omitting or simplifying many of the more controversial or complicated features. This proposal represents a
stage where the feature set is believed to be internally consistent and useful to programmers. Evolution of
the feature set is expected to continue after the initial publication of the Technical Specification.

In this section, we summarize some of the discussion about various features (including several features
in the Draft Specification that were omitted in this proposal), which we hope will help programmers and
implementors understand the design choices made, and some of the alternatives.

7.1 Atomic transactions vs. relaxed transactions

Feedback on the Draft Specification revealed confusion over the differences between atomic transactions
and relaxed transactions, the need for both, etc. We have had extensive discussions about the purpose and
relative merits of atomic and relaxed transactions, their relation to each other, whether we should support
both kinds of transactions, and if so, whether one ought to be considered “primary”.

Some argued, for example, that the primary purpose of transactions is to provide a simpler form of
critical sections, avoiding the need for complicated and error-prone locking policies, and enabling parallel
execution through speculation, and that relaxed transactions provide these benefits with little semantic com-
plication. In this view, atomic transactions are a restricted form of transaction for which we can statically
guarantee atomicity.

Others argued that the guarantee of atomicity is the fundamental property of transactions that provides
their primary benefit: eliminating the need to reason about executions in which the operations of a trans-
action are interleaved with operations of other threads. (Some even argued that relaxed transactions should
not be called “transactions” since they do not guarantee atomicity.) In this view, relaxed transactions are a
mechanism for managing the interaction between transactional and nontransactional code, and a concession
to the fact that not all code can be executed atomically.

Much of the discussion was clouded with confusion about the exact semantics of relaxed transactions,
and a significant breakthrough came in the realization that we could specify relaxed transactions in terms of
a special global mutex that is also “respected” by atomic transactions (i.e., atomic transactions do not appear
to execute while that mutex is owned).

Although differing views remain on the relative merits of atomic transactions and relaxed transactions,
the discussion did lead to fruitful insights and clarity on the semantics of and differences between them,
enabling us to converge on the proposal described in this document. We also agreed to defer discussion of
whether relaxed and/or atomic transactions should be called something else.

Due to concern that the need to serialize relaxed transactions in many cases will be problematic for
performance and scalability, we discussed more advanced proposals that deliver similar benefits, but allow
more fine-grained synchronization. We have also deferred this discussion, as the predicted problem has not
yet been demonstrated, and we believe that the proposed features are useful without supporting finer-grained
synchronization between transactional and nontransactional code.

One point deserves further discussion: As noted in the Draft Specification, the behavior of a relaxed
transaction that executes only transaction-safe code is currently indistinguishable from that of an atomic
transaction executing the same code. That is, a relaxed transaction appears to execute atomically if it
executes only transaction-safe code. However, if we extend transaction-safety to include some forms of
synchronization, such as access to atomic objects or locks, this property may not hold in the future.

We have recently observed that initialization of function-local static variables also breaks this putative
equivalence. Thus, if such code is to be considered transaction-safe, then the semantics of atomic transac-
tions and relaxed transactions will no longer be equivalent, even for code that is entirely transaction-safe.
This point is elaborated in section 7.8.

16

N3718 Transactional Memory Support for C++

7.2 Transaction cancellation

The Draft Specification included a cancel statement, which could be executed within an atomic transaction
to cancel that transaction. This feature was the subject of much discussion, about both the exact semantics
of this feature and its utility.

The semantics of transaction cancellation is complicated by three issues:

1. What information can escape a canceled transaction? At minimum, we can (and want to be able to)
detect that the transaction was canceled. But some argued that it would be helpful to be able to return
more information. This issue is particularly acute in the case of exceptions, as discussed in section 7.3.

2. When a cancel statement is executed in a nested atomic transaction, which transaction is canceled?
Some argued that only the innermost transaction ought to be canceled (supporting a semantics called
closed nesting). Others thought the outermost transaction should be canceled, to allow implementa-
tions that support only flat nesting (which is simpler to implement than closed nesting). The Draft
Specification included both “inner” and “outer” variants.

