Document Number: N3090=10-0080

Date: 2010-03-29
Revises: N3035=10-0025
Reply to: Pete Becker

Roundhouse Consulting, Ltd.
pete@versatilecoding.com

Working Draft, Standard for Programming
Language C++

Note: this is an early draft. It’s known to be incomplet and incorrekt, and it has lots of bad
fomatting.

©ISO/IEC

Contents

Contents
List of Tables
List of Figures

1 General

1.1 Scope ..o
1.2 Normative references
1.3 Definitions
14 Implementation compliance
1.5 Structure of this International Standard
1.6 Syntax notation L oL
1.7 The C++ memory model
1.8 The C++ object model
1.9 Program execution
1.10 Multi-threaded executions and data races
1.11 Acknowledgments oL
2 Lexical conventions
2.1 Separate translation oL
2.2 Phases of translation o000
2.3 Character sets e
2.4 Trigraph sequences
2.5 Preprocessing tokens Lo oL L
2.6 Alternative tokens
2.7 Tokens
2.8 Comments e e
2.9 Header names
2.10 Preprocessing numbers
2.11 Identifiers
212 Keywords
2.13 Operators and punctuators
2.14 Literals e
3 Basic concepts
3.1 Declarations and definitions
3.2 One definition rule
3.3 Scope ...
3.4 Name lookup
3.5 Program and linkage
3.6 Start and termination
3.7 Storage duration
3.8 Object lifetime o
3.9 Types . ..o
3.10 Lvaluesand rvalues

CONTENTS

N3090=10-0080

ii

xiv

15

................ 15
................ 15
................ 16
................ 17
................ 18
................ 18
................ 19
................ 19
................ 19
................ 20
................ 20
................ 21
................ 21
................ 22

32

................ 32
................ 34
................ 36
................ 42
................ 56
................ 59
................ 63
................ 67
................ 70
................ 75

ii

©ISO/IEC

3.11

Alignment L

4 Standard conversions

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

Lvalue-to-rvalue conversion
Array-to-pointer conversion
Function-to-pointer conversion
Qualification conversions

Integral promotions

Floating point promotion

Integral conversions

Floating point conversions
Floating-integral conversions

Pointer conversions

5 Expressions

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19

Primary expressions

Postfix expressions

Unary expressions.
Explicit type conversion (cast notation)
Pointer-to-member operators
Multiplicative operators

Additive operators

Shift operators
Relational operators

Equality operators

Bitwise AND operator
Bitwise exclusive OR operator
Bitwise inclusive OR operator
Logical AND operator
Logical OR operator

Conditional operator

Assignment and compound assignment operators
Comma operator
Constant expressions

6 Statements

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Labeled statement

Expression statement
Compound statement or block
Selection statements
Iteration statements
Jump statements L.
Declaration statement
Ambiguity resolution

7 Declarations

7.1
7.2

Specifiers
Enumeration declarations

Pointer to member conversions
Boolean conversions
Integer conversion rank

CONTENTS

N3090=10-0080

79

.................................... 80
.................................... 80
................................... 80
...................................... 80
........................ 81
..................................... 82
........................ 82
..................................... 82
.................................... 83
........................ 83
.................................. 83
.. 84
....................................... 84

85

.. 87
........................ 95
........................ 107
............................. 114
................................... 116
...................................... 117
........................ 117
........................ 118
.. 119
........................ 120
....................................... 121
................................... 121
................................... 121

....................................... 121
.. 121
.. 122
........................ 123
........................ 124
.. 125

128

........................ 128
.. 128
................................... 128
.. 129
.. 131
........................ 134

....................................... 135
.. 136

138

........................ 140
..................................... 154

iii

©ISO/IEC N3090=10-0080
7.3 NamesSpacCes v v v i e e e e e e 157
7.4 The asm declarationo 170
7.5 Linkage specifications L e 170
7.6 Attributes L e 173

8 Declarators 180
8.1 Typenames L 181
8.2 Ambiguity resolutiono 182
8.3 Meaning of declarators 183
8.4 Function definitions e 196
8.5 Initializers e e e e e 200

9 Classes 214
9.1 Class NAINES o o e 216
9.2 Class members 218
9.3 Member functions L 220
94 Static members L 223
9.5 Unions e 225
9.6 Bit-fields e 226
9.7 Nested class declarations e e e e e e 227
9.8 Local class declarations 228
9.9 Nested type names L e 229

10 Derived classes 230
10.1 Multiple base classes 231
10.2 Member name lookupo 233
10.3 Virtual functions e e e e 237
10.4 Abstract classes e e e 240

11 Member access control 243
11.1 Access specifiers L L 245
11.2 Accessibility of base classes and base class members 246
11.3 Access declarations 248
11.4 Friends s 249
11.5 Protected member access 252
11.6 Access to virtual functions 253
11.7 Multiple access e e 254
11.8 Nested classes o e e e e e 254

12 Special member functions 255
12.1 Constructors e e e 255
12.2 Temporary objects L 258
12.3 Conversions e 260
12,4 Destructors e e e e e e e e e e e e 263
12.5 Freestore e 266
12.6 Imitialization e e 267
12.7 Construction and destruction e 273
12.8 Copying and moving class objects L L 276
12.9 Inheriting Constructors. L 284

13 Overloading 288
CONTENTS iv

©ISO/IEC

13.1
13.2
13.3
13.4
13.5
13.6

Overloadable declarations
Declaration matching L 0L
Overload resolution
Address of overloaded function
Overloaded operators
Built-in operatorso L L

14 Templates

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9

Exported templates L oL
Template parameters
Names of template specializations
Template arguments L.
Type equivalence
Template declarations
Name resolution oo
Template instantiation and specialization
Function template specializations

15 Exception handling

15.1
15.2
15.3
15.4
15.5

Throwing an exception
Constructors and destructors
Handling an exception
Exception specifications
Special functions oL o oL

16 Preprocessing directives

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9

Conditional inclusion
Source file inclusion L.
Magcro replacement oL oo
Line control
Error directive
Pragma directive o
Null directive
Predefined macronames
Pragma operator L oo

17 Library introduction

17.1
17.2
17.3
17.4
17.5
17.6

General
The C standard library
Definitions
Additional definitions oL
Method of description (Informative)
Library-wide requirements

18 Language support library

18.1
18.2
18.3
18.4
18.5
18.6

General
Types o
Implementation properties
Integer typeso
Start and termination Lo
Dynamic memory management

CONTENTS

N3090=10-0080

320

................ 321
................ 321
................ 324
................ 326
................ 332
................ 333
................ 349
................ 361
................ 373

394

................ 395
................ 397
................ 397
................ 399
................ 402

404

................ 406
................ 407
................ 408
................ 413
................ 414
................ 414
................ 414
................ 414
................ 415

417

................ 417
................ 418
................ 418
................ 421
................ 421
................ 428

439

................ 439
................ 439
................ 440
................ 449
................ 450
................ 452

©ISO/IEC

18.7 Type identification L.
18.8 Exception handling oo
18.9 Inmitializer lists
18.10 Other runtime support oL
19 Diagnostics library
19.1 General
19.2 Exception classes o o
19.3 Assertions
19.4 Error numberso e
19.5 System error support
20 General utilities library
20.1 General
20.2 Requirements L
20.3 Utility components 0oL
204 Tuples
20.5 Class template bitset
20.6 Compile-time rational arithmetic
20.7 Metaprogramming and type traits,
20.8 Function objects oL
209 Memory
20.10 Time utilities Lo oo
20.11 Date and time functions
20.12 Class type_index
21 Strings library
21.1 General
21.2 Character traits
21.3 Stringclasses L o
21.4 Class template basic_string
21.5 Numeric Conversions
21.6 Hashsupport
21.7 Null-terminated sequence utilities
22 Localization library
22.1 General
22.2 Header <locale> Synopsis o v v v v v v oL
22.3 Locales. e
22.4 Standard locale categories
22.5 Standard code conversion facets
22.6 C Library Locales,
23 Containers library
23.1 General
23.2 Container requirements
23.3 Sequence containers
23.4 Associative containers
23.5 Unordered associative containers

24 Tterators library

CONTENTS

N3090=10-0080

469

................ 469
................ 469
................ 473
................ 474
................ 474

486

................ 486
................ 486
................ 496
................ 505
................ 014
................ 921
................ 524
................ 540
................ 563
................ 609
................ 623
................ 623

625

................ 625
................ 625
................ 631
................ 634
................ 663
................ 665
................ 665

669

................ 669
................ 669
................ 670
................ 682
................ 723
................ 724

726

................ 726
................ 726
................ 755
................ 795
................ 812

828

vi

©ISO/IEC N3090=10-0080

24.1 General e 828
24.2 Tterator requirements L Lo e e e e 828
24.3 Header <iterator> SynopsiS. i e e 835
24.4 TIterator primitives L oL e e 838
24.5 Tterator adaptors L e 841
24.6 Stream iterators. oL e 855
25 Algorithms library 864
25.1 General e 864
25.2 Non-modifying sequence operations 875
25.3 Mutating sequence operations Lo e e e 879
25.4 Sorting and related operations L. Lo L 888
25.5 Clibrary algorithms 902
26 Numerics library 904
26.1 General e 904
26.2 Numeric type requirements L Lo Lo e e 904
26.3 The floating-point environment L 905
26.4 Complex numbers e e e 906
26.5 Random number generation Lo L e 916
26.6 Numeric arrays 970
26.7 Generalized numeric operationso e 992
26.8 C Library e 996
27 Input/output library 1001
27.1 General e e 1001
27.2 TJostreams requirements oL oL L e e e e 1002
27.3 Forward declarations oL Lo e 1002
27.4 Standard iostream objects L 1004
27.5 TJostreams base classes 1006
27.6 Stream buffers. 1026
27.7 Formatting and manipulators Lo oL 1036
27.8 String-based streams L 1064
27.9 File-based streams e e 1075
28 Regular expressions library 1090
28.1 General e 1090
28.2 Definitions e 1090
28.3 Requirements 1091
28.4 Header <regex> SYNOPSIS v v v v v i i e 1093
28.5 Namespace std::regex_constants.o 1099
28.6 Class re@eX_erTor v v vttt e 1104
28.7 Class template regex_traits e e 1104
28.8 Class template basic_regex e 1106
28.9 Class template sub_match L 1112
28.10 Class template match_results o ittt e 1118
28.11 Regular expression algorithms oL L oo 1123
28.12 Regular expression Iterators e 1128
28.13 Modified ECMAScript regular expression grammar 1134
29 Atomic operations library 1137

CONTENTS vii

©ISO/IEC

29.1
29.2
29.3
294
29.5
29.6
29.7
29.8

General e
Header <atomic> synopsis L.
Order and Consistency
Lock-free Property,
Atomic Types
Operations on Atomic Types
Flag Type and Operations
Fences

30 Thread support library

30.1
30.2
30.3
30.4
30.5
30.6

General
Requirements o oL o
Threads
Mutual exclusion
Condition variables
Futures e

A Grammar summary

Al
A2
A3
A4
A5
A6
A7
A8
A9
A.10
A1l
A12
A.13
A4

Keywords
Lexical conventions
Basicconcepts. L o o
Expressions
Statementso
Declarations L
Declarators
Classes v o i e
Derived classes
Special member functionso
Overloading
Templates
Exception handling oo
Preprocessing directives oL

B Implementation quantities

C Compatibility

Cl Ct+tandISOC
C.2 Standard C library
D Compatibility features
D.1 Increment operator with bool operand
D.2 statickeyword.o
D.3 Access declarations
D.4 register keyword oL
D.5 Dynamic exception specifications
D.6 C standard library headers
D.7 Old iostreams members
D.8 charxstreams oo
D.9 Binders
D.10 auto_ptr

CONTENTS

N3090=10-0080

viii

©ISO/IEC N3090=10-0080

E Cross references 1263
Index 1280
Index of Grammar Productions 1305
Index of Library Names 1308
Index of Implementation Defined Behavior 1342

CONTENTS ix

©ISO/IEC N3090=10-0080

List of Tables

N O Uk W N

10
11

12
13
14
15

16
17
18
19
20
21
22
23
24
25
26

27
28
29

30
31
32
33
34
35
36
37
38
39

Trigraph sequences L L 17
Alternative tokens L L 19
Keywords e e 21
Alternative representations L e 21
Types of integer constants L 23
Escape sequences L e e 25
String literal concatenations oL Lo 28
Relations on const and volatile Lo 75
simple-type-specifiers and the types they specify oo oL 150
Relationship between operator and function call notation 296
Conversionso e e e e 304
Library categories e 417
CH+ library headers L 429
CH+ headers for C library facilities 429
C++ headers for freestanding implementations 430
Language support library summaryo L 439
Header <cstddef> synopsis oL e 439
Header <climits> Synopsis o v i i e e e e e e e e e e 449
Header <cfloat> Synopsis i e e 449
Header <cstdlib> Synopsis o o oo i it e e 450
Header <cstdarg> synopsis e 467
Header <csetjmp> Synopsis oL e e 467
Header <ctime> Synopsis L e e e 467
Header <csignal> Synopsis o vt i it e e e e e e e 467
Header <cstdlib> Synopsis o o v v it e e e 467
Header <cstdbool> SYNOPSIS . .+« v v v v v v i e e e e e e e 467
Diagnostics library summary oL L 469
Header <cassert> Synopsis o e 473
Header <cerrno> Synopsis o v v i i e e 474
General utilities library summary L. 486
EqualityComparable requirements o 487
LessThanComparable requirements oo it e e 487
DefaultConstructible requirements o e 487
MoveConstructible requirements L L e 487
CopyConstructible requirements (in addition to MoveConstructible) 487
MoveAssignable requirementso 488
CopyAssignable requirements(in addition to MoveAssignable) 488
Destructible requirements L Lo e e e 488
NullablePointer requirements L L e 491

List of Tables List of Tables X

©ISO/IEC N3090=10-0080

40
41
42
43
44
45
46
47
48
49
50
51
52
593
o4
95
56
57

o8
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76

7
78
79
80
81
82
83
84
85
86
87

Hash requirements L e e e e e 491
Descriptive variable definitions 491
Allocator requirements Lo e 493
Primary type category predicates Lo 527
Composite type category predicates L 528
Type property predicates L e 528
Type property queries L e e e e e e 534
Type relationship predicates L 534
Const-volatile modifications 536
Reference modificationso 536
Sign modificationso 537
Array modifications Lo Lo 537
Pointer modifications L 538
Other transformations L 538
Header <cstdlib> Synopsis v v v v i e e e e e e e e e e e e e 608
Header <cstring> synopsis o e e 608
Clock requirements e e e 611
Header <ctime> SynopsiS o . o i e e 623
Strings library summary oL e 625
Character traits requirements oL oL o 626
basic_string(const Allocator&) effects 639
basic_string(const basic_string&) effects 640
basic_string(const basic_string&, size_type, size_type, const Allocator&) effects . 640
basic_string(const charT*, size_type, const Allocator&) effects. 640
basic_string(const charT#*, const Allocator&) effects 641
basic_string(size_t, charT, const Allocator&) effects 641
basic_string(const basic_string&, const Allocator&) and basic_string(basic_string&,

const Allocator&) effects L L 642
operator=(const basic_string<charT, traits, Allocator>&) effects 642
operator=(const basic_string<charT, traits, Allocator>&&) effects 642
compare() results 657
Potential mbstate_t dataraces e e e 666
Header <cctype> Synopsis o v v v v it 667
Header <cwctype> synopsis o e e 667
Header <cstring> synopsis oL e e 667
Header <cwchar> SYyNopsis v v v v i i e e e e e e e e e e e 667
Header <cstdlib> Synopsis o o v v v i e e 668
Header <cuchar> Synopsis o o o vt i i e 668
Localization library summary Lo 669
Locale category facets L e 673
Required specializations L 674
do_in/do_out result values 692
do_unshift result values e 692
Integer conversions L e e e e 696
Length modifier« . . e 696
Integer conversions e 700
Floating-point conversions L e 701
Length modifier 701
Numeric cConversions Lo e e e e 701

List of Tables List of Tables xi

©ISO/IEC N3090=10-0080

88
89
90
91

92
93
94
95
96
97
98
99
100
101

102
103
104
105
106
107
108
109

110
111

112
113
114
115
116
117
118

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

Fill padding o e e 702
do_get_date effects 709
Header <clocale> Synopsis v v v v vt i it e e e e 724
Potential setlocale dataraces Lo 725
Containers library summary oL o e 726
Container requirements Lo e 727
Reversible container requirements Lo 730
Optional container operations Lo 731
Allocator-aware container requirementso e e 732
Sequence container requirements (in addition to container) 0L 734
Optional sequence container operations 737
Associative container requirements (in addition to container) L. 740
Container requirements that are not required for unordered associative containers. 745
Unordered associative container requirements (in addition to container) 746
Iterators library summaryo e 828
Relations among iterator categories L. oL Lo 828
Iterator requirements L L L L e e e e e e e 830
Input iterator requirements (in addition to Iterator) 830
Output iterator requirements (in addition to Tterator) 831
Forward iterator requirements (in addition to input iterator) 833
Bidirectional iterator requirements (in addition to forward iterator) 834
Random access iterator requirements (in addition to bidirectional iterator) 834
Algorithms library summary Lo 864
Header <cstdlib> synopsis o . oL e e e 902
Numerics library summary oL e e e e 904
Seed sequence requirements L L. oL o e e e 919
Uniform random number generator requirementso 920
Random number engine requirements oL Lo 923
Random number distribution requirements L Lo oo 929
Header <cmath> Synopsis o 997
Header <cstdlib> Synopsis o v v v i e e e e e e e e e e e e 997
Input/output library summary L 1001
fmtflags effects 1011
fmtflags constantso 1011
iostate effects L 1012
openmode effects 1013
seekdir effects L L 1013
Position type requirements L L oL L 1018
basic_ios::init() effects e 1020
basic_ios::copyfmt() effects L 1022
seekoff positioning Lo 1068
newoff values L L e 1069
File open modes L e 1079
seekoff effects L L 1081
Header <cstdio> Synopsis o o o v i i e e e e e e 1089
Header <cinttypes> Synopsis e 1089

List of Tables List of Tables xii

©ISO/IEC N3090=10-0080

134
135
136
137

138
139
140
141

142
143
144
145

146

147
148
149
150
151

152
153
154
155
156
157

Regular expressions library summaryo e e 1090
Regular expression traits class requirementso Lo oo 1091
syntax_option_type effects 1101
regex_constants: :match_flag_type effects when obtaining a match against a character con-

tainer sequence [first,last). e 1102
error_type values in the Clocale 1103
match_results assignment operator effects L. 1120
Effects of regex_match algorithm o000 1124
Effects of regex_search algorithm o oo L 1125
Atomics library summary Lo e e e 1137
Atomics for built-in types oL 1147
Atomics for standard typedef types 1148
Atomic arithmetic computationso 1155
Thread support library summary L e 1159
Standard macros e e e e 1243
Standard values L e 1243
Standard types e e 1243
Standard structs e 1243
Standard functions oL 1244
Cheaders e e 1247
strstreambuf (streamsize) effects L Lo 1251
strstreambuf (void* (%) (size_t), void (%) (void*)) effects 1251
strstreambuf (charT*, streamsize, charTx) effects. 1252
seekoff positioningo 1254
newoff values L 1254

List of Tables List of Tables xiii

©ISO/IEC N3090=10-0080

List of Figures

SO W

Expression category taxonomyo 76
Directed acyclic graph L 231
Non-virtual base e e e e 232
Virtual base e e e 233
Virtual and non-virtual base Lo 233
Name lookup 0 L e 235
Stream position, offset, and size types [non-normative]o Lo oL 1001

List of Figures List of Figures Xiv

2

©ISO/IEC N3090=10-0080

1 General [intro]

1.1 Scope [intro.scope]

This International Standard specifies requirements for implementations of the C++ programming language.
The first such requirement is that they implement the language, and so this International Standard also
defines C++. Other requirements and relaxations of the first requirement appear at various places within
this International Standard.

C++ is a general purpose programming language based on the C programming language as described in
ISO/IEC 9899:1999 Programming languages — C' (hereinafter referred to as the C standard). In addition
to the facilities provided by C, C++ provides additional data types, classes, templates, exceptions, name-
spaces, inline functions, operator overloading, function name overloading, references, free store management
operators, and additional library facilities.

1.2 Normative references [intro.refs]

The following standards contain provisions which, through reference in this text, constitute provisions of
this International Standard. At the time of publication, the editions indicated were valid. All standards
are subject to revision, and parties to agreements based on this International Standard are encouraged to
investigate the possibility of applying the most recent editions of the standards indicated below. Members
of IEC and ISO maintain registers of currently valid International Standards.

— Ecma International, ECMAScript Language Specification, Standard Ecma-262, third edition, 1999.
— ISO/IEC 2382 (all parts), Information technology — Vocabulary

— ISO/IEC 9899:1999, Programming languages — C

— ISO/IEC 9899:1999/Cor.1:2001(E), Programming languages — C, Technical Corrigendum 1

— ISO/IEC 9899:1999/Cor.2:2004(E), Programming languages — C, Technical Corrigendum 2

— ISO/IEC 9899:1999/Cor.3:2007(E), Programming languages — C, Technical Corrigendum 3

— ISO/IEC 9945:2003, Information Technology — Portable Operating System Interface (POSIX)

— ISO/IEC TR 10176:2003, Information technology — Guidelines for the preparation of programming
language standards

— ISO/IEC 10646-1:1993, Information technology — Universal Multiple-Octet Coded Character Set (UCS)
— Part 1: Architecture and Basic Multilingual Plane

— ISO/IEC TR 19769:2004, Information technology — Programming languages, their environments and
system software interfaces — FExtensions for the programming language C' to support new character
data types

The library described in Clause 7 of ISO/IEC 9899:1999 and Clause 7 of ISO/IEC 9899:1999/Cor.1:2001
and Clause 7 of ISO/IEC 9899:1999/Cor.2:2003 is hereinafter called the C standard library.*

The library described in ISO/IEC TR 19769:2004 is hereinafter called the C' Unicode TR.

1) With the qualifications noted in Clauses 18 through 30 and in C.2, the C standard library is a subset of the C++ standard
library.

§1.2 1

©ISO/IEC N3090=10-0080

The operating system interface described in ISO/TEC 9945:2003 is hereinafter called POSIX.
The ECMAScript Language Specification described in Standard Ecma-262 is hereinafter called ECMA-262.

1.3 Definitions [intro.defs]

For the purposes of this International Standard, the definitions given in ISO/IEC 2382 and the following
definitions apply. 17.3 defines additional terms that are used only in Clauses 17 through 27 and Annex D.

Terms that are used only in a small portion of this International Standard are defined where they are used
and italicized where they are defined.

1.3.1 [defns.argument)]
argument

an expression in the comma-separated list bounded by the parentheses in a function call expression; a
sequence of preprocessing tokens in the comma-separated list bounded by the parentheses in a function-like
macro invocation; the operand of throw; or an expression, type-id or template-name in the comma-separated
list bounded by the angle brackets in a template instantiation. Also known as an actual argument or actual
parameter.

1.3.2 [defns.cond.supp]
conditionally-supported

a program construct that an implementation is not required to support. [Note: Each implementation
documents all conditionally-supported constructs that it does not support. — end note]

1.3.3 [defns.diagnostic]
diagnostic message
a message belonging to an implementation-defined subset of the implementation’s output messages.

1.3.4 [defns.dynamic.type]
dynamic type

the type of the most derived object (1.8) to which the lvalue glvalue denoted by antvalue a glvalue expression
refers. [Ezample: if a pointer (8.3.1) p whose static type is “pointer to class B” is pointing to an object
of class D, derived from B (Clause 10), the dynamic type of the expression *p is “D.” References (8.3.2) are
treated similarly. — end ezample] The dynamic type of an—+vale a prvalue expression is its static type.

1.3.5 [defns.ill.formed]
ill-formed program

- a program that is not well formed.

1.3.6 [defns.impl.defined)]
implementation-defined behavior
behavior, for a well-formed program construct and correct data, that depends on the implementation and
that each implementation documents.

1.3.7 [defns.impl.limits]

§1.3 2

©ISO/IEC N3090=10-0080

implementation limits
restrictions imposed upon programs by the implementation.

1.3.8 [defns.locale.specific]
locale-specific behavior

behavior that depends on local conventions of nationality, culture, and language that each implementation
documents.

1.3.9 [defns.multibyte]
multibyte character

a sequence of one or more bytes representing a member of the extended character set of either the source or
the execution environment. The extended character set is a superset of the basic character set (2.3).

1.3.10 [defns.parameter]
parameter

an object or reference declared as part of a function declaration or definition, or in the catch Clause of an
exception handler, that acquires a value on entry to the function or handler; an identifier from the comma-
separated list bounded by the parentheses immediately following the macro name in a function-like macro
definition; or a template-parameter. Parameters are also known as formal arguments or formal parameters.

1.3.11 [defns.signature]
signature

the name and the parameter type list (8.3.5) of a function, as well as the class or namespace of which it
is a member. If a function or function template is a class member its signature additionally includes the
cv-qualifiers (if any) and the ref-qualifier (if any) on the function or function template itself. The signature
of a function template additionally includes its return type and its template parameter list. The signature
of a function template specialization includes the signature of the template of which it is a specialization
and its template arguments (whether explicitly specified or deduced). [Note: Signatures are used as a basis
for name mangling and linking. — end note]

1.3.12 [defns.static.type]
static type

the type of an expression (3.9), which type results from analysis of the program without considering execution
semantics. The static type of an expression depends only on the form of the program in which the expression
appears, and does not change while the program is executing.

1.3.13 [defns.undefined]
undefined behavior

behavior, such as might arise upon use of an erroneous program construct or erroneous data, for which
this International Standard imposes no requirements. Undefined behavior may also be expected when this
International Standard omits the description of any explicit definition of behavior. [Note: permissible
undefined behavior ranges from ignoring the situation completely with unpredictable results, to behaving
during translation or program execution in a documented manner characteristic of the environment (with or
without the issuance of a diagnostic message), to terminating a translation or execution (with the issuance
of a diagnostic message). Many erroneous program constructs do not engender undefined behavior; they are
required to be diagnosed. — end note]

§1.3 3

©ISO/IEC N3090=10-0080

1.3.14 [defns.unspecified]
unspecified behavior

behavior, for a well-formed program construct and correct data, that depends on the implementation. The
implementation is not required to document which behavior occurs. [Note: usually, the range of possible
behaviors is delineated by this International Standard. — end note |

1.3.15 [defns.well.formed)|
well-formed program

a C++ program constructed according to the syntax rules, diagnosable semantic rules, and the One Definition
Rule (3.2).

1.4 Implementation compliance [intro.compliance]

The set of diagnosable rules consists of all syntactic and semantic rules in this International Standard except
for those rules containing an explicit notation that “no diagnostic is required” or which are described as
resulting in “undefined behavior.”

Although this International Standard states only requirements on C++ implementations, those requirements
are often easier to understand if they are phrased as requirements on programs, parts of programs, or
execution of programs. Such requirements have the following meaning:

— If a program contains no violations of the rules in this International Standard, a conforming imple-
mentation shall, within its resource limits, accept and correctly execute? that program.

— If a program contains a violation of any diagnosable rule or an occurrence of a construct described in
this Standard as “conditionally-supported” when the implementation does not support that construct,
a conforming implementation shall issue at least one diagnostic message.

— If a program contains a violation of a rule for which no diagnostic is required, this International
Standard places no requirement on implementations with respect to that program.

For classes and class templates, the library Clauses specify partial definitions. Private members (Clause 11)
are not specified, but each implementation shall supply them to complete the definitions according to the
description in the library Clauses.

For functions, function templates, objects, and values, the library Clauses specify declarations. Implemen-
tations shall supply definitions consistent with the descriptions in the library Clauses.

The names defined in the library have namespace scope (7.3). A C++ translation unit (2.2) obtains access
to these names by including the appropriate standard library header (16.2).

The templates, classes, functions, and objects in the library have external linkage (3.5). The implementation
provides definitions for standard library entities, as necessary, while combining translation units to form a
complete C++ program (2.2).

Two kinds of implementations are defined: hosted and freestanding. For a hosted implementation, this
International Standard defines the set of available libraries. A freestanding implementation is one in which
execution may take place without the benefit of an operating system, and has an implementation-defined
set of libraries that includes certain language-support libraries (17.6.1.3).

A conforming implementation may have extensions (including additional library functions), provided they do
not alter the behavior of any well-formed program. Implementations are required to diagnose programs that
use such extensions that are ill-formed according to this International Standard. Having done so, however,
they can compile and execute such programs.

2) “Correct execution” can include undefined behavior, depending on the data being processed; see 1.3 and 1.9.

§1.4 4

©ISO/IEC N3090=10-0080

Each implementation shall include documentation that identifies all conditionally-supported constructs that
it does not support and defines all locale-specific characteristics.>

1.5 Structure of this International Standard [intro.structure]

Clauses 2 through 16 describe the C++ programming language. That description includes detailed syntactic
specifications in a form described in 1.6. For convenience, Annex A repeats all such syntactic specifications.

Clauses 18 through 30 and Annex D (the library clauses) describe the Standard C++ library. That description
includes detailed descriptions of the templates, classes, functions, constants, and macros that constitute the
library, in a form described in Clause 17.

Annex B recommends lower bounds on the capacity of conforming implementations.

Annex C summarizes the evolution of C++ since its first published description, and explains in detail the
differences between C++ and C. Certain features of C++ exist solely for compatibility purposes; Annex D
describes those features.

Throughout this International Standard, each example is introduced by “[Ezample:” and terminated by
“ —end example]”. Each note is introduced by “[Note:” and terminated by “ — end note]”. Examples and
notes may be nested.

1.6 Syntax notation [syntax]

In the syntax notation used in this International Standard, syntactic categories are indicated by italic type,
and literal words and characters in constant width type. Alternatives are listed on separate lines except in
a few cases where a long set of alternatives is marked by the phrase “one of.” If the text of an alternative is
too long to fit on a line, the text is continued on subsequent lines indented from the first one. An optional
terminal or nonterminal symbol is indicated by the subscript “,,: 7, so

{ expressiongp: ¥
indicates an optional expression enclosed in braces.
Names for syntactic categories have generally been chosen according to the following rules:

— X-name is a use of an identifier in a context that determines its meaning (e.g., class-name, typedef-
name).

— X-id is an identifier with no context-dependent meaning (e.g., qualified-id).

— X-seq is one or more X'’s without intervening delimiters (e.g., declaration-seq is a sequence of declara-
tions).

— X-list is one or more X’s separated by intervening commas (e.g., expression-list is a sequence of
expressions separated by commas).

1.7 The C++ memory model [intro.memory]

The fundamental storage unit in the C++ memory model is the byte. A byte is at least large enough to
contain any member of the basic execution character set and the eight-bit code units of the Unicode UTF-8
encoding form and is composed of a contiguous sequence of bits, the number of which is implementation-
defined. The least significant bit is called the low-order bit; the most significant bit is called the high-order
bit. The memory available to a C++ program consists of one or more sequences of contiguous bytes. Every
byte has a unique address.

3) This documentation also defines implementation-defined behavior; see 1.9.

§1.7 5

©ISO/IEC N3090=10-0080

[Note: the representation of types is described in 3.9. — end note]

A memory location is either an object of scalar type or a maximal sequence of adjacent bit-fields all having
non-zero width. [Note: Various features of the language, such as references and virtual functions, might
involve additional memory locations that are not accessible to programs but are managed by the imple-
mentation. — end note| Two threads of execution (1.10) can update and access separate memory locations
without interfering with each other.

[Note: Thus a bit-field and an adjacent non-bit-field are in separate memory locations, and therefore can be
concurrently updated by two threads of execution without interference. The same applies to two bit-fields,
if one is declared inside a nested struct declaration and the other is not, or if the two are separated by
a zero-length bit-field declaration, or if they are separated by a non-bit-field declaration. It is not safe to
concurrently update two bit-fields in the same struct if all fields between them are also bit-fields of non-zero
width. — end note]

[Ezample: A structure declared as

struct {
char a;
int b:5,
c:11,
:0,
d:8;
struct {int ee:8;} e;

}

contains four separate memory locations: The field a and bit-fields d and e.ee are each separate memory
locations, and can be modified concurrently without interfering with each other. The bit-fields b and c
together constitute the fourth memory location. The bit-fields b and ¢ cannot be concurrently modified, but
b and a, for example, can be. — end example |

1.8 The C++ object model [intro.object]

The constructs in a C++ program create, destroy, refer to, access, and manipulate objects. An object is a
region of storage. [Note: A function is not an object, regardless of whether or not it occupies storage in the
way that objects do. — end note] An object is created by a definition (3.1), by a new-ezpression (5.3.4) or
by the implementation (12.2) when needed. The properties of an object are determined when the object is
created. An object can have a name (Clause 3). An object has a storage duration (3.7) which influences
its lifetime (3.8). An object has a type (3.9). The term object type refers to the type with which the object
is created. Some objects are polymorphic (10.3); the implementation generates information associated with
each such object that makes it possible to determine that object’s type during program execution. For other
objects, the interpretation of the values found therein is determined by the type of the expressions (Clause 5)
used to access them.

Objects can contain other objects, called subobjects. A subobject can be a member subobject (9.2), a base
class subobject (Clause 10), or an array element. An object that is not a subobject of any other object is
called a complete object.

For every object x, there is some object called the complete object of x, determined as follows:
— If x is a complete object, then x is the complete object of x.
— Otherwise, the complete object of x is the complete object of the (unique) object that contains x.

If a complete object, a data member (9.2), or an array element is of class type, its type is considered the
most derived class, to distinguish it from the class type of any base class subobject; an object of a most
derived class type or of a non-class type is called a most derived object.

§ 1.8 6

©ISO/IEC N3090=10-0080

Unless it is a bit-field (9.6), a most derived object shall have a non-zero size and shall occupy one or more
bytes of storage. Base class subobjects may have zero size. An object of trivially copyable or standard-layout
type (3.9) shall occupy contiguous bytes of storage.

Unless an object is a bit-field or a base class subobject of zero size, the address of that object is the address
of the first byte it occupies. Two distinct objects that are neither bit-fields nor base class subobjects of zero

size shall have distinct addresses.*
Example:
static const char testl = ’x’;

static const char test2 = ’x’;
const bool b = &testl != &test2; // always true

end example |

[Note: C++ provides a variety of built-in types and several ways of composing new types from existing
types (3.9). — end note]

1.9 Program execution [intro.execution]

The semantic descriptions in this International Standard define a parameterized nondeterministic abstract
machine. This International Standard places no requirement on the structure of conforming implementations.
In particular, they need not copy or emulate the structure of the abstract machine. Rather, conforming
implementations are required to emulate (only) the observable behavior of the abstract machine as explained
below.?

Certain aspects and operations of the abstract machine are described in this International Standard as
implementation-defined (for example, sizeof (int)). These constitute the parameters of the abstract ma-
chine. Each implementation shall include documentation describing its characteristics and behavior in these
respects. Such documentation shall define the instance of the abstract machine that corresponds to that
implementation (referred to as the “corresponding instance” below).

Certain other aspects and operations of the abstract machine are described in this International Standard as
unspecified (for example, order of evaluation of arguments to a function). Where possible, this International
Standard defines a set of allowable behaviors. These define the nondeterministic aspects of the abstract
machine. An instance of the abstract machine can thus have more than one possible execution for a given
program and a given input.

Certain other operations are described in this International Standard as undefined (for example, the effect of
dereferencing the null pointer). [Note: this International Standard imposes no requirements on the behavior
of programs that contain undefined behavior. — end note|

A conforming implementation executing a well-formed program shall produce the same observable behavior
as one of the possible executions of the corresponding instance of the abstract machine with the same program
and the same input. However, if any such execution contains an undefined operation, this International
Standard places no requirement on the implementation executing that program with that input (not even
with regard to operations preceding the first undefined operation).

4) Under the “as-if” rule an implementation is allowed to store two objects at the same machine address or not store an
object at all if the program cannot observe the difference (1.9).

5) This provision is sometimes called the “as-if” rule, because an implementation is free to disregard any requirement of this
International Standard as long as the result is as if the requirement had been obeyed, as far as can be determined from the
observable behavior of the program. For instance, an actual implementation need not evaluate part of an expression if it can
deduce that its value is not used and that no side effects affecting the observable behavior of the program are produced.

6) This documentation also includes conditonally-supported constructs and locale-specific behavior. See 1.4.

§1.9 7

©ISO/IEC N3090=10-0080

When the processing of the abstract machine is interrupted by receipt of a signal, the values of objects which
are neither

— of type volatile std::sig_atomic_t nor
— lock-free atomic objects (29.4)

are unspecified, and the value of any object not in either of these two categories that is modified by the
handler becomes undefined.

An instance of each object with automatic storage duration (3.7.3) is associated with each entry into its
block. Such an object exists and retains its last-stored value during the execution of the block and while the
block is suspended (by a call of a function or receipt of a signal).

The least requirements on a conforming implementation are:
— Access to volatile objects are evaluated strictly according to the rules of the abstract machine.

— At program termination, all data written into files shall be identical to one of the possible results that
execution of the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place in such a fashion that prompting
output is actually delivered before a program waits for input. What constitutes an interactive device
is implementation-defined.