During these discussions, a way to generalize and unify these apparently-different forms of cancel-
lation was suggested: by allowing threads to determine a their current nesting depth and to specify a
number of levels to be canceled, both inner and outer forms of cancellation be supported by the same
mechanism, as well as intermediate forms that support cancelling any number of nested transactions.
However, as summarized below, for the current proposal we have agreed to restrict cancellation only
to the case that it is unambiguously necessary (see the example in section 6.3).

3. A cancel statement may be executed only within the context of an atomic transaction. To enable static
checking of this requirement, the Draft Specification restricted “inner” cancel statements to occur
within the lexical scope of an atomic transaction, and augmented the types of functions by introduc-
ing a new function attribute (transaction may cancel outer) to characterize functions that
might execute an “outer” cancel statement. Some wanted to relax the restriction on “inner” cancel
statements (e.g., by further augmenting the types of functions). Some thought the effect on types was
too complicated, especially in its interaction with transaction-safety.

As for the utility of transaction cancellation, proponents noted that it enabled “speculative program-
ming”, in which a transaction is used to do some computation that is valid only if the computation results in
some condition being true. If that condition is not true, then the transaction can be canceled with no effect.
It also may enable simpler ways to provide exception safety. Others argued that there were already ways
to provide exception safety, and the promise of speculative programming was too speculative to justify the
complexity introduced by cancellation.

In the end, we decided to table this issue, and omit the cancel statement from this proposal. However,
we retained a limited form of cancellation for when exceptions escape from atomic transactions.

7.3 Handling exceptions escaping from atomic transactions

There was much discussion about the desired semantics for an exception escaping an atomic transaction.
Some people argued that the transaction should be canceled, that committing the transaction would violate
the programmer’s expectation by executing only part of the intended transaction, and that canceling the
transaction would be an elegant way to provide exception safety. Others argued that the transaction should
commit and throw the exception, to provide “single global lock” semantics, and to ensure that the semantics
of single-threaded code is not changed by putting code within transactions, and that some code is already
exception-safe, and it would not make sense to cancel when an exception is thrown from such code.

17

N3718 Transactional Memory Support for C++

We agreed that there were some examples for which it would be “natural” to commit, and others for
which it would be “natural” to cancel. We also recognized that under the “cancel semantics”, it is possible
to mimic the “commit semantics” by putting the body of the atomic transaction within a try block, and
that with a cancel statement (or some alternative mechanism for canceling atomic transactions), it would be
similarly possible to mimic the semantics in the other direction. Nonetheless, we did not agree about which
semantics ought to be the default. Therefore, we agreed to have no default: every atomic transaction must
explicitly specify how to handle escaping exceptions. (Alternatively, an atomic transaction may specify that,
instead of committing or canceling, std::abort is called whenever an exception escapes the transaction.)

As mentioned in section 7.2, canceling transactions introduces semantic complications. In particular,
because the effects of the transaction are discarded when the transaction is canceled, the condition that
caused the exception may not hold after cancellation, which may be a problem for the code handling the
exception.

An issue of special concern is that the exception might contain references to objects allocated by the
transaction. If all the effects of a transaction are discarded, then this includes the allocation of these objects,
so the references to them are invalid. (Indeed, the exception itself may have been allocated by the transaction,
but we agreed that this effect should not be discarded, which is consistent with the special treatment of
memory allocated for exception objects in C++.) To avoid this issue, we restrict the exceptions that can
cancel an atomic transaction (i.e., the transaction-safe exceptions) to exceptions with scalar types, and a few
other exceptions such as bad alloc that we think important to handle. We have deliberately kept this set
small for now, but may expand it in the future.

This issue is discussed in greater detail in the paper Exceptions and Transactions in C++ published in
HotPar 2009, though there has been more discussion after its publication.