These collectively are referred to as the observable behavior of the program. [Note: more stringent corre-
spondences between abstract and actual semantics may be defined by each implementation. — end note]

[Note: operators can be regrouped according to the usual mathematical rules only where the operators really
are associative or commutative.” For example, in the following fragment

int a, b;

Sk

a=a+ 32760 + b + 5;

the expression statement behaves exactly the same as

a = (((a + 32760) + b) + 5);

due to the associativity and precedence of these operators. Thus, the result of the sum (a + 32760) is next
added to b, and that result is then added to 5 which results in the value assigned to a. On a machine in which
overflows produce an exception and in which the range of values representable by an int is [-32768,+32767],
the implementation cannot rewrite this expression as

a = ((a +Db) + 32765);

since if the values for a and b were, respectively, -32754 and -15, the sum a + b would produce an exception
while the original expression would not; nor can the expression be rewritten either as

a ((a + 32765) + b);

or

a (a + (b + 32765));

7) Overloaded operators are never assumed to be associative or commutative.

10

11

12

13

©ISO/IEC N3090=10-0080

since the values for a and b might have been, respectively, 4 and -8 or -17 and 12. However on a machine in
which overflows do not produce an exception and in which the results of overflows are reversible, the above
expression statement can be rewritten by the implementation in any of the above ways because the same
result will occur. — end note|

A full-expression is an expression that is not a subexpression of another expression. If a language construct
is defined to produce an implicit call of a function, a use of the language construct is considered to be an
expression for the purposes of this definition. A call to a destructor generated at the end of the lifetime of
an object other than a temporary object is an implicit full-expression. Conversions applied to the result of
an expression in order to satisfy the requirements of the language construct in which the expression appears
are also considered to be part of the full-expression.

[Example:

struct S {
S(int i): I(i) { }
int& v() { return I; }

private:
int I;
};
S s1(1); // full-expression is call of S::8(int)
S s2 = 2; // full-expression is call of S::8(int)
void £() {
if (8(3).v()) // full-expression includes lvalue-to-rvalue and
// int to bool conversions, performed before
// temporary is deleted at end of full-expression
{7
}

— end example]

[Note: the evaluation of a full-expression can include the evaluation of subexpressions that are not lexically
part of the full-expression. For example, subexpressions involved in evaluating default argument expres-
sions (8.3.6) are considered to be created in the expression that calls the function, not the expression that
defines the default argument. — end note]

Accessing an object designated by a volatile dvakie glvalue (3.10), modifying an object, calling a library
I/0O function, or calling a function that does any of those operations are all side effects, which are changes in
the state of the execution environment. Evaluation of an expression (or a sub-expression) in general includes
both value computations (including determining the identity of an object for }value glvalue evaluation and
fetching a value previously assigned to an object for #value prvalue evaluation) and initiation of side effects.
When a call to a library I/O function returns or an access to a volatile object is evaluated the side effect
is considered complete, even though some external actions implied by the call (such as the I/0 itself) or by
the volatile access may not have completed yet.

Sequenced before is an asymmetric, transitive, pair-wise relation between evaluations executed by a single
thread (1.10), which induces a partial order among those evaluations. Given any two evaluations A and B, if
A is sequenced before B, then the execution of A shall precede the execution of B. If A is not sequenced before
B and B is not sequenced before A, then A and B are unsequenced. [Note: The execution of unsequenced

evaluations can overlap. — end note] Evaluations A and B are indeterminately sequenced when either A
is sequenced before B or B is sequenced before A, but it is unspecified which. [Note: Indeterminately
sequenced evaluations cannot overlap, but either could be executed first. — end note]

§1.9 9

14

15

©ISO/IEC N3090=10-0080

Every value computation and side effect associated with a full-expression is sequenced before every value
computation and side effect associated with the next full-expression to be evaluated.®.

Except where noted, evaluations of operands of individual operators and of subexpressions of individual
expressions are unsequenced. [Note: In an expression that is evaluated more than once during the execution
of a program, unsequenced and indeterminately sequenced evaluations of its subexpressions need not be
performed consistently in different evaluations. — end note| The value computations of the operands of an
operator are sequenced before the value computation of the result of the operator. If a side effect on a scalar
object is unsequenced relative to either another side effect on the same scalar object or a value computation
using the value of the same scalar object, the behavior is undefined.

[Example:

void f(int, int);
void g(int i, int* v) {

i = v[i++]; // the behavior is undefined

i =7, i++, i++; // i becomes 9

i=i++ + 1; // the behavior is undefined
i=1i+1; // the value of i is incremented

£f(1i = -1, i = -1); // the behavior is undefined
}

— end example]

When calling a function (whether or not the function is inline), every value computation and side effect
associated with any argument expression, or with the postfix expression designating the called function, is
sequenced before execution of every expression or statement in the body of the called function. [Note: Value
computations and side effects associated with different argument expressions are unsequenced. — end note|
Every evaluation in the calling function (including other function calls) that is not otherwise specifically
sequenced before or after the execution of the body of the called function is indeterminately sequenced with
respect to the execution of the called function.? Several contexts in CH++ cause evaluation of a function call,
even though no corresponding function call syntax appears in the translation unit. [Ezample: Evaluation of
a new expression invokes one or more allocation and constructor functions; see 5.3.4. For another example,
invocation of a conversion function (12.3.2) can arise in contexts in which no function call syntax appears.
— end example] The sequencing constraints on the execution of the called function (as described above)
are features of the function calls as evaluated, whatever the syntax of the expression that calls the function
might be.

1.10 Multi-threaded executions and data races [intro.multithread]

A thread of execution (also known as a thread) is a single flow of control within a program, including the initial
invocation of a specific top-level function, and recursively including every function invocation subsequently
executed by the thread. [Note: when one thread creates another, the initial call to the top-level function of
the new thread is executed by the new thread, not by the creating thread. — end note] Every thread in a
program can potentially access every object and function in a program.'® Under a hosted implementation, a
C++ program can have more than one thread running concurrently. The execution of each thread proceeds
as defined by the remainder of this standard. The execution of the entire program consists of an execution of

8) As specified in 12.2; after a full-expression is evaluated, a sequence of zero or more invocations of destructor functions for
temporary objects takes place, usually in reverse order of the construction of each temporary object.
9) In other words, function executions do not interleave with each other.
10) An object with automatic or thread storage duration (3.7) is associated with one specific thread, and can be accessed by
a different thread only indirectly through a pointer or reference (3.9.2).

§ 1.10 10

©ISO/IEC N3090=10-0080

all of its threads. [Note: Usually the execution can be viewed as an interleaving of all its threads. However,
some kinds of atomic operations, for example, allow executions inconsistent with a simple interleaving, as
described below. — end note] Under a freestanding implementation, it is implementation-defined whether
a program can have more than one thread of execution.

The value of an object visible to a thread T at a particular point might-be is the initial value of the object, a
value assigned to the object by T', or a value assigned to the object by another thread, according to the rules
below. [Note: In some cases, there may instead be undefined behavior. Much of this section is motivated
by the desire to support atomic operations with explicit and detailed visibility constraints. However, it also
implicitly supports a simpler view for more restricted programs. — end note]

Two expression evaluations conflict if one of them modifies a memory location and the other one accesses or
modifies the same memory location.

The library defines a number of atomic operations (Clause 29) and operations on locks (Clause 30) that
are specially identified as synchronization operations. These operations play a special role in making as-
signments in one thread visible to another. A synchronization operation on one or more memory locations
is either a consume operation, an acquire operation, a release operation, or both an acquire and release
operation. A synchronization operation without an associated memory location is a fence and can be either
an acquire fence, a release fence, or both an acquire and release fence. In addition, there are relaxed atomic
operations, which are not synchronization operations, and atomic read-modify-write operations, which have
special characteristics. [Note: For example, a call that acquires a lock will perform an acquire operation
on the locations comprising the lock. Correspondingly, a call that releases the same lock will perform a
release operation on those same locations. Informally, performing a release operation on A forces prior side
effects on other memory locations to become visible to other threads that later perform a consume or an
acquire operation on A. “Relaxed” atomic operations are not synchronization operations even though, like
synchronization operations, they cannot contribute to data races. — end note]

All modifications to a particular atomic object M occur in some particular total order, called the modification
order of M. If A and B are modifications of an atomic object M and A happens before (as defined below) B,
then A shall precede B in the modification order of M, which is defined below. [Note: This states that the
modification orders must respect the “happens before” relationship. — end note] [Note: There is a separate
order for each atomic object. There is no requirement that these can be combined into a single total order for
all objects. In general this will be impossible since different threads may observe modifications to different
wariables objects in inconsistent orders. — end note|

A release sequence on an atomic object M is a maximal contiguous sub-sequence of side effects in the
modification order of M, where the first operation is a release, and every subsequent operation

— is performed by the same thread that performed the release, or
— is an atomic read-modify-write operation.

Certain library calls synchronize with other library calls performed by another thread. In particular, an
atomic operation A that performs a release operation on an atomic object M synchronizes with an atomic
operation B that performs an acquire operation on M and reads a value written by any side effect in
the release sequence headed by A. [Note: Except in the specified cases, reading a later value does not
necessarily ensure visibility as described below. Such a requirement would sometimes interfere with efficient
implementation. — end note] [Note: The specifications of the synchronization operations define when one
reads the value written by another. For atomic wariables objects, the definition is clear. All operations on
a given lock occur in a single total order. Each lock acquisition “reads the value written” by the last lock
release. — end note|

An evaluation A carries a dependency to an evaluation B if

— the value of A is used as an operand of B, unless:

§1.10 11

10

11

©ISO/IEC N3090=10-0080

— B is an invocation of any specialization of std::kill_dependency (29.3), or

— A is the left operand of a built-in logical AND (&&, see 5.14) or logical OR (||, see 5.15) operator,
or

— A is the left operand of a conditional (?:, see 5.16) operator, or
— A is the left operand of the built-in comma (,) operator (5.18);
or

— A writes a scalar object or bit-field M, B reads the value written by A from M, and A is sequenced
before B, or

— for some evaluation X, A carries a dependency to X, and X carries a dependency to B.

[Note: “Carries a dependency to” is a subset of “is sequenced before”, and is similarly strictly intra-thread.
— end note]

An evaluation A is dependency-ordered before an evaluation B if

— A performs a release operation on an atomic object M, and B performs a consume operation on M
and reads a value written by any side effect in the release sequence headed by A, or

— for some evaluation X, A is dependency-ordered before X and X carries a dependency to B.

[Note: The relation “is dependency-ordered before” is analogous to “synchronizes with”, but uses release/-
consume in place of release/acquire. — end note|

An evaluation A inter-thread happens before an evaluation B if
— A synchronizes with B, or
— A is dependency-ordered before B, or
— for some evaluation X
— A synchronizes with X and X is sequenced before B, or
— A is sequenced before X and X inter-thread happens before B, or
— A inter-thread happens before X and X inter-thread happens before B.

[Note: The “inter-thread happens before” relation describes arbitrary concatenations of “sequenced before”,
“synchronizes with” and “dependency-ordered before” relationships, with two exceptions. The first exception
is that a concatenation is not permitted to end with “dependency-ordered before” followed by “sequenced
before”. The reason for this limitation is that a consume operation participating in a “dependency-ordered
before” relationship provides ordering only with respect to operations to which this consume operation
actually carries a dependency. The reason that this limitation applies only to the end of such a concatenation
is that any subsequent release operation will provide the required ordering for a prior consume operation.
The second exception is that a concatenation is not permitted to consist entirely of “sequenced before”.
The reasons for this limitation are (1) to permit “inter-thread happens before” to be transitively closed and
(2) the “happens before” relation, defined below, provides for relationships consisting entirely of “sequenced
before”. — end note]

An evaluation A happens before an evaluation B if:
— A is sequenced before B, or

— A inter-thread happens before B.

§1.10 12

12

13

14

15

16

©ISO/IEC N3090=10-0080

A wvisible side effect A on a scalar object or bit-field M with respect to a value computation B of M satisfies
the conditions:

— A happens before B and
— there is no other side effect X to M such that A happens before X and X happens before B.

The value of a non-atomic scalar object or bit-field M, as determined by evaluation B, shall be the value
stored by the visible side effect A. [Note: If there is ambiguity about which side effect to a non-atomic object
or bit-field is visible, then there-isa-data—+ace;—and the behavior is either unspecified or undefined. — end
note] [Note: This states that operatlons on ordmary variables objects are not visibly reordered. This is not
actually detectable without data races, but it is necessary to ensure that data races, as defined here, and
with suitable restrictions on the use of atomics, correspond to data races in a simple interleaved (sequentially
consistent) execution. — end note]

The wvisible sequence of side effects on an atomic object M, with respect to a value computation B of M, is
a maximal contiguous sub-sequence of side effects in the modification order of M, where the first side effect
is visible with respect to B, and for every subsequent side effect, it is not the case that B happens before it.
The value of an atomic object M, as determined by evaluation B, shall be the value stored by some operation
in the visible sequence of M with respect to B. Furthermore, if a value computation A of an atomic object M
happens before a value computation B of M, and the value computed by A corresponds to the value stored
by side effect X, then the value computed by B shall either equal the value computed by A, or be the value
stored by side effect Y, where Y follows X in the modification order of M. [Note: This effectively disallows
compiler reordering of atomic operations to a single object, even if both operations are “relaxed” loads.
This effectively makes the “cache coherence” guarantee provided by most hardware available to C++ atomic
operations. — end note] [Note: The visible sequence depends on the “happens before” relation, which
depends on the values observed by loads of atomics, which we are restricting here. The intended reading
is that there must exist an association of atomic loads with modifications they observe that, together with
suitably chosen modification orders and the “happens before” relation derived as described above, satisfy
the resulting constraints as imposed here. — end note]

The execution of a program contains a data race if it contains two conflicting actions in different threads,
at least one of which is not atomic, and neither happens before the other. Any such data race results in
undefined behavior. [Note: It can be shown that programs that correctly use simple locks to prevent all
data races and use no other synchronization operations behave as though the executions of their constituent
threads were simply interleaved, with each observed value of an object being the last value assigned in that
interleaving. This is normally referred to as “sequential consistency”. However, this applies only to race-free
programs, and race-free programs cannot observe most program transformations that do not change single-
threaded program semantics. In fact, most single-threaded program transformations continue to be allowed,
since any program that behaves differently as a result must perform an undefined operation. — end note]

[Note: Compiler transformations that introduce assignments to a potentially shared memory location that
would not be modified by the abstract machine are generally precluded by this standard, since such an
assignment might overwrite another assignment by a different thread in cases in which an abstract machine
execution would not have encountered a data race. This includes implementations of data member assign-
ment that overwrite adjacent members in separate memory locations. Reordering of atomic loads in cases
in which the atomics in question may alias is also generally precluded, since this may violate the “visible
sequence” rules. — end note]

[Note: Transformations that introduce a speculative read of a potentially shared memory location may not
preserve the semantics of the C++ program as defined in this standard, since they potentially introduce a
data race. However, they are typically valid in the context of an optimizing compiler that targets a specific
machine with well-defined semantics for data races. They would be invalid for a hypothetical machine that
is not tolerant of races or provides hardware race detection. — end note]

§1.10 13

©ISO/IEC N3090=10-0080

1.11 Acknowledgments [intro.ack]

1 The C++ programming language as described in this International Standard is based on the language as
described in Chapter R (Reference Manual) of Stroustrup: The C++ Programming Language (second edition,
Addison-Wesley Publishing Company, ISBN 0-201-53992-6, copyright (©1991 AT&T). That, in turn, is based
on the C programming language as described in Appendix A of Kernighan and Ritchie: The C' Programming
Language (Prentice-Hall, 1978, ISBN 0-13-110163-3, copyright ©1978 AT&T).

2 Portions of the library Clauses of this International Standard are based on work by P.J. Plauger, which was
published as The Draft Standard C++ Library (Prentice-Hall, ISBN 0-13-117003-1, copyright ©1995 P.J.
Plauger).

3 All rights in these originals are reserved.

§1.11 14

1

©ISO/IEC N3090=10-0080

2 Lexical conventions [lex]

2.1 Separate translation [lex.separate]

The text of the program is kept in units called source files in this International Standard. A source file
together with all the headers (17.6.1.2) and source files included (16.2) via the preprocessing directive
#include, less any source lines skipped by any of the conditional inclusion (16.1) preprocessing directives, is
called a translation unit. [Note: a C++ program need not all be translated at the same time. — end note]

[Note: previously translated translation units and instantiation units can be preserved individually or in
libraries. The separate translation units of a program communicate (3.5) by (for example) calls to functions
whose identifiers have external linkage, manipulation of objects whose identifiers have external linkage, or
manipulation of data files. Translation units can be separately translated and then later linked to produce
an executable program (3.5). — end note]

2.2 Phases of translation [lex.phases]

The precedence among the syntax rules of translation is specified by the following phases.'!

1. Physical source file characters are mapped, in an implementation-defined manner, to the basic source
character set (introducing new-line characters for end-of-line indicators) if necessary. The set of phys-
ical source file characters accepted is implementation-defined. Trigraph sequences (2.4) are replaced
by corresponding single-character internal representations. Any source file character not in the basic
source character set (2.3) is replaced by the universal-character-name that designates that charac-
ter. (An implementation may use any internal encoding, so long as an actual extended character
encountered in the source file, and the same extended character expressed in the source file as a
universal-character-name (i.e., using the \uXXXX notation), are handled equivalently.)

2. Each instance of a backslash character (\) immediately followed by a new-line character is deleted,
splicing physical source lines to form logical source lines. Only the last backslash on any physical source
line shall be eligible for being part of such a splice. If, as a result, a character sequence that matches
the syntax of a universal-character-name is produced, the behavior is undefined. H-a A source file
that is not empty and that does not end in a new-line character, or that ends in a new-line character
immediately preceded by a backslash character before any such splicing takes place, the-behavioris
undefined shall be processed as if an additional new-line character were appended to the file.

3. The source file is decomposed into preprocessing tokens (2.5) and sequences of white-space characters
(including comments). A source file shall not end in a partial preprocessing token or in a partial com-
ment.'? Each comment is replaced by one space character. New-line characters are retained. Whether
each nonempty sequence of white-space characters other than new-line is retained or replaced by one
space character is unspecified. The process of dividing a source file’s characters into preprocessing to-
kens is context-dependent. [Ezample: see the handling of < within a #include preprocessing directive.
— end example| Within the r-char-sequence of a raw string literal, any transformations performed in
phases 1 and 2 (trigraphs, universal-character-names, and line splicing) are reverted.

11) Implementations must behave as if these separate phases occur, although in practice different phases might be folded
together.

12) A partial preprocessing token would arise from a source file ending in the first portion of a multi-character token that
requires a terminating sequence of characters, such as a header-name that is missing the closing " or >. A partial comment
would arise from a source file ending with an unclosed /* comment.

§2.2 15

©ISO/IEC N3090=10-0080

4. Preprocessing directives are executed, macro invocations are expanded, and _Pragma unary operator
expressions are executed. If a character sequence that matches the syntax of a universal-character-name
is produced by token concatenation (16.3.3), the behavior is undefined. A #include preprocessing di-
rective causes the named header or source file to be processed from phase 1 through phase 4, recursively.
All preprocessing directives are then deleted.