Since atomic transactions may be nested as noted before, if a suitable exception is thrown from an inner
cancel on escape transaction, only the inner transaction is immediately aborted, making it possible for the
outer transaction to handle the exception.

7.4 Transaction-safety for functions

In the Draft Specification, a function is transaction-safe only if it is explicitly declared transaction-safe
or its definition is available and its body contains no transaction-unsafe code (including calls to functions
not known to be transaction-safe). The latter condition was intended to reduce the burden of declaring
functions transaction-safe, without forgoing compile-time checking. Nonetheless, many people thought that
this burden remained too high (we received feedback to that effect at previous meetings, for example). Thus,
we adopted the current proposal, in which functions are assumed to be transaction-safe by default, with this
assumption being confirmed only at link time in some cases.

A simple alternative would be to restrict function calls within atomic transactions to functions whose
definition is available earlier in the translation unit (e.g., inline functions). Calling functions through function
pointers or using virtual functions would have to be prohibited entirely, since the callee is not generally
known to the caller. We deemed this alternative impractical, because it would prevent calling non-inline
functions in libraries.

At the other extreme, we could give up on static checking entirely, either by introducing a run-time
check that a function is transaction-safe when it is called within an atomic transaction, or by declaring it the
programmer’s responsibility to ensure that functions called within atomic transactions are transaction-safe.
We deemed forgoing static checking to be dangerous (especially with the latter variant), and likely to lead
to programs with subtle and difficult-to-diagnose concurrency bugs. We also worried about the performance
impact of introducing a run-time check in the first variant.

18

N3718 Transactional Memory Support for C++

Implementation considerations We expect that typical implementations of this proposal will be able
to execute transactions in parallel using speculation, under the assumption that actual conflicts between
concurrent transactions are rare. In such implementations, if a conflicting access does happen, typically all
effects of that section of code are undone and the entire section is retried. The definition of transaction-
unsafe code is motivated in part to capture code that performs operations that cannot be undone. This
implementation approach requires the compiler to instrument code executed within an atomic transaction
(unless hardware support for undoing the effects of code is available).

We also expect that typical implementations will generate both instrumented and uninstrumented vari-
ants of each transaction-safe function, with the uninstrumented variant used outside transactions or with
hardware support for transactions, and the instrumented variant used for software-based transactions. Since
these variants must have different mangled names so that the appropriate variant can be called depending on
context, that difference can be exploited to avoid explicit annotations when a named function is called: If
a function called within an atomic transaction turns out to be transaction-unsafe, the variant for use within
atomic transactions will not be available, and thus a program requiring that variant will fail to link.

Practical concerns: code bloat and compilation time The “safe by default” approach has raised con-
cerns that treating functions as transaction-safe even though they may not be used in transactions could lead
to unnecessary code bloat (because instrumented versions of functions may be produced unnecessarily).
While there may be some hope for this issue to be addressed by link-time optimizations for some cases,
such functionality may not be supported by all implementations.

Programmers who are concerned about this issue (or who actually experience the problem) can address
it by explicitly declaring some functions to be transaction-unsafe, preventing the problem. This may seem
to add back some of the burden we have sought to reduce (i.e., the previous requirement to explicitly declare
all functions to be used in transactions as transaction-safe). However, we note that the burden applies only
to programmers concerned about this issue, and they can declare functions transaction-unsafe incrementally,
and only to the extent necessary to address their problem. In contrast, the previous requirement to declare
functions transaction-safe before using them in atomic transactions applied to all programmers, and these
declarations needed to be consistently applied everywhere in all programs before they could even be tested
for the first time.

Finally, we note that preparing transaction-safe versions of functions for which they are not needed
may unnecessarily increase compliation time, and this issue cannot be resolved by link-time optimizations.
Again, those who face this issue can address it by applying transaction-unsafe declarations in an incremental
fashion, and without blocking ongoing development in the meantime.

7.5 Choice of transaction-safe standard library functions

It seems plausible to allow most of the standard library containers, strings, and iterators to be accessed within
atomic transactions. However, some implementations might have a debug mode where they perform I/O in
rarely executed code paths, making the implementation transaction-unsafe. For now, these are excluded
from the set of functions specified to be transaction-safe.

We expect that, in the future, means for explicitly allowing code that would violate atomicity from some
perspectives to be included in atomic transactions, which would remain atomic from other perspectives. For
a concrete example, suppose a function that is otherwise transaction-safe includes code for logging events
to support debugging. In this case, the atomicity of transactions executing this code is preserved for all
observers with the possible exception of those that examine the logged information. Thus the program’s be-
havior is not compromised, even though a person examining the output log could detect that the transactions
did not execute atomically.

19

N3718 Transactional Memory Support for C++

7.6 Transaction-safety for function pointers

To support calls through function pointers within atomic transactions with static checking, we also allow
function pointers to be declared transaction-safe. However, we cannot assume, as we did for functions, that
function pointers are transaction-safe by default, because in a call through a function pointer, the callee is not
generally known statically to the caller. Thus, a call through a function pointer is transaction-unsafe unless
the function pointer is explicitly declared transaction-safe. Such a function pointer must not be assigned a
pointer to a transaction-unsafe function. (It may be assigned a pointer to a function that is assumed to be
transaction-safe by default, because that condition can be checked at link time if necessary.)

The Draft Specification allowed a function pointer declaration to specify the transaction unsafe
attribute. We agreed that this should not be allowed because there is no semantic difference between a
function pointer declared with the transaction unsafe attribute and a function pointer declared with
neither the transaction safe keyword nor the transaction unsafe attribute.

7.7 Transaction-safety for virtual functions

In this proposal, functions are transaction-safe “by default”, with checking deferred until link time in some
cases. We decided not to extend this default to virtual functions because we cannot guarantee the transaction-
safety of a call to a virtual function of a base class unless we guarantee the transaction-safety of every func-
tion that overrides it in a derived class. In this, calls to virtual functions are like calls through function point-
ers, which are transaction-unsafe unless the function pointer is declared with the transaction safe
keyword. We thought that C++ programmers would be surprised if we treated calls to virtual functions and
calls through function pointers differently. We also thought that the burden on programmers might not be
too great, even if some classes with virtual functions are widely used, because only those classes with virtual
functions that need to be called within atomic transactions need to be modified. Also, there is a trend away
from deep class hierarchies, so modifying those classes might not be so painful (if it is, we hope users will
correct us).

We considered and discussed some alternatives in which virtual functions are transaction-safe by default.
For example, we could require transaction-unsafe virtual functions to be explicitly declared so, and reject
programs in which a transaction-unsafe virtual function overrides a transaction-safe virtual function, even
though neither is declared with explicit transaction-safety attributes. However, this option may require
changes to legacy code (i.e., adding the transaction unsafe attribute to declarations of transaction-
unsafe virtual functions). Alternatively, we could have a virtual function call in an atomic transaction throw
a runtime error if it results in a call to a transaction-unsafe function from a derived class. However, this
option introduces runtime errors and requires additional run-time checks to detect this possibility.

We also discussed the option of having a compiler flag to indicate that virtual functions should be con-
sidered transaction-safe by default, with a runtime error being thrown in case a transaction-unsafe function
is called within a transaction (i.e., the second alternative option above). Although this would not be part
of the proposed specification (which defines the language, not compiler flags), a list of this and other sim-
ilar options that may ease the adoption of transactions may be useful to implementors and users. (Even
with this option, a virtual function explicitly declared with the transaction safe keyword must not be
overridden by a transaction-unsafe function.)