5. Each source character set member and universal-character-name in a character literal or a string literal,
as well as each escape sequence in a character literal or a non-raw string literal, is converted to the
corresponding member of the execution character set (2.14.3, 2.14.5); if there is no corresponding
member, it is converted to an implementation-defined member other than the null (wide) character.'3

6. Adjacent string literal tokens are concatenated.

7. White-space characters separating tokens are no longer significant. Each preprocessing token is con-
verted into a token. (2.7). The resulting tokens are syntactically and semantically analyzed and trans-
lated as a translation unit. [Note: The process of analyzing and translating the tokens may occasionally
result in one token being replaced by a sequence of other tokens (14.3). — end note] [Note: Source
files, translation units and translated translation units need not necessarily be stored as files, nor need
there be any one-to-one correspondence between these entities and any external representation. The
description is conceptual only, and does not specify any particular implementation. — end note]

8. Translated translation units and instantiation units are combined as follows: [Note: some or all of
these may be supplied from a library. — end note| Each translated translation unit is examined to
produce a list of required instantiations. [Note: this may include instantiations which have been
explicitly requested (14.8.2). —end note] The definitions of the required templates are located.
It is implementation-defined whether the source of the translation units containing these definitions
is required to be available. [Note: an implementation could encode sufficient information into the
translated translation unit so as to ensure the source is not required here. — end note| All the
required instantiations are performed to produce instantiation units. [Note: these are similar to
translated translation units, but contain no references to uninstantiated templates and no template
definitions. — end note] The program is ill-formed if any instantiation fails.

9. All external ebieeemd—ﬁmeaeﬂ entity references are resolved. Library components are linked to satisfy
external references to fune :ts entities not defined in the current translation. All such
translator output is collected into a program image which contains information needed for execution
in its execution environment.

2.3 Character sets [lex.charset]

1 The basic source character set consists of 96 characters: the space character, the control characters repre-
senting horizontal tab, vertical tab, form feed, and new-line, plus the following 91 graphical characters:'4

abcdefghijklmnopgqrstuvwxyaz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789

YOI #(OD<>h ey o2 x+ -/ T8~ b= N0

13) An implementation need not convert all non-corresponding source characters to the same execution character.

14) The glyphs for the members of the basic source character set are intended to identify characters from the subset of
ISO/IEC 10646 which corresponds to the ASCII character set. However, because the mapping from source file characters to the
source character set (described in translation phase 1) is specified as implementation-defined, an implementation is required to
document how the basic source characters are represented in source files.

§2.3 16

©ISO/IEC N3090=10-0080

The universal-character-name construct provides a way to name other characters.

hez-quad:
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

universal-character-name:
\u hez-quad
\U hex-quad hezx-quad

The character designated by the universal-character-name \UNNNNNNNN is that character whose character
short name in ISO/IEC 10646 is NNNNNNNN; the character designated by the universal-character-name \uNNNN
is that character whose character short name in ISO/IEC 10646 is 0000NNNN. If the hexadecimal value for a
universal-character-name corresponds to a surrogate code point (in the range 0xD800-0xDFFF, inclusive),
the program is ill-formed. Additionally, if the hexadecimal value for a universal-character-name outside the
c-char-sequence, s-char-sequence, or r-char-sequence of a character or string literal corresponds to a control
character (in either of the ranges 0x00-0x1F or 0x7F-0x9F, both inclusive) or to a character in the basic
source character set, the program is ill-formed.

The basic execution character set and the basic execution wide-character set shall each contain all the
members of the basic source character set, plus control characters representing alert, backspace, and carriage
return, plus a null character (respectively, null wide character), whose representation has all zero bits. For
each basic execution character set, the values of the members shall be non-negative and distinct from one
another. In both the source and execution basic character sets, the value of each character after 0 in the
above list of decimal digits shall be one greater than the value of the previous. The execution character set
and the execution wide-character set are implementation-defined supersets of the basic execution character
set and the basic execution wide-character set, respectively. The values of the members of the execution
character sets and the sets of additional members are- et ' — =
are locale-specific.

2.4 Trigraph sequences [lex.trigraph]

Before any other processing takes place, each occurrence of one of the following sequences of three characters
(“trigraph sequences”) is replaced by the single character indicated in Table 1.

Table 1 — Trigraph sequences

’ Trigraph Replacement \ Trigraph Replacement \ Trigraph Replacement ‘

7= # 77(L 77< {
77/ \ ?7)] 77> i
77 - 771 [77— ~

[Example:

becomes

#define arraycheck(a,b) a[b] || blal

— end example|

No other trigraph sequence exists. Each ? that does not begin one of the trigraphs listed above is not
changed.

§2.4 17

©ISO/IEC N3090=10-0080

2.5 Preprocessing tokens [lex.pptoken)]

preprocessing-token:
header-name
identifier
pp-number
character-literal
user-defined-character-literal
string-literal
user-defined-string-literal
Preprocessing-op-or-punc
each non-white-space character that cannot be one of the above

Each preprocessing token that is converted to a token (2.7) shall have the lexical form of a keyword, an
identifier, a literal, an operator, or a punctuator.

A preprocessing token is the minimal lexical element of the language in translation phases 3 through 6. The
categories of preprocessing token are: header names, identifiers, preprocessing numbers, character literals
(including user-defined character literals), string literals (including user-defined string literals), preprocessing
operators and punctuators, and single non-white-space characters that do not lexically match the other
preprocessing token categories. If a > or a " character matches the last category, the behavior is undefined.
Preprocessing tokens can be separated by white space; this consists of comments (2.8), or white-space
characters (space, horizontal tab, new-line, vertical tab, and form-feed), or both. As described in Clause 16,
in certain circumstances during translation phase 4, white space (or the absence thereof) serves as more
than preprocessing token separation. White space can appear within a preprocessing token only as part of
a header name or between the quotation characters in a character literal or string literal.

If the input stream has been parsed into preprocessing tokens up to a given characters:

— if the next character begins a sequence of characters that could be the prefix and initial double quote

of a raw string literal, such as R", the next preprocessing token shall be a raw string literal;

— otherwise, the next preprocessing token is the longest sequence of characters that could constitute a
preprocessing token, even if that would cause further lexical analysis to fail.

FEzxample:

const char* s = R"y"; // ill-formed raw string, not "x" "y"

end example |

[Ezample: The program fragment 1Ex is parsed as a preprocessing number token (one that is not a valid
floating or integer literal token), even though a parse as the pair of preprocessing tokens 1 and Ex might
produce a valid expression (for example, if Ex were a macro defined as +1). Similarly, the program fragment
1E1 is parsed as a preprocessing number (one that is a valid floating literal token), whether or not E is a
macro name. — end ezample]

[Ezample: The program fragment x+++++y is parsed as x ++ ++ + y, which, if x and y are of built-in types,
violates a constraint on increment operators, even though the parse x ++ + ++ y might yield a correct
expression. — end example|

2.6 Alternative tokens [lex.digraph)]

Alternative token representations are provided for some operators and punctuators.'®

15) These include “digraphs” and additional reserved words. The term “digraph” (token consisting of two characters) is not

§ 2.6 18

©ISO/IEC N3090=10-0080

2 In all respects of the language, each alternative token behaves the same, respectively, as its primary token,
except for its spelling.!® The set of alternative tokens is defined in Table 2.

Table 2 — Alternative tokens

’ Alternative Primary ‘ Alternative Primary ‘ Alternative Primary ‘

<% { and && and_eq &=
%> T bitor | or_eq |=
<: [or [xor_eq "=
>] xor - not !
% # compl ~ not_eq 1=
Hoith: ## bitand &
2.7 Tokens [lex.token]
token.:

identifier

keyword

literal

operator

punctuator

1 There are five kinds of tokens: identifiers, keywords, literals,!” operators, and other separators. Blanks,
horizontal and vertical tabs, newlines, formfeeds, and comments (collectively, “white space”), as described
below, are ignored except as they serve to separate tokens. [Note: Some white space is required to sepa-
rate otherwise adjacent identifiers, keywords, numeric literals, and alternative tokens containing alphabetic
characters. — end note]

2.8 Comments [lex.comment]

1 The characters /* start a comment, which terminates with the characters */. These comments do not
nest. The characters // start a comment, which terminates with the next new-line character. If there is a
form-feed or a vertical-tab character in such a comment, only white-space characters shall appear between it
and the new-line that terminates the comment; no diagnostic is required. | Note: The comment characters
//, /*, and */ have no special meaning within a // comment and are treated just like other characters.
Similarly, the comment characters // and /* have no special meaning within a /* comment. — end note|

2.9 Header names [lex.header]

header-name:
< h-char-sequence >
" g-char-sequence "

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member of the source character set except new-line and >

perfectly descriptive, since one of the alternative preprocessing-tokens is %:%: and of course several primary tokens contain two
characters. Nonetheless, those alternative tokens that aren’t lexical keywords are colloquially known as “digraphs”.

16) Thus the “stringized” values (16.3.2) of [and <: will be different, maintaining the source spelling, but the tokens can
otherwise be freely interchanged.

17) Literals include strings and character and numeric literals.

§ 2.9 19

©ISO/IEC N3090=10-0080

q-char-sequence:
g-char
g-char-sequence q-char

g-char:
any member of the source character set except new-line and "

Header name preprocessing tokens shall only appear within a #include preprocessing directive (16.2). The
sequences in both forms of header-names are mapped in an implementation-defined manner to headers or
to external source file names as specified in 16.2.

H The appearance of either of the characters ’> or \; or of either of the character sequences /* or // appeasrs in
a g-char-sequence or & an h-char-sequence is conditionally supported with implementation-defined semantics,

or as is the appearance of the character " appearsin—=a in an h-char-sequence —the-behavieris-undefined.18
2.10 Preprocessing numbers [lex.ppnumber]|
pp-number:
digit
. digit

pp-number digit

pp-number identifier-nondigit
pp-number e sign

pp-number E sign

pp-number .

Preprocessing number tokens lexically include all integral literal tokens (2.14.2) and all floating literal to-
kens (2.14.4).

A preprocessing number does not have a type or a value; it acquires both after a successful conversion to an
integral literal token or a floating literal token.

2.11 Identifiers [lex.name]

identifier:
identifier-nondigit
identifier identifier-nondigit
identifier digit

identifier-nondigit:
nondigit
universal-character-name
other implementation-defined characters

nondigit: one of
abcdefghijklm
nopgrstuvwzxyz
ABCDEFGHIJKLM
NOPQRSTUVWIXYZ _

digit: one of
0123456789

18) Thus, a sequences of characters that resembles an escape sequences-eause-undefined-behavior might result in an error, be
interpreted as the character corresponding to the escape sequence, or have a completely different meaning, depending on the
implementation.

§2.11 20

2

©ISO/IEC N3090=10-0080

An identifier is an arbitrarily long sequence of letters and digits. Each universal-character-name in an
identifier shall designate a character whose encoding in ISO 10646 falls into one of the ranges specified in
Annex A of TR 10176:2003. Upper- and lower-case letters are different. All characters are significant.!?

In addition, some identifiers are reserved for use by C++ implementations and standard libraries (17.6.3.3.2)
and shall not be used otherwise; no diagnostic is required.

2.12 Keywords [lex.key]

The identifiers shown in Table 3 are reserved for use as keywords (that is, they are unconditionally treated
as keywords in phase 7) except in an attribute-token (7.6.1) | Note: The export keyword is unused but is
reserved for future use. — end note] :

Table 3 — Keywords

alignof decltype goto reinterpret_cast try

asm default if return typedef
auto delete inline short typeid
bool do int signed typename
break double long sizeof union
case dynamic_cast mutable static unsigned
catch else namespace static_assert using
char enum new static_cast virtual
charl6_t explicit noexcept struct void
char32_t export nullptr switch volatile
class extern operator template wchar_t
const false private this while
constexpr float protected thread_local

const_cast for public throw

continue friend register true

Furthermore, the alternative representations shown in Table 4 for certain operators and punctuators (2.6)
are reserved and shall not be used otherwise:

Table 4 — Alternative representations

and and_eq bitand bitor compl not
not_eq or or_eq Xor xor_eq
2.13 Operators and punctuators [lex.operators]

The lexical representation of C++ programs includes a number of preprocessing tokens which are used in
the syntax of the preprocessor or are converted into tokens for operators and punctuators:

19) On systems in which linkers cannot accept extended characters, an encoding of the universal-character-name may be used
in forming valid external identifiers. For example, some otherwise unused character or sequence of characters may be used to
encode the \u in a universal-character-name. Extended characters may produce a long external identifier, but C++ does not
place a translation limit on significant characters for external identifiers. In C++, upper- and lower-case letters are considered
different for all identifiers, including external identifiers.

§2.13 21

1

©ISO/IEC

preprocessing-op-or-punc: one of

{ } []

<: > <% %>

new delete ? HH

+ - * /

! = < >

t= &= = <<

<= >= && |l

and and_eq bitand Dbitor
or or_eq Xor xor_eq

compl

#i#

not

hoith:

N3090=10-0080

()

& | ~
*= = Y=
<<= == 1=
, —>% ->
not_eq

Each preprocessing-op-or-punc is converted to a single token in translation phase 7 (2.2).

2.14 Literals

2.14.1 Kinds of literals

There are several kinds of literals.2°

literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal
pointer-literal
user-defined-literal

2.14.2 Integer literals

integer-literal:
decimal-literal integer-suffizop:
octal-literal integer-suffizop:
hezadecimal-literal integer-suffizopt

decimal-literal:
nonzero-digit
decimal-literal digit

octal-literal:
0
octal-literal octal-digit

hezadecimal-literal:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-literal hexadecimal-digit

nonzero-digit: one of
123456789

octal-digit: one of
01234567

hezadecimal-digit: one of
0123456789
abcdef
ABCDETF

[lex.literal]

[lex.literal.kinds]

[lex.icon]

20) The term “literal” generally designates, in this International Standard, those tokens that are called “constants” in ISO C.

§ 2.14.2

22

©ISO/IEC N3090=10-0080

integer-suffix:
unsigned-suffiz long-suffizop:
unsigned-suffix long-long-suffizop:
long-suffix unsigned-suffizop:
long-long-suffiz unsigned-suffizop:
unsigned-suffix: one of
uU
long-suffiz: one of
1L
long-long-suffix: one of
11 LL
An integer literal is a sequence of digits that has no period or exponent part. An integer literal may have
a prefix that specifies its base and a suffix that specifies its type. The lexically first digit of the sequence
of digits is the most significant. A decimal integer literal (base ten) begins with a digit other than 0 and
consists of a sequence of decimal digits. An octal integer literal (base eight) begins with the digit 0 and
consists of a sequence of octal digits.?! A heradecimal integer literal (base sixteen) begins with 0x or 0X and
consists of a sequence of hexadecimal digits, which include the decimal digits and the letters a through f
and A through F with decimal values ten through fifteen. [Ezample: the number twelve can be written 12,
014, or 0XC. — end example]

The type of an integer literal
represented.

is the first of the corresponding list in Table 5 in which its value can be

Table 5 — Types of integer constants

Suffix Decimal constant Octal or hexadecimal constant
none int int
long int unsigned int
long long int long int
unsigned long int
long long int
unsigned long long int
uorU unsigned int unsigned int
unsigned long int unsigned long int
unsigned long long int | unsigned long long int
lorlL long int long int
long long int unsigned long int
long long int
unsigned long long int
Bothuor U | unsigned long int unsigned long int
and 1 or L unsigned long long int | unsigned long long int
11 or LL long long int long long int
unsigned long int
Bothuorvu unsigned long long int | unsigned long long int
and 11 or LL

3 If an integer literal cannot be represented by any type in its list and an extended integer type can represent

its value, it may have that extended integer type. If all of the types in the list for the literal are signed, the
extended integer type shall be signed. If all of the types in the list for the literal are unsigned, the extended
integer type shall be unsigned. If the list contains both signed and unsigned types, the extended integer

21) The digits 8 and 9 are not octal digits.

§ 2.14.2 23

1

©ISO/IEC N3090=10-0080

type may be signed or unsigned. A program is ill-formed if one of its translation units contains an integer
literal that cannot be represented by any of the allowed types.

2.14.3 Character literals [lex.ccon)]

character-literal:
> c-char-sequence °
u’ c-char-sequence °’
U’ c-char-sequence °’
L’ c-char-sequence ’
c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except
the single-quote ’, backslash \, or new-line character
escape-sequence
universal-character-name
escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence: one of

A N7\

\a \b \Mf \n \r \t \v
octal-escape-sequence:

\ octal-digit

\ octal-digit octal-digit

\ octal-digit octal-digit octal-digit
hexadecimal-escape-sequence:

\x hexadecimal-digit

hezxadecimal-escape-sequence hexadecimal-digit

A character literal is one or more characters enclosed in single quotes, as in ’x’, optionally preceded by
one of the letters u, U, or L, as in u’y’, U’z’, or L’x’, respectively. A character literal that does not begin
with u, U, or L is an ordinary character literal, also referred to as a narrow-character literal. An ordinary
character literal that contains a single c-char has type char, with value equal to the numerical value of the
encoding of the c-char in the execution character set. An ordinary character literal that contains more than
one c-char is a multicharacter literal. A multicharacter literal has type int and implementation-defined
value.

A character literal that begins with the letter u, such as u’y’, is a character literal of type char16_t. The
value of a char16_t literal containing a single c-char is equal to its ISO 10646 code point value, provided that
the code point is representable with a single 16-bit code unit. (That is, provided it is a basic multi-lingual
plane code point.) If the value is not representable within 16 bits, the program is ill-formed. A char16_t
literal containing multiple c-chars is ill-formed. A character literal that begins with the letter U, such as
U’z’, is a character literal of type char32_t. The value of a char32_t literal containing a single c-char is
equal to its ISO 10646 code point value. A char32_t literal containing multiple c-chars is ill-formed. A
character literal that begins with the letter L, such as L’x’, is a wide-character literal. A wide-character
literal has type wchar_t.?2 The value of a wide-character literal containing a single c-char has value equal

22) They are intended for character sets where a character does not fit into a single byte.

§2.14.3 24

©ISO/IEC N3090=10-0080

to the numerical value of the encoding of the c-char in the execution wide-character set, unless the c-char
has no representation in the execution wide-character set, in which case the value is implementation-defined.
[Note: the type wchar_t is able to represent all members of the execution wide-charater set (see 3.9.1).
— end note]. The value of a wide-character literal containing multiple c¢-chars is implementation-defined.

3 Certain nongraphic characters, the single quote ’, the double quote ", the question mark ?,?* and the
backslash \, can be represented according to Table 6. The double quote " and the question mark 7, can
be represented as themselves or by the escape sequences \" and \? respectively, but the single quote ’
and the backslash \ shall be represented by the escape sequences \’ and \\ respectively. Escape sequences
in which the character following the backslash is not listed in Table 6 are conditionally-supported, with
implementation-defined semantics. An escape sequence specifies a single character.