7.8 Transaction-safety of dynamic initialization of function-local statics

We agreed that dynamic initialization of function-local statics should be transaction-safe, assuming that
the initialization expression is transaction-safe. We recognize that ensuring transaction-safety for dynamic
initialization of function-local statics imposes some implementation overhead when the initialization is ex-
ecuted outside a transaction to ensure proper synchronization, but we think this overhead should apply only

20

N3718 Transactional Memory Support for C++

to the actual initialization (not to subsequent accesses) and should therefore not be problematic. In recent
discussions, however, we realized that the proposed wording changes do not reflect this decision, and also
that there are some implementation questions that we need to consider further.

The discussion about differences between the semantics of atomic transactions and relaxed transactions
was often clouded by the belief held by some that their semantics are identical if the transaction body does
not contain any transaction-unsafe code. Initialization of function-local static variables provides a concrete
demonstration that this thinking is not correct, as shown in section 6.13 and discussed further in section 7.14.

7.9 The transaction safe class attribute

The Draft Specification allowed a class to be declared transaction safe, as a shorthand for declaring
each of its members transaction safe. This was intended to reduce the annotation burden required by
that specification’s rules for transaction-safety declarations. However, this issue is mitigated in the current
proposal (which interprets functions as “safe by default”), so we agreed to omit these for now and see
whether there is any clamor for such syntactic sugar.

7.10 Transaction expressions

The Draft Specification included transaction expressions:

Replacing the block in braces with a parenthesized expression in either atomic or relaxed trans-
action statements yields a transaction expression of type T, where T is the type of the paren-
thesized expression. . . . It is equivalent to the corresponding transaction statement with a single
assignment statement to a newly generated variable of type T with the expression as the right-
hand side, and then evaluating the variable (outside the transaction) to get the value of the
transaction expression.

We agreed to remove transaction expressions from this proposal because their functionality can be mimicked
using lambdas that are invoked immediately. We thought it better to first teach this admittedly relatively
clunky pattern, and then consider adding transaction expressions back if there is sufficient user demand.

7.11 Function transaction blocks

The Draft Specification also provided function transaction blocks by inserting transaction atomic or
transaction relaxed after the function signature, which would cause the body of the function to be
executed as a transaction. In the case of constructors, this includes all member and base class initializers.
This feature was intended to support transactional construction of objects. However, the actual initialization
in C c = C() calls the copy constructor in addition to the default constructor. The execution of the
copy constructor would not be covered by a transaction inside the default constructor. Additionally, the
extent of such a function transaction block might be too broad when just the atomicity of initialization for
several members or base classes is desired. Therefore, we decided not to include the feature until more user
experience with transactions in general is available.

7.12 The transaction callable attribute

The Draft Specification included a transaction callable attribute, which was a hint for the compiler
that a function might be called within a relaxed transaction (it had no semantic implication). It was added to
address concerns expressed about possible code bloat or poor performance due to lack of instrumentation.
We decided to omit it and see whether there is indeed a problem.

21

N3718 Transactional Memory Support for C++

7.13 Empty transactions

As specified, an empty transaction (i.e., a transaction whose body does not execute any code) is effectively a
fence (because it still has a start and an end that synchronizes-with the starts and ends of other transactions).
Several people expressed concern that we may want to allow an implementation to simply elide such a
transaction, which is not possible under this interpretation; this concern is amplified by the fact that a future
change to this would be a relaxation rather than a strengthening of the specification (i.e., it could break
existing code). However, we did not think we would be able to agree on and precisely specify an appropriate
relaxation in time for this proposal, so we decided to keep the specification as is.

7.14 Outstanding issues

Finally, we mention some issues that we have yet to resolve, having only realized them recently.

Making atomicity “first class” in memory model The proposed wording changes for the memory model
(1.10 [intro.multithread]) assume that it is sufficient to ensure that the end of one transaction synchronizes-
with the start of the next transaction (in some total order over transactions). This is based on the assumption
that the current restrictions on what code can be executed in an atomic transaction imply that any concurrent
code that could observe a violation of the atomicity of an atomic transaction would necessarily form a data
race with that transaction.

However, we have realized that this assumption is invalid. As discussed in section 7.8, because concur-
rent initialization of function-local static variables are not racy, the wording changes for the memory model
must more directly require atomicity of atomic transactions. We are considering a wording change along
the following lines:

If the start of an atomic transaction T is sequenced before an evaluation A, A is sequenced
before the end of T, and A inter-thread happens before some evaluation B, then the end of T
inter-thread happens before B. If an evaluation C inter-thread happens before that evaluation A,
C inter-thread happens before the start of T.

Because we realized this issue only recently, this condition is included only in a non-normative note.
We intend to consider this issue more thoroughly. We hope that making atomicity a first-class requirement
will eliminate the problem with initializing function-local static variables in atomic transactions, and also
facilitate allowing locks and/or atomic variables to be accessed within atomic transactions, should we decide
to allow such access in the future.

Terminating the program from within a transaction We have specified that std::abort be called
when an atomic transaction violates its exception assumptions (for example, a cancel-on-escape transaction
throws a non-transaction-safe exception). We previously intended to specify that std::terminate be
called in this case, but recently realized that this raises a tricky issue: what should the status of the transaction
be from the perspective of any termination handler that has been specified? Because such termination
handlers may not have been prepared for use within transactions, we cannot specify required behavior in an
implementation-independent way.

However, we recently realized that in some cases, normal exception behavior (independent of transac-
tions) requires std::terminate to be called, which raises the same question, and cannot be dodged as
easily. We have not yet had time to fully address this issue.

22

N3718 Transactional Memory Support for C++

8 Acknowledgement and Related Documents

Acknowledgement This work is the combined dedication and contribution from many people from academia,
industry, and research through many years of discussions and feedback. Some of those are all the authors and
chairs of the original external TM group that produced the original TM specification, all of the current SG5
SG, as well as individuals such as Dave Abraham, Zhihao Yuan, Paul Mckenney, Lawrence Crowl, Detlef
Vollmann, Ville Voutilainen, Nevin Liber, Bjarne Stroustrup, Herb Sutter, Bronek Kozicki, Tony Van Eerd,
Steve Clamage, Sebastien Redl, Niall Douglas and many others whom we have forgotten inadverdently to
list.

Related documents Some related documents and papers are listed below:

N3341: Transactional Language Constructs for C++

N3422: SG5: Software Transactional Memory (TM) Status Report

N3423: SG5: Software Transactional Memory (TM) Meeting Minutes

N3529: SG5: Transactional Memory (TM) Meeting Minutes 2012/10/30-2013/02/04

N3544: SG5: Transactional Memory (TM) Meeting Minutes 2013/02/25-2013/03/04

N3589: Summary of Progress Since Portland towards Transactional Language Constructs for C++

N3591: Summary of Discussions on Explicit Cancellation in Transactional Language Constructs for C++

N3592: Alternative cancellation and data escape mechanisms for transactions

N3690: Programming Languages — C++

N3695: SG5 Transactional Memory (TM) Meeting Minutes 2013/03/11-2013/06/10

N3717: SG5 Transactional Memory (TM) Meeting Minutes 2013/06/24-2013/08/26

N3725: Original Draft Specification of Transactional Language Constructs for C++, Version 1.1 (February
3, 2012)

Ali-Reza Adl-Tabatabai, Victor Luchangco, Virendra J. Marathe, Mark Moir, Ravi Narayanaswamy, Yang
Ni, Dan Nussbaum, Xinmin Tian, Adam Welc, Peng Wu. Exceptions and Transactions in C++. USENIX
Workshop on Hot Topics in Parallelism (HotPar), 2009.

Justin Gottschlich, Hans Boehm. Generic Programming Needs Transactional Memory. Workshop on Trans-
actional Computing (TRANSACT), 2013.

Resources from the Transactional Memory Specification Drafting Group predating SG5 are available from
https://sites.google.com/site/tmforcplusplus/.

23

	C++ basic transactional TS.pdf
	tmspec7