Table 6 — Escape sequences

new-line NL(LF) \n
horizontal tab ~ HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
alert BEL \a
backslash \ A\
question mark 7 \?
single quote) \?
double quote " \"
octal number 000 \ooo
hex number hhh \xhhh

4 The escape \ooo consists of the backslash followed by one, two, or three octal digits that are taken to specify
the value of the desired character. The escape \xhhh consists of the backslash followed by x followed by one
or more hexadecimal digits that are taken to specify the value of the desired character. There is no limit to
the number of digits in a hexadecimal sequence. A sequence of octal or hexadecimal digits is terminated by
the first character that is not an octal digit or a hexadecimal digit, respectively. The value of a character
literal is implementation-defined if it falls outside of the implementation-defined range defined for char (for
literals with no prefix), char16_t (for literals prefixed by ’u’), char32_t (for literals prefixed by *U?), or
wchar_t (for literals prefixed by *L?).

5 A universal-character-name is translated to the encoding, in the appropriate execution character set, of the
character named. If there is no such encoding, the universal-character-name is translated to an implementation-
defined encoding. [Note: in translation phase 1, a universal-character-name is introduced whenever an actual
extended character is encountered in the source text. Therefore, all extended characters are described in
terms of universal-character-names. However, the actual compiler implementation may use its own native
character set, so long as the same results are obtained. — end note]

2.14.4 Floating literals [lex.fcon]

floating-literal:
fractional-constant exponent-partop: floating-suffizop:
digit-sequence exponent-part floating-suffizop:

23) Using an escape sequence for a question mark can avoid accidentally creating a trigraph.

§2.14.4 25

1

©ISO/IEC N3090=10-0080

fractional-constant:
digit-sequenceop: . digit-sequence
digit-sequence .
exponent-part:
e Signop: digit-sequence
E signop: digit-sequence
sign: one of
+ -
digit-sequence:
digit
digit-sequence digit
floating-suffiz: one of
f1FL
A floating literal consists of an integer part, a decimal point, a fraction part, an e or E, an optionally signed
integer exponent, and an optional type suffix. The integer and fraction parts both consist of a sequence of
decimal (base ten) digits. Either the integer part or the fraction part (not both) can be omitted; either the
decimal point or the letter e (or E) and the exponent (not both) can be omitted. The integer part, the
optional decimal point and the optional fraction part form the significant part of the floating literal. The
exponent, if present, indicates the power of 10 by which the significant part is to be scaled. If the scaled
value is in the range of representable values for its type, the result is the scaled value if representable, else the
larger or smaller representable value nearest the scaled value, chosen in an implementation-defined manner.
The type of a floating literal is double unless explicitly specified by a suffix. The suffixes £ and F specify
float, the suffixes 1 and L specify long double. If the scaled value is not in the range of representable
values for its type, the program is ill-formed.

2.14.5 String literals [lex.string]

string-literal:
encoding-prefitop: " s-char-sequenceop; "
encoding-prefixops R raw-string

encoding-prefix:
u8
u
U
L

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except
the double-quote ", backslash \, or new-line character
escape-sequence
universal-character-name

raw-string:

" d-char-sequenceopt £(r-char-sequence,p: +) d-char-sequenceop; "
r-char-sequence:

r-char

r-char-sequence r-char

§ 2.14.5 26

©ISO/IEC N3090=10-0080

r-char:
any member of the source character set, except

(—29,%& right —omemebameizor parcnthésis) followed by the initial d-char-sequence
(which may be empty) followed by a double quote ".

d-char-sequence:
d-char
d-char-sequence d-char

d-char:
any member of the basic source character set except:

space, the left square-bracket—— parenthesis (, the right sequare-bracketI— parenthesis) , the backslash \,

and the control characters representing horizontal tab,
vertical tab, form feed, and newline.

1 A string literal is a sequence of characters (as defined in 2.14.3) surrounded by double quotes, optionally
prefixed by R, u8, u8R, u, uR, U, UR, L, or LR, asin "..." R"EC...3) ", u8" .. ." uBR"*xL(.. . J)*x" u"...",
uR"*~£(. .) *k~", UL 0" UR"zzzE(. . . F)zzz", L"...", or LR"£(...})", respectively.

2 A string literal that has an R in the prefix is a raw string literal. The d-char-sequence serves as a delimiter.
The terminating d-char-sequence of a raw-string is the same sequence of characters as the initial d-char-

sequence. A d-char-sequence shall consist of at most 16 characters.?? H-the-input-streamecontains-a-sequenee

» P 9y

#defjﬁs e |I§€|I
const—chark s = R"y"; // i1l ﬁ9?ﬁ194 ras 9%?2”79?, notts nyn

3 [Note: The characters >£(° and ’3) ’ are permitted in a raw-string. Thus, R"delimiterffa-=z13}((a|b))delimiter"
is equivalent to "fa-z}(alb)". — end note]

4 [Note: A source-file new-line in a raw string literal results in a new-line in the resulting execution string-
literal 5 sss-precededh kslash. Assuming no whitespace at the beginning of lines in the following
example, the assert will succeed:

const char *p = R"f(a\

b

ch";

assert(std::strcmp(p, "a\\\nb\nc") == 0);

— end note]

5 After translation phase 6, a string literal that does not begin with an encoding-prefix is an ordinary string
literal, and is initialized with the given characters.

6 A string literal that begins with u8, such as u8"asdf", is a UTF-8 string literal and is initialized with the
given characters as encoded in UTF-8.

7 Ordinary string literals and UTF-8 string literals are also referred to as narrow string literals. A narrow
string literal has type “array of n const char”, where n is the size of the string as defined below, and has
static storage duration (3.7).

24) Use of characters with trigraph equivalents in a d-char-sequence may produce unintended results.

§ 2.14.5 27

10

11

12

13

14

©ISO/IEC N3090=10-0080

A string literal that begins with u, such as u"asdf", is a char16_t string literal. A char16_t string literal
has type “array of n const char16_t”, where n is the size of the string as defined below; it has static storage
duration and is initialized with the given characters. A single c-char may produce more than one char16_t
character in the form of surrogate pairs.

A string literal that begins with U, such as U"asdf", is a char32_t string literal. A char32_t string literal
has type “array of n const char32_t”, where n is the size of the string as defined below; it has static storage
duration and is initialized with the given characters.

A string literal that begins with L, such as L"asdf", is a wide string literal. A wide string literal has type
“array of n const wchar_t”, where n is the size of the string as defined below; it has static storage duration
and is initialized with the given characters.

Whether all string literals are distinct (that is, are stored in nonoverlapping objects) is implementation-
defined. The effect of attempting to modify a string literal is undefined.

In translation phase 6 (2.2), adjacent string literals are concatenated. If both string literals have the same
encoding-prefiz, the resulting concatenated string literal has that encoding-prefiz. If one string literal has
no encoding-prefix, it is treated as a string literal of the same encoding-prefiz as the other operand. If a
UTF-8 string literal token is adjacent to a wide string literal token, the program is ill-formed. Any other
concatenations are conditionally supported with implementation-defined behavior. [Note: This concatena-
tion is an interpretation, not a conversion. Because the interpretation happens in translation phase 6 (after
each character from a literal has been translated into a value from the appropriate character set), a string
literal’s initial rawness has no effect on the interpretation or well-formedness of the concatenation. — end
note| Table 7 has some examples of valid concatenations.

Table 7 — String literal concatenations

Source Means Source Means Source Means
ullall ullbll ullabll U||a|| U||b|| U||abll Lllall Lllbll Lllabll
ullall ||bl| ullab" U||a" "bll U||ab|| Llla" llb" Lllabll
llall u’lbl’ u’labll llall Ullb" Ullabll I’all Lllb’l Lllabll

Characters in concatenated strings are kept distinct.

[Ezample:

"\XA" ngn
contains the two characters >\xA’ and ’B’ after concatenation (and not the single hexadecimal character
’\xAB’). — end example]

After any necessary concatenation, in translation phase 7 (2.2), \0’ is appended to every string literal so
that programs that scan a string can find its end.

Ebcape sequences and universal-character-names in non-raw string literals &

rals have the same meaning as in character literals (2.14.3), except that the smgle quote ? s
representable either by itself or by the escape sequence \’, and the double quote " shall be preceded by a
\. In a narrow string literal, a universal-character-name may map to more than one char element due to
multibyte encoding. The size of a char32_t or wide string literal is the total number of escape sequences,
universal-character-names, and other characters, plus one for the terminating U’\0’> or L’\0’. The size
of a char16_t string literal is the total number of escape sequences, universal-character-names, and other
characters, plus one for each character requiring a surrogate pair, plus one for the terminating u’\0’. [Note:
The size of a char16_t string literal is the number of code units, not the number of characters. — end note
Within char32_t and char16_t literals, any universal-character-names shall be within the range 0x0 to

§ 2.14.5 28

1

©ISO/IEC N3090=10-0080

0x10FFFF. The size of a narrow string literal is the total number of escape sequences and other characters,
plus at least one for the multibyte encoding of each universal-character-name, plus one for the terminating
’\0”.

2.14.6 Boolean literals [lex.bool]
boolean-literal:
false
true

The Boolean literals are the keywords false and true. Such literals are valies prvalues and have type
bool. -

2.14.7 Pointer literals [lex.nullptr|

pointer-literal:
nullptr

The pointer literal is the keyword nullptr. It is an—+value a prvalue of type std: :nullptr_t.
2.14.8 User-defined literals [lex.ext]

user-defined-literal:
user-defined-integer-literal
user-defined-floating-literal
user-defined-string-literal
user-defined-character-literal
user-defined-integer-literal:
decimal-literal ud-suffix
octal-literal ud-suffix
hexadecimal-literal ud-suffix
user-defined-floating-literal:
fractional-constant exponent-partop: ud-suffic
digit-sequence exponent-part ud-suffic
user-defined-string-literal:
string-literal ud-suffix
user-defined-character-literal:
character-literal ud-suffix
ud-suffix:
identifier

If a token matches both user-defined-literal and another literal kind, it is treated as the latter. [Ezample:
123_km, 1.2LL, "Hello"s are all user-defined-literals, but 12LL is an integer-literal. — end example]

A user-defined-literal is treated as a call to a literal operator or literal operator template (13.5.8). To
determine the form of this call for a given wuser-defined-literal L with ud-suffix X, the literal-operator-id
whose literal suffix identifier is X is looked up in the context of L using the rules for unqualified name
lookup (3.4.1). Let S be the set of declarations found by this lookup. S shall not be empty.

If L is a user-defined-integer-literal, let n be the literal without its ud-suffix. If S contains a literal operator
with parameter type unsigned long long, the literal L is treated as a call of the form

operator "" X (n ULL)

Otherwise, S shall contain a raw literal operator or a literal operator template (13.5.8) but not both. If S
contains a raw literal operator the literal L is treated as a call of the form

§2.14.8 29

©ISO/IEC N3090=10-0080

operator "" X ("n")

Otherwise (S contains a literal operator template), L is treated as a call of the form

operator "" X <’ci’, ’c2’, ... ’ci’>(Q)
where n is the source character sequence cjca...ck. [Note: the sequence cjca...c can only contain characters
from the basic source character set. — end note]

If L is a user-defined-floating-literal, let f be the literal without its ud-suffiz. If S contains a literal operator
with parameter type long double, the literal L is treated as a call of the form

operator "" X (f L)

Otherwise, S shall contain a raw literal operator or a literal operator template (13.5.8) but not both. If S
contains a raw literal operator the literal L is treated as a call of the form

operator nn X (ufu)

Otherwise (S contains a literal operator template), L is treated as a call of the form

operator "" X <’ci’, ’c2’, ... ’ci’>(Q)
where f is the source character sequence cjca...c. [Note: the sequence c¢jca...c, can only contain characters
from the basic source character set. — end note]

If L is a user-defined-string-literal, let str be the literal without its ud-suffix and let len be the number of

characters{or-ecode-points) code units in str (i.e., its length excluding the terminating null character). The
literal L is treated as a call of the form

operator "" X (str , len)
If L is a user-defined-character-literal, let ch be the literal without its ud-suffiz. The literal L is treated as
a call of the form

operator "" X (ch)

[Example:
long double operator "" w(long double);
std::string operator "" w(const charl6_t*, size_t);
unsigned operator "" w(const charx);
int main() {
1.2w; // calls operator "" w(1.2L)
u"one"w; // calls operator "" w(u"one", 3)
12w; // calls operator "" w("12")
"two'"w; // error: no applicable literal operator
}

— end example]

In translation phase 6 (2.2), adjacent string literals are concatenated and wuser-defined-string-literals are
considered string literals for that purpose. During concatenation, ud-suffizes are removed and ignored and
the concatenation process occurs as described in 2.14.5. At the end of phase 6, if a string literal is the result
of a concatenation involving at lease one user-defined-string-literal, all the participating user-defined-string-
literals shall have the same ud-suffiz and that suffix is applied to the result of the concatenation.

[Example:

§2.14.8 30

©ISO/IEC N3090=10-0080

int main() {
L"A" "B" "C"x; // OK: same as L"ABC"x

"P"x "Q" "R"y; // error: two different ud-suffizes
}

— end example]

§2.14.8 31

©ISO/IEC N3090=10-0080

3 Basic concepts [basic]

[Note: this Clause presents the basic concepts of the C++ language. It explains the difference between
an object and a name and how they relate to the netion—ef-an{tvaluwe value categories for expressions. It
introduces the concepts of a declaration and a definition and presents C++’s notion of type, scope, linkage,
and storage duration. The mechanisms for starting and terminating a program are discussed. Finally, this
Clause presents the fundamental types of the language and lists the ways of constructing compound types
from these. — end note]

[Note: this Clause does not cover concepts that affect only a single part of the language. Such concepts are
discussed in the relevant Clauses. — end note]

An entity is a value, object, variable; reference, function, enumerator, type, class member, template, template
specialization, namespace, o parameter pack, or this.

A name is a use of an identifier (2.11), operator-function-id (13.5), literal-operator-id (13.5.8), conversion-
function-id (12.3.2), or template-id (14.3) that denotes an entity or label (6.6.4, 6.1).

Every name that denotes an entity is introduced by a declaration. Every name that denotes a label is
introduced either by a goto statement (6.6.4) or a labeled-statement (6.1).

A wariable is introduced by the declaration of a reference other than a non-static data member or of an
object. The variable’s name denotes the reference or object.

Some names denote types or templates. In general, whenever a name is encountered it is necessary to
determine whether that name denotes one of these entities before continuing to parse the program that
contains it. The process that determines this is called name lookup (3.4).

Two names are the same if
— they are identifiers composed of the same character sequence, or
— they are operator-function-ids formed with the same operator, or
— they are conversion-function-ids formed with the same type, or
— they are template-ids that refer to the same class or function (14.5), or
— they are the names of literal operators (13.5.8) formed with the same literal suffix identifier.

A name used in more than one translation unit can potentially refer to the same entity in these translation
units depending on the linkage (3.5) of the name specified in each translation unit.

3.1 Declarations and definitions [basic.def]

A declaration (Clause 7) introduces names into a translation unit or redeclares names introduced by previous
declarations. A declaration specifies the interpretation and attributes of these names.

A declaration is a definition unless it declares a function without specifying the function’s body (8.4), it
contains the extern specifier (7.1.1) or a linkage-specification® (7.5) and neither an initializer nor a function-
body, it declares a static data member in a class definition (9.4), it is a class name declaration (9.1), it is

25) Appearing inside the braced-enclosed declaration-seq in a linkage-specification does not affect whether a declaration is a
definition.

§3.1 32

©ISO/IEC N3090=10-0080

an opaque-enum-declaration (7.2), or it is a typedef declaration (7.1.3), a using-declaration (7.3.3), or a
using-directive (7.3.4).

[Ezample: all but one of the following are definitions:

int a; // defines a
extern const int ¢ = 1; // defines c
int f(int x) { return x+a; } // defines £ and defines x
struct S { int a; int b; }; // defines S, S::a, and S::b
struct X { // defines X
int x; // defines non-static data member x
static int y; // declares static data member y
XO: x0) {2 // defines a constructor of X
};
int X::y = 1; // defines X::y
enum { up, down }; // defines up and down
namespace N { int d; } // defines N and N: :d
namespace N1 = N; // defines N1
X anX; // defines anX

whereas these are just declarations:

extern int a; // declares a
extern comnst int c; // declares ¢

int f(int); // declares £

struct S; // declares S
typedef int Int; // declares Int
extern X anotherX; // declares anotherX
using N::d; // declares N: :d

— end example|

[Note: In some circumstances, C++ implementations implicitly define the default constructor (12.1), copy
constructor (12.8), move constructor (12.8), copy assignment operator (12.8), move assignment operator (12.8),
or destructor (12.4) member functions. — end note| [Ezample: given

#include <string>

struct C {
std::string s; // std::string is the standard library class (Clause 21)

};

int main() {
C a;
Cb=aj;
b = a;

}

the implementation will implicitly define functions to make the definition of C equivalent to

struct C {
std::string s;
cO :sO {13}

C(const C& x): s(x.s) { }
C(C&&k x): s(static_cast<std::string&&>(x.s)) { }
// ¢ s(std::move(x.s)) { }

C& operator=(const C& x) { s = x.s; return *this; }

§ 3.1 33

©ISO/IEC N3090=10-0080

C& operator=(C&& x) { s = static_cast<std::string&&>(x.s); return *this; }
//{ s = std::move(x.s); return *this; }

cO {1}

+;

— end example | —end-rote]

[Note: a class name can also be implicitly declared by an elaborated-type-specifier (7.1.6.3). — end note]

A program is ill-formed if the definition of any object gives the object an incomplete type (3.9).
3.2 One definition rule [basic.def.odr]

No translation unit shall contain more than one definition of any variable, function, class type, enumeration
type, or template.

An expression is potentially evaluated unless it is an unevaluated operand (Clause 5) or a subexpression
thereof. An-ebjeet A variable or non-overloaded function whose name appears as a potentially-evaluated
expression is used unless it is an object that satisfies the requirements for appearing in a constant expres-
sion (5.19) and the lvalue-to-rvalue conversion (4.1) is immediately applied. this is used if it appears as
a potentially-evaluated expression (including as the result of the implicit transformation in the body of a
non-static member function (9.3.1)). A virtual member function is used if it is not pure. An overloaded
function is used if it is selected by overload resolution when referred to from a potentially-evaluated ex-
pression. [Note: this covers calls to named functions (5.2.2), operator overloading (Clause 13), user-defined
conversions (12.3.2), allocation function for placement new (5.3.4), as well as non-default initialization (8.5).
A copy constructor or move constructor is used even if the call is actually elided by the implementation.
— end note] An allocation or deallocation function for a class is used by a new expression appearing in a
potentially-evaluated expression as specified in 5.3.4 and 12.5. A deallocation function for a class is used
by a delete expression appearing in a potentially-evaluated expression as specified in 5.3.5 and 12.5. A non-
placement allocation or deallocation function for a class is used by the definition of a constructor of that class.
A non-placement deallocation function for a class is used by the definition of the destructor of that class, or
by being selected by the lookup at the point of definition of a virtual destructor (12.4).26 A copy-assignment
function for a class is used by an implicitly-defined copy-assignment function for another class as specified
in 12.8. A move-assignment function for a class is used by an implicitly-defined move-assignment function
for another class as specified in 12.8. A default constructor for a class is used by default initialization or
value initialization as specified in 8.5. A constructor for a class is used as specified in 8.5. A destructor for
a class is used as specified in 12.4.

Every program shall contain exactly one definition of every non-inline function or ebjeet variable that is
used in that program; no diagnostic required. The definition can appear explicitly in the program, it can be
found in the standard or a user-defined library, or (when appropriate) it is implicitly defined (see 12.1, 12.4
and 12.8). An inline function shall be defined in every translation unit in which it is used.

Exactly one definition of a class is required in a translation unit if the class is used in a way that requires the
class type to be complete. [Example: the following complete translation unit is well-formed, even though it
never defines X:

struct X; // declare X as a struct type
struct X* x1; // use X in pointer formation
X* x2; // use X in pointer formation

— end example| [Note: the rules for declarations and expressions describe in which contexts complete class
types are required. A class type T must be complete if:

26) An implementation is not required to call allocation and deallocation functions from constructors or destructors; however,
this is a permissible implementation technique.

§ 3.2 34

©ISO/IEC N3090=10-0080

an object of type T is defined (3.1), or

a non-static class data member of type T is declared (9.2), or

T is used as the object type or array element type in a new-expression (5.3.4), or

an lvalue-to-rvalue conversion is applied to antvalae a glvalue referring to an object of type T (4.1), or

an expression is converted (either implicitly or explicitly) to type T (Clause 4, 5.2.3, 5.2.7, 5.2.9, 5.4),
or

an expression that is not a null pointer constant, and has type other than voidx, is converted to the
type pointer to T or reference to T using an implicit conversion (Clause 4), a dynamic_cast (5.2.7) or
a static_cast (5.2.9), or

a class member access operator is applied to an expression of type T (5.2.5), or

the typeid operator (5.2.8) or the sizeof operator (5.3.3) is applied to an operand of type T, or
a function with a return type or argument type of type T is defined (3.1) or called (5.2.2), or

a class with a base class of type T is defined (10), or

an lvalue of type T is assigned to (5.17), or

the type T is the subject of an alignof expression (5.3.6), or

an exception-declaration has type T, reference to T, or pointer to T (15.3).

— end note]

There can be more than one definition of a class type (Clause 9), enumeration type (7.2), inline function with
external linkage (7.1.2), class template (Clause 14), non-static function template (14.6.6), static data member
of a class template (14.6.1.3), member function of a class template (14.6.1.1), or template specialization for
which some template parameters are not specified (14.8, 14.6.5) in a program provided that each definition
appears in a different translation unit, and provided the definitions satisfy the following requirements. Given
such an entity named D defined in more than one translation unit, then

each definition of D shall consist of the same sequence of tokens; and

in each definition of D, corresponding names, looked up according to 3.4, shall refer to an entity defined
within the definition of D, or shall refer to the same entity, after overload resolution (13.3) and after
matching of partial template specialization (14.9.3), except that a name can refer to a const object
with internal or no linkage if the object has the same literal type in all definitions of D, and the object
is initialized with a constant expression (5.19), and the value (but not the address) of the object is
used, and the object has the same value in all definitions of D; and

in each definition of D, the overloaded operators referred to, the implicit calls to conversion functions,
constructors, operator new functions and operator delete functions, shall refer to the same function,
or to a function defined within the definition of D; and

in each definition of D, a default argument used by an (implicit or explicit) function call is treated as
if its token sequence were present in the definition of D; that is, the default argument is subject to
the three requirements described above (and, if the default argument has sub-expressions with default
arguments, this requirement applies recursively).?”

if D is a class with an implicitly-declared constructor (12.1), it is as if the constructor was implicitly
defined in every translation unit where it is used, and the implicit definition in every translation unit
shall call the same constructor for a base class or a class member of D. [Example:

27) 8.3.6 describes how default argument names are looked up.

§ 3.2

35

©ISO/IEC N3090=10-0080

//translation unit 1:
struct X {
X(int);
X(int, int);
};
X::X(dnt = 0) { }
class D: public X { };
D d2; // X(int) called by DO

//translation unit 2:
struct X {
X(int);
X(int, int);
};
X::X(int = 0, int 0 {1
class D: public X { }; // X(int, int) called by DO);
// DO ’s implicit definition
// violates the ODR

— end example]

If D is a template and is defined in more than one translation unit, then the last four requirements from the
list above shall apply to names from the template’s enclosing scope used in the template definition (14.7.3),
and also to dependent names at the point of instantiation (14.7.2). If the definitions of D satisfy all these
requirements, then the program shall behave as if there were a single definition of D. If the definitions of D
do not satisfy these requirements, then the behavior is undefined.

3.3 Scope [basic.scope]

3.3.1 Declarative regions and scopes [basic.scope.declarative]

Every name is introduced in some portion of program text called a declarative region, which is the largest part
of the program in which that name is valid, that is, in which that name may be used as an unqualified name
to refer to the same entity. In general, each particular name is valid only within some possibly discontiguous
portion of program text called its scope. To determine the scope of a declaration, it is sometimes convenient
to refer to the potential scope of a declaration. The scope of a declaration is the same as its potential scope
unless the potential scope contains another declaration of the same name. In that case, the potential scope
of the declaration in the inner (contained) declarative region is excluded from the scope of the declaration
in the outer (containing) declarative region.
[Ezample: in
int j = 24;
int main() {
int 1 = j, j;
J =42
}

the identifier j is declared twice as a name (and used twice). The declarative region of the first j includes
the entire example. The potential scope of the first j begins immediately after that j and extends to the
end of the program, but its (actual) scope excludes the text between the , and the }. The declarative region
of the second declaration of j (the j immediately before the semicolon) includes all the text between { and
}, but its potential scope excludes the declaration of i. The scope of the second declaration of j is the same
as its potential scope. — end example |

§3.3.1 36

©ISO/IEC N3090=10-0080

The names declared by a declaration are introduced into the scope in which the declaration occurs, except
that the presence of a friend specifier (11.4), certain uses of the elaborated-type-specifier (7.1.6.3), and
using-directives (7.3.4) alter this general behavior.

Given a set of declarations in a single declarative region, each of which specifies the same unqualified name,
— they shall all refer to the same entity, or all refer to functions and function templates; or

— exactly one declaration shall declare a class name or enumeration name that is not a typedef name and
the other declarations shall all refer to the same ebjeet variable or enumerator, or all refer to functions
and function templates; in this case the class name or enumeration name is hidden (3.3.10). [Note: a
namespace name or a class template name must be unique in its declarative region (7.3.2, Clause 14).
— end note]

[Note: these restrictions apply to the declarative region into which a name is introduced, which is not neces-
sarily the same as the region in which the declaration occurs. In particular, elaborated-type-specifiers (7.1.6.3)
and friend declarations (11.4) may introduce a (possibly not visible) name into an enclosing namespace; these
restrictions apply to that region. Local extern declarations (3.5) may introduce a name into the declarative
region where the declaration appears and also introduce a (possibly not visible) name into an enclosing

namespace; these restrictions apply to both regions. — end note]
[Note: the name lookup rules are summarized in 3.4. — end note]
3.3.2 Point of declaration [basic.scope.pdecl]

The point of declaration for a name is immediately after its complete declarator (Clause 8) and before its
initializer (if any), except as noted below. [Ezample:

int x = 12;
{ int x = x; }
Here the second x is initialized with its own (indeterminate) value. — end example]

[Note: a nenleeal name from an outer scope remains visible up to the point of declaration of the loeat name
that hides it.[Ezample:

const int i = 2;
{ int if[il; %
declares a loeal block-scope array of two integers. — end example] — end note]

The point of declaration for a class or class template first declared by a class-specifier is immediately after
the identifier or simple-template-id (if any) in its class-head (Clause 9). The point of declaration for an
enumeration is immediately after the identifier (if any) in either its enum-specifier (7.2) or its first opaque-
enum-declaration (7.2), whichever comes first. The point of declaration of a template alias immediately
follows the identifier for the alias being declared.

The point of declaration for an enumerator is immediately after its enumerator-definition.| Example:
const int x = 12;
{enum { x=x3}; }

Here, the enumerator x is initialized with the value of the constant x, namely 12. — end ezample]

After the point of declaration of a class member, the member name can be looked up in the scope of its
class. [Note: this is true even if the class is an incomplete class. For example,

§3.3.2 37

6

10

11

©ISO/IEC N3090=10-0080

struct X {

enum E { z = 16 };

int b[X::z]; // OK
};
— end note]

The point of declaration of a class first declared in an elaborated-type-specifier is as follows:

— for a declaration of the form

class-key attribute-specifier,,; identifier

~Topt

the identifier is declared to be a class-name in the scope that contains the declaration, otherwise
— for an elaborated-type-specifier of the form
class-key identifier

if the elaborated-type-specifier is used in the decl-specifier-seq or parameter-declaration-clause of a
function defined in namespace scope, the identifier is declared as a class-name in the namespace that
contains the declaration; otherwise, except as a friend declaration, the identifier is declared in the
smallest non-class, non-function-prototype scope that contains the declaration. [Note: these rules also
apply within templates. — end note] [Note: other forms of elaborated-type-specifier do not declare a
new name, and therefore must refer to an existing type-name. See 3.4.4 and 7.1.6.3. — end note]

The point of declaration for an injected-class-name (9) is immediately following the opening brace of the
class definition.

The point of declaration for a function-local predefined variable (8.4) is immediately before the function-body
of a function definition.

The point of declaration for a template parameter is immediately after its complete template-parameter.
[Ezample:

typedef unsigned char T;
template<class T
=T // lookup finds the typedef name of unsigned char
, T // lookup finds the template parameter
N = 0> struct A { };

— end example]

[Note: friend declarations refer to functions or classes that are members of the nearest enclosing namespace,
but they do not introduce new names into that namespace (7.3.1.2). Function declarations at block scope and
objeet variable declarations with the extern specifier at block scope refer to declarations that are members
of an enclosing namespace, but they do not introduce new names into that scope. — end note|

[Note: for point of instantiation of a template, see 14.7.4.1. — end note]

3.3.3 Block scope [basic.scope.local]

A name declared in a block (6.3) is local to that block; it has block scope. Tts potential scope begins at its
point of declaration (3.3.2) and ends at the end of its deelarativeregion block. A variable declared at block

scope is a local variable.

The potential scope of a function parameter name (including one appearing in a lambda-declarator) or of
a function-local predefined variable in a function definition (8.4) begins at its point of declaration. If the

§3.3.3 38

©ISO/IEC N3090=10-0080

function has a function-try-block the potential scope of a parameter or of a function-local predefined variable
ends at the end of the last associated handler, otherwise it ends at the end of the outermost block of
the function definition. A parameter name shall not be redeclared in the outermost block of the function
definition nor in the outermost block of any handler associated with a function-try-block.

The name in—a-cateh-exeeption-deelaration declared in an exception-declaration is local to the handler and

shall not be redeclared in the outermost block of the handler.

Names declared in the for-init-statement, the for-range-declaration, and in the condition of if, while, for,
and switch statements are local to the if, while, for, or switch statement (including the controlled
statement), and shall not be redeclared in a subsequent condition of that statement nor in the outermost
block (or, for the if statement, any of the outermost blocks) of the controlled statement; see 6.4.

3.3.4 Function prototype scope [basic.scope.proto]

In a function declaration, or in any function declarator except the declarator of a function definition (8.4),
names of parameters (if supplied) have function prototype scope, which terminates at the end of the nearest
enclosing function declarator.

3.3.5 Function scope [basic.funscope]

Labels (6.1) have function scope and may be used anywhere in the function in which they are declared. Only
labels have function scope.

3.3.6 Namespace scope [basic.scope.namespace]

The declarative region of a namespace-definition is its namespace-body. The potential scope denoted by
an original-namespace-name is the concatenation of the declarative regions established by each of the
namespace-definitions in the same declarative region with that original-namespace-name. Entities declared
in a namespace-body are said to be members of the namespace, and names introduced by these declarations
into the declarative region of the namespace are said to be member names of the namespace. A namespace
member name has namespace scope. Its potential scope includes its namespace from the name’s point of
declaration (3.3.2) onwards; and for each using-directive (7.3.4) that nominates the member’s namespace,
the member’s potential scope includes that portion of the potential scope of the using-directive that follows
the member’s point of declaration. [Ezample:

namespace N {
int i;
int g(int a) { return a; }
int jO;
void q();
}
namespace { int 1=1; }
// the potential scope of 1 is from its point of declaration
// to the end of the translation unit

namespace N {
int g(char a) { // overloads N::g(int)

return l+a; // 1 is from unnamed namespace
}
int i; // error: duplicate definition
int jO; // OK: duplicate function declaration
int jO { // OK: definition of N::j()
return g(i); // calls N: :g(int)

§ 3.3.6 39

1

©ISO/IEC N3090=10-0080

}

int qQ; // error: different return type

}

— end example]

A namespace member can also be referred to after the : : scope resolution operator (5.1) applied to the name

of its

namespace or the name of a namespace which nominates the member’s namespace in a using-directive;

see 3.4.3.2.

The outermost declarative region of a translation unit is also a namespace, called the global namespace. A

name
scope

declared in the global namespace has global namespace scope (also called global scope). The potential
of such a name begins at its point of declaration (3.3.2) and ends at the end of the translation unit

that is its declarative region. Names with global namespace scope are said to be global.

3.3.7 Class scope [basic.scope.class]

The following rules describe the scope of names declared in classes.

1)

The potential scope of a name declared in a class consists not only of the declarative region following
the name’s point of declaration, but also of all function bodies, brace-or-equal-initializers of non-static
data members, and default arguments in that class (including such things in nested classes).

A name N used in a class S shall refer to the same declaration in its context and when re-evaluated in
the completed scope of S. No diagnostic is required for a violation of this rule.

If reordering member declarations in a class yields an alternate valid program under (1) and (2), the
program is ill-formed, no diagnostic is required.

A name declared within a member function hides a declaration of the same name whose scope extends
to or past the end of the member function’s class.

The potential scope of a declaration that extends to or past the end of a class definition also ex-
tends to the regions defined by its member definitions, even if the members are defined lexically
outside the class (this includes static data member definitions, nested class definitions, member func-
tion definitions (including the member function body and any portion of the declarator part of such
definitions which follows the declarator-id, including a parameter-declaration-clause and any default
arguments (8.3.6).] Ezample:

typedef int c;
enum { i = 1 };

class X {
char v[il; // error: i refers to ::i
// but when reevaluated is X: :1i
int f() { return sizeof(c); } // OK: X::c

char «c;
enum { i = 2 };
}
typedef char* T;
struct Y {
T a; // error: T refers to ::T

// but when reevaluated is Y: : T
typedef long T;
T b;
+;

§ 3.3.7 40

2

©ISO/IEC N3090=10-0080

typedef int I;
class D {
typedef I I; // error, even though no reordering involved

}’
— end example]
The name of a class member shall only be used as follows:
— in the scope of its class (as described above) or a class derived (Clause 10) from its class,

— after the . operator applied to an expression of the type of its class (5.2.5) or a class derived from its
class,

— after the -> operator applied to a pointer to an object of its class (5.2.5) or a class derived from its
class,

— after the :: scope resolution operator (5.1) applied to the name of its class or a class derived from its
class.

3.3.8 Enumeration scope [basic.scope.enum)]

The name of a scoped enumerator (7.2) has enumeration scope. Its potential scope begins at its point of
declaration and terminates at the end of the enum-specifier.

3.3.9 Template Parameter Scope [basic.scope.temp]

The declarative region of the name of a template parameter of a template template-parameter is the smallest
template-parameter-list in which the name was introduced.

The declarative region of the name of a template parameter of a template is the smallest template-declaration
in which the name was introduced. Only template parameter names belong to this declarative region; any
other kind of name introduced by the declaration of a template-declaration is instead introduced into the
same declarative region where it would be introduced as a result of a non-template declaration of the same
name. [Ezample:

namespace N {

template<class T> struct A { }; /) #1
template<class U> void £(U) { } /) #2
struct B {

template<class V> friend int g(struct Cx); // #3
}

The declarative regions of T, U and V are the template-declarations on lines #1, #2 and #3, respectively.
But the names A, £, g and C all belong to the same declarative region — namely, the namespace-body of N.
(g is still considered to belong to this declarative region in spite of its being hidden during qualified and
unqualified name lookup.) — end ezample]

The potential scope of a template parameter name begins at its point of declaration (3.3.2) and ends at the
end of its declarative region. [Note: this implies that a template-parameter can be used in the declaration
of subsequent template-parameters and their default arguments but cannot be used in preceding template-
parameters or their default arguments. For example,

template<class T, T* p, class U = T> class X { /* */ };
template<class T> void f(T* p = new T);

§3.3.9 41

©ISO/IEC N3090=10-0080

This also implies that a template-parameter can be used in the specification of base classes. For example,

template<class T> class X : public Array<T> { /x ... x/ };
template<class T> class Y : public T { /*x ...*/ };

The use of a template parameter as a base class implies that a class used as a template argument must be
defined and not just declared when the class template is instantiated. — end note]

The declarative region of the name of a template parameter is nested within the immediately-enclosing
declarative region. [Note: as a result, a template-parameter hides any entity with the same name in an
enclosing scope (3.3.10). [Ezample:

typedef int N;
template<N X, typename N, template<N Y> class T> struct A;

Here, X is a non-type template parameter of type int and Y is a non-type template parameter of the same
type as the second template parameter of A. — end example] — end note]

[Note: because the name of a template parameter cannot be redeclared within its potential scope (14.7.1), a
template parameter’s scope is often its potential scope. However, it is still possible for a template parameter
name to be hidden; see 14.7.1. — end note]

3.3.10 Name hiding [basic.scope.hiding)]

A name can be hidden by an explicit declaration of that same name in a nested declarative region or derived
class (10.2).

A class name (9.1) or enumeration name (7.2) can be hidden by the name of an—ebject a variable, data
member, function, or enumerator declared in the same scope. If a class or enumeration name and an-objeet
a v mdble data member, function, or enumerator are declared in the same scope (in any order) with the
same name, the class or enumeratlon name is hidden wherever the ebjeet variable, data member, function,
or enumerator name is visible.

In a member function definition, the declaration of a leeal name at block scope hides the declaration of
a member of the class with the same name; see 3.3.7. The declaration of a member in a derived class
(Clause 10) hides the declaration of a member of a base class of the same name; see 10.2.

During the lookup of a name qualified by a namespace name, declarations that would otherwise be made
visible by a using-directive can be hidden by declarations with the same name in the namespace containing
the using-directive; see (3.4.3.2).

If a name is in scope and is not hidden it is said to be wisible.

3.4 Name lookup [basic.lookup]

The name lookup rules apply uniformly to all names (including typedef-names (7.1.3), namespace-names (7.3),
and class-names (9.1)) wherever the grammar allows such names in the context discussed by a particular
rule. Name lookup associates the use of a name with a declaration (3.1) of that name. Name lookup shall
find an unambiguous declaration for the name (see 10.2). Name lookup may associate more than one dec-
laration with a name if it finds the name to be a function name; the declarations are said to form a set
of overloaded functions (13.1). Overload resolution (13.3) takes place after name lookup has succeeded.
The access rules (Clause 11) are considered only once name lookup and function overload resolution (if
applicable) have succeeded. Only after name lookup, function overload resolution (if applicable) and access
checking have succeeded are the attributes introduced by the name’s declaration used further in expression
processing (Clause 5).

§ 3.4 42

©ISO/IEC N3090=10-0080

A name “looked up in the context of an expression” is looked up as an unqualified name in the scope where
the expression is found.

The injected-class-name of a class (Clause 9) is also considered to be a member of that class for the purposes
of name hiding and lookup.

[Note: 3.5 discusses linkage issues. The notions of scope, point of declaration and name hiding are discussed
in 3.3. — end note]

3.4.1 Unqualified name lookup [basic.lookup.unqual]

In all the cases listed in 3.4.1, the scopes are searched for a declaration in the order listed in each of the
respective categories; name lookup ends as soon as a declaration is found for the name. If no declaration is
found, the program is ill-formed.

The declarations from the namespace nominated by a using-directive become visible in a namespace enclosing
the using-directive; see 7.3.4. For the purpose of the unqualified name lookup rules described in 3.4.1, the
declarations from the namespace nominated by the using-directive are considered members of that enclosing
namespace.

The lookup for an unqualified name used as the postfiz-expression of a function call is described in 3.4.2.
[Note: for purposes of determining (during parsing) whether an expression is a postfiz-expression for a func-
tion call, the usual name lookup rules apply. The rules in 3.4.2 have no effect on the syntactic interpretation
of an expression. For example,

typedef int f;
namespace N {
struct A {
friend void f(A &);
operator int();
void g(A a) {
int i = £(a); // £ is the typedef, not the friend
// function: equivalent to int(a)
}
I
}

Because the expression is not a function call, the argument-dependent name lookup (3.4.2) does not apply
and the friend function £ is not found. — end note]

A name used in global scope, outside of any function, class or user-declared namespace, shall be declared
before its use in global scope.

A name used in a user-declared namespace outside of the definition of any function or class shall be declared
before its use in that namespace or before its use in a namespace enclosing its namespace.

A name used in the definition of a function following the function’s declarator-id®® that is a member of
namespace N (where, only for the purpose of exposition, N could represent the global scope) shall be declared
before its use in the block in which it is used or in one of its enclosing blocks (6.3) or, shall be declared
before its use in namespace N or, if N is a nested namespace, shall be declared before its use in one of N’s
enclosing namespaces. [Example:

namespace A {
namespace N {

28) This refers to unqualified names that occur, for instance, in a type or default argument expression in the parameter-
declaration-clause or used in the function body.

§3.4.1 43

©ISO/IEC N3090=10-0080

void f();
}
}
void A::N::f() {
i = b5;

// The following scopes are searched for a declaration of i:
// 1) outermost block scope of A::N::f, before the use of i
// 2) scope of namespace N

// 8) scope of namespace A

// 4) global scope, before the definition of A::N::f

— end example |

7 A name used in the definition of a class X outside of a member function body or nested class definition?’

shall be declared in one of the following ways:
— before its use in class X or be a member of a base class of X (10.2), or

— if X is a nested class of class Y (9.7), before the definition of X in Y, or shall be a member of a base
class of Y (this lookup applies in turn to Y ’s enclosing classes, starting with the innermost enclosing
class),3% or

— if X is a local class (9.8) or is a nested class of a local class, before the definition of class X in a block
enclosing the definition of class X, or

— if X is a member of namespace N, or is a nested class of a class that is a member of N, or is a local class
or a nested class within a local class of a function that is a member of N, before the definition of class
X in namespace N or in one of N ’s enclosing namespaces.

[Ezample:

namespace M {
class B { };
}

namespace N {
class Y : public M::B {
class X {
int alil;
};
};
}

// The following scopes are searched for a declaration of i:
// 1) scope of class N::Y::X, before the use of i

// 2) scope of class N: :Y, before the definition of N::Y::X
// 3) scope of N::Y’s base class M: :B

// 4) scope of namespace N, before the definition of N::Y
// &) global scope, before the definition of N

29) This refers to unqualified names following the class name; such a name may be used in the base-clause or may be used in
the class definition.

30) This lookup applies whether the definition of X is nested within Y’s definition or whether X’s definition appears in a
namespace scope enclosing Y ’s definition (9.7).

§3.4.1 44

©ISO/IEC N3090=10-0080

— end example] [Note: when looking for a prior declaration of a class or function introduced by a friend
declaration, scopes outside of the innermost enclosing namespace scope are not considered; see 7.3.1.2. —
end note| [Note: 3.3.7 further describes the restrictions on the use of names in a class definition. 9.7 further
describes the restrictions on the use of names in nested class definitions. 9.8 further describes the restrictions
on the use of names in local class definitions. — end note|

A name used in the definition of a member function (9.3) of class X following the function’s declarator-id 3
or in the brace-or-equal-initializer of a non-static data member (9.2) of class X shall be declared in one of
the following ways:

— before its use in the block in which it is used or in an enclosing block (6.3), or
— shall be a member of class X or be a member of a base class of X (10.2), or

— if X is a nested class of class Y (9.7), shall be a member of Y, or shall be a member of a base class of Y
(this lookup applies in turn to Y’s enclosing classes, starting with the innermost enclosing class),3? or

— if X is a local class (9.8) or is a nested class of a local class, before the definition of class X in a block
enclosing the definition of class X, or

— if X is a member of namespace N, or is a nested class of a class that is a member of N, or is a local class
or a nested class within a local class of a function that is a member of N, before the use of the name,
in namespace N or in one of N ’s enclosing namespaces.

[Example:

class B { };
namespace M {
namespace N {
class X : public B {

void £(0);
};
}
}
void M::N::X::f() {
i = 16;
}

// The following scopes are searched for a declaration of i:

// 1) outermost block scope of M::N::X::£f, before the use of i
// 2) scope of class M: :N::X

// 8) scope of M::N::X’s base class B

// 4) scope of namespace M: :N

// &) scope of namespace M

// 6) global scope, before the definition of M::N::X::f

— end example] [Note: 9.3 and 9.4 further describe the restrictions on the use of names in member function
definitions. 9.7 further describes the restrictions on the use of names in the scope of nested classes. 9.8
further describes the restrictions on the use of names in local class definitions. — end note]

Name lookup for a name used in the definition of a friend function (11.4) defined inline in the class granting
friendship shall proceed as described for lookup in member function definitions. If the friend function is

31) That is, an unqualified name that occurs, for instance, in a type or default argument expression in the parameter-
declaration-clause or in the function body.

32) This lookup applies whether the member function is defined within the definition of class X or whether the member function
is defined in a namespace scope enclosing X’s definition.

§3.4.1 45

10

11

12

13

14

15

©ISO/IEC N3090=10-0080

not defined in the class granting friendship, name lookup in the friend function definition shall proceed as
described for lookup in namespace member function definitions.

In a friend declaration naming a member function, a name used in the function declarator and not part
of a template-argument in a—template—id- the declarator-id is first looked up in the scope of the member
function’s class (10.2). If it is not found, or if the name is part of a template-argument in a—template-id-
the declarator-id , the look up is as described for unqualified names in the definition of the class granting

friendship. [Ezample:

struct A {

typedef int AT;

void £1(AT);

void f2(float);

template <class T> void £3();
};
struct B {

typedef char AT;

typedef float BT;

friend void A::f1(AT); // parameter type is A: :AT
friend void A::f2(BT); // parameter type is B: :BT
friend void A::f3<AT>(); // template argument is B: : AT

};

— end example]

During the lookup for a name used as a default argument (8.3.6) in a function parameter-declaration-clause
or used in the expression of a mem-initializer for a constructor (12.6.2), the function parameter names are
visible and hide the names of entities declared in the block, class or namespace scopes containing the function
declaration. [Note: 8.3.6 further describes the restrictions on the use of names in default arguments. 12.6.2
further describes the restrictions on the use of names in a ctor-initializer. — end note]

During the lookup of a name used in the constant-expression of an enumerator-definition, previously declared
enumerators of the enumeration are visible and hide the names of entities declared in the block, class, or
namespace scopes containing the enum-specifier.

A name used in the definition of a static data member of class X (9.4.2) (after the qualified-id of the static
member) is looked up as if the name was used in a member function of X. [Note: 9.4.2 further describes the
restrictions on the use of names in the definition of a static data member. — end note|

If a variable member of a namespace is defined outside of the scope of its namespace then any name wsed

that appears in the definition of the variable member (after the declarator-id) is looked up as if the definition

of the wariable member occurred in its namespace. [Ezample:

namespace N {
int i = 4;
extern int j;

}
int i = 2;
int N::j = i; J/Ni:j ==

— end example|

A name used in the handler for a function-try-block (Clause 15) is looked up as if the name was used in
the outermost block of the function definition. In particular, the function parameter names shall not be
redeclared in the exception-declaration nor in the outermost block of a handler for the function-try-block.

§3.4.1 46

16

©ISO/IEC N3090=10-0080

Names declared in the outermost block of the function definition are not found when looked up in the scope

of a handler for the function-try-block. [Note: but function parameter names are found. — end note
[Note: the rules for name lookup in template definitions are described in 14.7. — end note]
3.4.2 Argument-dependent name lookup [basic.lookup.argdep]

When the postfiz-expression in a function call (5.2.2) is an unqualified-id, other namespaces not considered
during the usual unqualified lookup (3.4.1) may be searched, and in those namespaces, namespace-scope
friend function declarations (11.4) not otherwise visible may be found. These modifications to the search
depend on the types of the arguments (and for template template arguments, the namespace of the template
argument). [Example:

namespace N {
struct S { };

void f(S);
}
void g() {
N::S s;
£(s); // OK: calls N: : £
(£)(s); // error: N: :f not considered; parentheses
// prevent argument-dependent lookup
}

— end example]

For each argument type T in the function call, there is a set of zero or more associated namespaces and a
set of zero or more associated classes to be considered. The sets of namespaces and classes is determined
entirely by the types of the function arguments (and the namespace of any template template argument).
Typedef names and using-declarations used to specify the types do not contribute to this set. The sets of
namespaces and classes are determined in the following way:

— If T is a fundamental type, its associated sets of namespaces and classes are both empty.

— If T is a class type (including unions), its associated classes are: the class itself; the class of which it is a
member, if any; and its direct and indirect base classes. Its associated namespaces are the namespaces
of which its associated classes are members. Furthermore, if T is a class template specialization,
its associated namespaces and classes also include: the namespaces and classes associated with the
types of the template arguments provided for template type parameters (excluding template template
parameters); the namespaces of which any template template arguments are members; and the classes
of which any member templates used as template template arguments are members. | Note: non-type
template arguments do not contribute to the set of associated namespaces. — end note]

— If T is an enumeration type, its associated namespace is the namespace in which it is defined. If it is
class member, its associated class is the member’s class; else it has no associated class.

— If T is a pointer to U or an array of U, its associated namespaces and classes are those associated with
U.

— If T is a function type, its associated namespaces and classes are those associated with the function
parameter types and those associated with the return type.

— If T is a pointer to a member function of a class X, its associated namespaces and classes are those
associated with the function parameter types and return type, together with those associated with X.

§ 3.4.2 47

©ISO/IEC N3090=10-0080

— If T is a pointer to a data member of class X, its associated namespaces and classes are those associated
with the member type together with those associated with X.

If an associated namespace is an inline namespace (7.3.1), its enclosing namespace is also included in the set.
If an associated namespace directly contains inline namespaces, those inline namespaces are also included in
the set. In addition, if the argument is the name or address of a set of overloaded functions and/or function
templates, its associated classes and namespaces are the union of those associated with each of the members
of the set, i.e., the classes and namespaces associated with its (non-dependent) parameter types and return
type.

Let X be the lookup set produced by unqualified lookup (3.4.1) and let ¥ be the lookup set produced by
argument dependent lookup (defined as follows). If X contains

— a declaration of a class member, or
— a block-scope function declaration that is not a using-declaration, or
— a declaration that is neither a function or a function template

then Y is empty. Otherwise Y is the set of declarations found in the namespaces associated with the
argument types as described below. The set of declarations found by the lookup of the name is the union of
X and Y. [Note: the namespaces and classes associated with the argument types can include namespaces
and classes already considered by the ordinary unqualified lookup. — end note] [Ezample:

namespace NS {
class T { };
void £(T);
void g(T, int);
}
NS::T parm;
void g(NS::T, float);
int main() {

£ (parm) ; // OK: calls NS: : £
extern void g(NS::T, float);
g(parm, 1); // OK: calls g(NS::T, float)

}

— end example]

When considering an associated namespace, the lookup is the same as the lookup performed when the
associated namespace is used as a qualifier (3.4.3.2) except that:

— Any using-directives in the associated namespace are ignored.

— Any namespace-scope friend functions or friend function templates declared in associated classes are
visible within their respective namespaces even if they are not visible during an ordinary lookup (11.4).

— All names except those of (possibly overloaded) functions and function templates are ignored.

3.4.3 Qualified name lookup [basic.lookup.qual]

The name of a class or namespace member or enumerator can be referred to after the :: scope resolution
operator (5.1) applied to a nested-name-specifier that neminates denotes its class, namespace, or enumer-
ation. ebe—thedosloe— e e e 1 scope pe resolution operator—ebjeet—funetion:
and-enttmerator-names-are-ignored in a nested-name- S])(PI[IPT is not preceded by a decltype-specifier, lookup
of the name preceding that :: considers only namespaces, types, and templates whose specializations are

§ 3.4.3 48

©ISO/IEC N3090=10-0080

types. If the name found does not designate a namespace or a class, enumeration, or dependent type, the
program is ill-formed.[Ezample:

class A {
public:
static int n;
};
int main() {
int A;
A::n = 42; // OK
A b; // ill-formed: A does not name a type
}

— end example|

2 [Note: multiply qualified names, such as N1::N2::N3::n, can be used to refer to members of nested
classes (9.7) or members of nested namespaces. — end note]

3 In a declaration in which the declarator-id is a qualified-id, names used before the qualified-id being declared
are looked up in the defining namespace scope; names following the qualified-id are looked up in the scope
of the member’s class or namespace. [Example:

class X { };
class C {
class X { };
static const int number = 50;
static X arr[number];
};
X C::arr[numberl; //ill-formed:
// equivalent to: ::X C::arr[C::number];
// mot to: C::X C::arr[C: :number];

— end example]

4 A name prefixed by the unary scope operator :: (5.1) is looked up in global scope, in the translation unit
where it is used. The name shall be declared in global namespace scope or shall be a name whose declaration
is visible in global scope because of a using-directive (3.4.3.2). The use of :: allows a global name to be
referred to even if its identifier has been hidden (3.3.10).

5 A name prefixed by a nested-name-specifier that nominates an enumeration type shall represent an enumer-
ator of that enumeration.

6 If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier, the type-names are looked up as types
in the scope designated by the nested-name-specifier. Similarly, in a qualified-id of the form:

ttopt nested-name-specifieroy: class-name :: ~ class-name
the second class-name is looked up in the same scope as the first. [Example:

struct C {

typedef int I;

};

typedef int I1, I2;

extern int* p;

extern int* q;

p—>C::I::7IQ); // 1 is looked up in the scope of C

g->I1::712(0); // 12 is looked up in the scope of
// the postfiz-expression

§3.4.3 49

©ISO/IEC N3090=10-0080

struct A {
“AQ);

};

typedef A AB;

int main() {

AB *p;
p—>AB::"AB(Q); // explicitly calls the destructor for A
}
— end example] [Note: 3.4.5 describes how name lookup proceeds after the . and -> operators. — end
note |
3.4.3.1 Class members [class.qual]

If the nested-name-specifier of a qualified-id nominates a class, the name specified after the nested-name-
specifier is looked up in the scope of the class (10.2), except for the cases listed below. The name shall
represent one or more members of that class or of one of its base classes (Clause 10). [Note: a class member
can be referred to using a qualified-id at any point in its potential scope (3.3.7). — end note] The exceptions
to the name lookup rule above are the following:

— a destructor name is looked up as specified in 3.4.3;

— a conversion-type-id of an conversion-function-id is looked up both in the scope of the class and in the
context in which the entire postfiz-expression occurs and shall refer to the same type in both contexts;

— the names in a template-argument of a template-id are looked up in the context in which the entire
postfiz-expression occurs.

— the lookup for a name specified in a using-declaration (7.3.3) also finds class or enumeration names
hidden within the same scope (3.3.10).

In a lookup in which the constructor is an acceptable lookup result and the nested-name-specifier nominates
a class C:

— if the name specified after the nested-name-specifier, when looked up in C, is the injected-class-name
of C (Clause 9), or

— in a using-declaration (7.3.3) that is a member-declaration, if the name specified after the nested-name-
specifier is the same as the identifier or the simple-template-id’s template-name in the last component
of the nested-name-specifier,

the name is instead considered to name the constructor of class C. [Note: for example, the constructor is
not an acceptable lookup result in an elaborated-type-specifier so the constructor would not be used in place
of the injected-class-name. — end note] Such a constructor name shall be used only in the declarator-id of
a declaration that names a constructor or in a using-declaration. | Example:

struct A { AQ; };
struct B: public A { BO; };

A::a0 {3}

B::BO {}

B::A ba; // object of type A

A::A a; // error, A::A is not a type name
struct A::A a2; // object of type A

§ 3.4.3.1 50

©ISO/IEC N3090=10-0080

— end example]

A class member name hidden by a name in a nested declarative region or by the name of a derived class
member can still be found if qualified by the name of its class followed by the :: operator.

3.4.3.2 Namespace members [namespace.qual]

If the nested-name-specifier of a qualified-id nominates a namespace, the name specified after the nested-
name-specifier is looked up in the scope of the namespace, except that the names in a template-argument of
a template-id are looked up in the context in which the entire postfiz-expression occurs.

For a namespace X and name m, the namespace-qualified lookup set S(X,m) is defined as follows: Let
S’(X,m) be the set of all declarations of m in X and the inline namespace set of X (7.3.1). If S’(X,m) is not
empty, S(X,m) is S'(X,m); otherwise, S(X,m) is the union of S(NV;,m) for all namespaces IN; nominated
by wusing-directives in X and its inline namespace set.

Given X: :m (where X is a user-declared namespace), or given : :m (where X is the global namespace) let-S-be

5 > : : = if S(X m) is the empty set the program is
ill-formed. Otherwise, if § S(X,m) has exactly one member, or if the context of the reference is a using-
declaration (7.3.3), & S(X,m) is the required set of declarations of m. Otherwise if the use of m is not one
that allows a unique declaration to be chosen from § S(X,m), the program is ill-formed. [Ezample:

int x;

namespace Y {
void f(float);
void h(int);

}

namespace Z {
void h(double);
}

namespace A {
using namespace Y;
void f(int);
void g(int);
int i;

}

namespace B {
using namespace Z;
void f(char);
int i;

}

namespace AB {
using namespace A;
using namespace B;
void g();

}

void h()

§3.4.3.2 51

©ISO/IEC

AB:

AB:

AB:

AB:

AB:

AB:

}

txH+

1l

:g0);

:£(1);

:£Cc?);

:h(16.8);

N3090=10-0080

// g is declared directly in AB,

// therefore S is { AB::g() } and AB::g() is chosen
// £ is not declared directly in AB so the rules are
// applied recursively to A and B;

// namespace Y is not searched and Y: : £ (float)

// is not considered;

// 8 is { A::£(int), B::f(char) } and overload

// resolution chooses A: :f (int)

// as above but resolution chooses B: :f (char)

// % is not declared directly in AB, and

// is not declared in A or B , so the rules are

// applied recursively to Y and Z,

// S is { } so the program is ill-formed

// i is not declared directly in AB so the rules are
// applied recursively to A and B,

//Sis{ A::i, B::i } so the use is ambiguous
// and the program is ill-formed

// h is not declared directly in AB and

// mot declared directly in A or B so the rules are
// applied recursively to Y and Z,

// S is { Y::h(int), Z::h(double) } and overload
// resolution chooses Z: :h(double)

4 The same declaration found more than once is not an ambiguity (because it is still a unique declaration).
For example:

namespace A {

int

}

a;

namespace B {

us ing namespace

}

namespace C {

using namespace

}

namespace BC {
using namespace
using namespace

}
void £()
{
BC::at+;
}

namespace D {
using A::a;

}

namespace BD {

§3.4.3.2

// OK:Sis { Ai:a, A::a }

52

©ISO/IEC N3090=10-0080

using namespace B;
using namespace D;

}
void g()
{
BD::at++; // OK: Sis{ A::a, A::a}
}

5 Because each referenced namespace is searched at most once, the following is well-defined:

namespace B {
int b;
}

namespace A {
using namespace B;
int a;

}

namespace B {
using namespace A;

}

void £()

{
A::at+; // OK: a declared directly in A, S is {A::a}
B::at+; // OK: both A and B searched (once), S is {A::a}
A: b+ // OK: both A and B searched (once), S is {B::b}
B::bt++; // OK: b declared directly in B, S is {B::b}

}

— end example]

6 During the lookup of a qualified namespace member name, if the lookup finds more than one declaration of
the member, and if one declaration introduces a class name or enumeration name and the other declarations
either introduce the same ebjeet variable, the same enumerator or a set of functions, the non-type name
hides the class or enumeration name if and only if the declarations are from the same namespace; otherwise
(the declarations are from different namespaces), the program is ill-formed. [Example:

namespace A {
struct x { };
int x;
int y;

}

namespace B {
struct y { };
}

namespace C {
using namespace A;
using namespace B;
int i = C::x; // OK, A::x (of type int)
int j = C::y; // ambiguous, A::y or B::y

§3.4.3.2 53

©ISO/IEC N3090=10-0080

— end example]

7 In a declaration for a namespace member in which the declarator-id is a qualified-id, given that the qualified-id
for the namespace member has the form

nested-name-specifier unqualified-id

the unqualified-id shall name a member of the namespace designated by the nested-name-specifier or of an
element of the inline namespace set (7.3.1) of that namespace. [Example:

namespace A {
namespace B {
void f1(int);
}
using namespace B;
}
void A::f1(int){ } //ill-formed, £1 is not a member of A

— end example] However, in such namespace member declarations, the nested-name-specifier may rely on
using-directives to implicitly provide the initial part of the nested-name-specifier. | Example:

namespace A {
namespace B {
void f1(int);
}
}

namespace C {
namespace D {
void f1(int);
}
}

using namespace A;
using namespace C::D;
void B::f1(int){ } // OK, defines A::B::f1(int)

— end example|

3.4.4 Elaborated type specifiers [basic.lookup.elab]

1 An elaborated-type-specifier (7.1.6.3) may be used to refer to a previously declared class-name or enum-name
even though the name has been hidden by a non-type declaration (3.3.10).

2 If the elaborated-type-specifier has no nested-name-specifier, and unless the elaborated-type-specifier appears
in a declaration with the following form:

class-key attribute-specifier.y: tdentifier attribute—specifiersp— ;

the identifier is looked up according to 3.4.1 but ignoring any non-type names that have been declared. If
the elaborated-type-specifier is introduced by the enum keyword and this lookup does not find a previously
declared type-name, the elaborated-type-specifier is ill-formed. If the elaborated-type-specifier is introduced by
the class-key and this lookup does not find a previously declared type-name, or if the elaborated-type-specifier
appears in a declaration with the form:

class-key attribute-specifieryy,: identifier attribute—specifiersp— ;

the elaborated-type-specifier is a declaration that introduces the class-name as described in 3.3.2.

§ 3.4.4 54

©ISO/IEC N3090=10-0080

If the elaborated-type-specifier has a nested-name-specifier, qualified name lookup is performed, as described
in 3.4.3, but ignoring any non-type names that have been declared. If the name lookup does not find a
previously declared type-name, the elaborated-type-specifier is ill-formed. [Example:

struct Node {

struct Nodex Next; // OK: Refers to Node at global scope
struct Data* Data; // OK: Declares type Data
// at global scope and member Data
};
struct Data {
struct Nodex Node; // OK: Refers to Node at global scope
friend struct ::Glob; // error: Glob is not declared
// cannot introduce a qualified type (7.1.6.3)
friend struct Glob; // OK: Refers to (as yet) undeclared Glob
// at global scope.
};
struct Base {
struct Data; // OK: Declares nested Data
struct ::Datax thatData; // OK: Refers to ::Data
struct Base::Data* thisData; // OK: Refers to nested Data
friend class ::Data; // OK: global Data is a friend
friend class Data; // OK: nested Data is a friend
struct Data { /* ... %/ }; // Defines nested Data
};
struct Data; // OK: Redeclares Data at global scope
struct ::Data; // error: cannot introduce a qualified type (7.1.6.3)
struct Base::Data; // error: cannot introduce a qualified type (7.1.6.3)
struct Base::Datum; // error: Datum undefined
struct Base::Data* pBase; // OK: refers to nested Data

— end example|

3.4.5 Class member access [basic.lookup.classref]

In a class member access expression (5.2.5), if the . or -> token is immediately followed by an identifier
followed by a <, the identifier must be looked up to determine whether the < is the beginning of a template
argument list (14.3) or a less-than operator. The identifier is first looked up in the class of the object
expression. If the identifier is not found, it is then looked up in the context of the entire postfiz-expression
and shall name a class template. If the lookup in the class of the object expression finds a template, the
name is also looked up in the context of the entire postfiz-expression and

— if the name is not found, the name found in the class of the object expression is used, otherwise

— if the name is found in the context of the entire postfiz-expression and does not name a class template,
the name found in the class of the object expression is used, otherwise

— if the name found is a class template, it shall refer to the same entity as the one found in the class of
the object expression, otherwise the program is ill-formed.

If the id-expression in a class member access (5.2.5) is an unqualified-id, and the type of the object expression
is of a class type C, the unqualified-id is looked up in the scope of class C. If the type of the object expression
is of pointer to scalar type, the unqualified-id is looked up in the context of the complete postfiz-expression.

§ 3.4.5 55

©ISO/IEC N3090=10-0080

If the unqualified-id is ~type-name, the type-name is looked up in the context of the entire postfiz-expression.
If the type T of the object expression is of a class type C, the type-name is also looked up in the scope of
class C. At least one of the lookups shall find a name that refers to (possibly cv-qualified) T. [Ezample:

struct A { };
struct B {
struct A { };

void f(::A% a);
};

void B::f(::Ax a) {
a—>"A0); // OK: lookup in *a finds the injected-class-name
}

— end example]

If the id-expression in a class member access is a qualified-id of the form

the class-name-or-namespace-name following the . or -> operator is looked up both in the context of the
entire postfiz-expression and in the scope of the class of the object expression. If the name is found only in
the scope of the class of the object expression, the name shall refer to a class-name. If the name is found
only in the context of the entire postfiz-expression, the name shall refer to a class-name or namespace-name.
If the name is found in both contexts, the class-name-or-namespace-name shall refer to the same entity.

If the qualified-id has the form

the class-name-or-namespace-name is looked up in global scope as a class-name or namespace-name.

If the nested-name-specifier contains a simple-template-id (14.3), the names in its template-arguments are
looked up in the context in which the entire postfix-expression occurs.

If the id-expression is a conversion-function-id, its conversion-type-id shall denote the same type in both the
context in which the entire postfix-expression occurs and in the context of the class of the object expression
(or the class pointed to by the pointer expression).

3.4.6 Using-directives and namespace aliases [basic.lookup.udir]

When looking up a namespace-name in a wusing-directive or namespace-alias-definition, only namespace
names are considered.

3.5 Program and linkage [basic.link]

A program consists of one or more translation units (Clause 2) linked together. A translation unit consists
of a sequence of declarations.

translation-unit:
declaration-seqopt

A name is said to have linkage when it might denote the same object, reference, function, type, template,
namespace or value as a name introduced by a declaration in another scope:

— When a name has external linkage, the entity it denotes can be referred to by names from scopes of
other translation units or from other scopes of the same translation unit.

§ 3.5 56

©ISO/IEC N3090=10-0080

— When a name has internal linkage, the entity it denotes can be referred to by names from other scopes
in the same translation unit.

— When a name has no linkage, the entity it denotes cannot be referred to by names from other scopes.
A name having namespace scope (3.3.6) has internal linkage if it is the name of
— an-objeetreference a variable, function or function template that is explicitly declared static; or,

— an-objeet-orreferenee a variable that is explicitly declared const and neither explicitly declared extern
nor previously declared to have external linkage; or

— a data member of an anonymous union.

A name having namespace scope has external linkage if it is the name of

— an-objeet-orreferenece a variable, unless it has internal linkage; or
— a function, unless it has internal linkage; or

— a named class (Clause 9), or an unnamed class defined in a typedef declaration in which the class has
the typedef name for linkage purposes (7.1.3); or

— anamed enumeration (7.2), or an unnamed enumeration defined in a typedef declaration in which the
enumeration has the typedef name for linkage purposes (7.1.3); or

— an enumerator belonging to an enumeration with external linkage; or
— a template, unless it is a function template that has internal linkage (Clause 14); or
— a namespace (7.3), unless it is declared within an unnamed namespace.

In addition, a member function, static data member, a named class or enumeration of class scope, or an
unnamed class or enumeration defined in a class-scope typedef declaration such that the class or enumeration
has the typedef name for linkage purposes (7.1.3), has external linkage if the name of the class has external
linkage.

The name of a function declared in block scope and the name of an—ebjeet a variable declared by a block
scope extern declaration have linkage. If there is a visible declaration of an entity with linkage having the
same name and type, ignoring entities declared outside the innermost enclosing namespace scope, the block
scope declaration declares that same entity and receives the linkage of the previous declaration. If there is
more than one such matching entity, the program is ill-formed. Otherwise, if no matching entity is found,
the block scope entity receives external linkage.[Example:

static void f();

static int i = 0; /) #1
void g() {
extern void £(); // internal linkage
int i; // #2 i has no linkage
{
extern void £(); // internal linkage
extern int i; // #3 external linkage
}
}

There are three objects named i in this program. The object with internal linkage introduced by the
declaration in global scope (line #1), the object with automatic storage duration and no linkage introduced
by the declaration on line #2, and the object with static storage duration and external linkage introduced
by the declaration on line #3. — end example|

§ 3.5 57

©ISO/IEC N3090=10-0080

When a block scope declaration of an entity with linkage is not found to refer to some other declaration,
then that entity is a member of the innermost enclosing namespace. However such a declaration does not
introduce the member name in its namespace scope. [Example:

namespace X {

void p() {
q0; // error: q not yet declared
extern void q(); // q is a member of namespace X
}
void middle() {
qQ; // error: q not yet declared
}
void qO) { /* ... */ 1} // definition of X::q
}
void qO) { /x ... %/} // some other, unrelated q

— end example|

Names not covered by these rules have no linkage. Moreover, except as noted, a name declared in-a-local at
block scope (3.3.3) has no linkage. A type is said to have linkage if and only if:

— it is a class or enumeration type that is named (or has a name for linkage purposes (7.1.3)) and the
name has linkage; or

— it is an unnamed class or enumeration member of a class with linkage; or

— it is a specialization of a class template (14)33; or
— it is a fundamental type (3.9.1); or

— it is a compound type (3.9.2) other than a class or enumeration, compounded exclusively from types
that have linkage; or

— it is a cv-qualified (3.9.3) version of a type that has linkage.
A type without linkage shall not be used as the type of a variable or function with external linkage unless
— the-variable-erfunetion the entity has C language linkage (7.5), or
— thevariable-orfunetion the entity is declared within an unnamed namespace (7.3.1), or
— the-variable-orfunetion the entity is not used (3.2) or is defined in the same translation unit.

[Note: in other words, a type without linkage contains a class or enumeration that cannot be named outside
its translation unit. An entity with external linkage declared using such a type could not correspond to any
other entity in another translation unit of the program and thus must be defined in the translation unit if
it is used. Also note that classes with linkage may contain members whose types do not have linkage, and
that typedef names are ignored in the determination of whether a type has linkage. — end note]

[Ezample:

template <class T> struct B {
void g(T) { }
void h(T);

33) A class template always has external linkage, and the requirements of 14.4.1 and 14.4.2 ensure that the template arguments
will also have appropriate linkage.

§ 3.5 58

9

10

11

©ISO/IEC N3090=10-0080

friend void i(B, T) { }

};
void £() {
struct A { int x; }; // no linkage
Aa={113
B<A> ba; // declares B<A>::g(A) and B<A>::h(A)
ba.g(a); // OK
ba.h(a); // error: B<A>::h(A) not defined in the translation unit
i(ba, a); // OK
}

— end example]

Two names that are the same (Clause 3) and that are declared in different scopes shall denote the same
ebjeetreference variable, function, type, enumerator, template or namespace if

— both names have external linkage or else both names have internal linkage and are declared in the
same translation unit; and

— both names refer to members of the same namespace or to members, not by inheritance, of the same
class; and

— when both names denote functions, the parameter-type-lists of the functions (8.3.5) are identical; and
— when both names denote function templates, the signatures (14.6.6.1) are the same.

After all adjustments of types (during which typedefs (7.1.3) are replaced by their definitions), the types
specified by all declarations referring to a given ebjeet variable or function shall be identical, except that
declarations for an array object can specify array types that differ by the presence or absence of a major
array bound (8.3.4). A violation of this rule on type identity does not require a diagnostic.

[Note: linkage to non-C++ declarations can be achieved using a linkage-specification (7.5). — end note]
3.6 Start and termination [basic.start]
3.6.1 Main function [basic.start.main]

A program shall contain a global function called main, which is the designated start of the program. It
is implementation-defined whether a program in a freestanding environment is required to define a main
function. [Note: in a freestanding environment, start-up and termination is implementation-defined; start-
up contains the execution of constructors for objects of namespace scope with static storage duration;
termination contains the execution of destructors for objects with static storage duration. — end note]

An implementation shall not predefine the main function. This function shall not be overloaded. It shall
have a return type of type int, but otherwise its type is implementation-defined. All implementations shall
allow both of the following definitions of main:

int main() { /* ... */ }
and
int main(int argc, char* argv[]) { /x ... =/}

In the latter form argc shall be the number of arguments passed to the program from the environ-
ment in which the program is run. If argc is nonzero these arguments shall be supplied in argv[0]
through argv[argc-1] as pointers to the initial characters of null-terminated multibyte strings (NTMBS

§ 3.6.1 59

©ISO/IEC N3090=10-0080

s) (17.5.2.1.4.2) and argv[0] shall be the pointer to the initial character of a NTMBS that represents the

name used to invoke the program or "". The value of argc shall be non-negative. The value of argv[argc]
shall be 0. [Note: it is recommended that any further (optional) parameters be added after argv. — end
note]

The function main shall not be used (3.2) within a program. The linkage (3.5) of main is implementation-
defined. A program that defines main as deleted or that declares main to be inline, static, or constexpr
is ill-formed. The name main is not otherwise reserved. [Ezample: member functions, classes, and enumer-
ations can be called main, as can entities in other namespaces. — end ezample]

Terminating the program without leaving the current block (e.g., by calling the function std: :exit (int) (18.5))
does not destroy any objects with automatic storage duration (12.4). If std::exit is called to end a pro-
gram during the destruction of an object with static or thread storage duration, the program has undefined
behavior.

A return statement in main has the effect of leaving the main function (destroying any objects with automatic
storage duration) and calling std: :exit with the return value as the argument. If control reaches the end
of main without encountering a return statement, the effect is that of executing

return O;

3.6.2 Initialization of non-local variables [basic.start.init]

There are two broad classes of named non-local ebjeets variables: those with static storage duration (3.7.1)
and those with thread storage duration (3.7.2). Non-local ebjeets variables with static storage duration are
initialized as a consequence of program initiation. Non-local ebjeets variables with thread storage duration
are initialized as a consequence of thread execution. Within each of these phases of initiation, initialization
occurs as follows.

Objeets Variables with static storage duration (3.7.1) or thread storage duration (3.7.2) shall be zero-
initialized (8.5) before any other initialization takes place.

Constant initialization is performed:

— if each full-expression (including implicit conversions) that appears in the initializer of a reference with
static or thread storage duration is a constant expression (5.19) and the reference is bound to an lvalue
designating an object with static storage duration or to a temporary (see 12.2)

— if an object with static or thread storage duration is initialized such that the initialization satisfies the
requirements for the object being declared with constexpr (7.1.5).

Together, zero-initialization and constant initialization are called static initialization; all other initialization
is dynamic initialization. Static initialization shall be performed before any dynamic initialization takes
place. Dynamic initialization of a non-local ebjeet variable with static storage duration is either ordered or
unordered. Definitions of explicitly specialized class template static data members have ordered initialization.
Other class template static data members (i.e., 1mp11c1tly or expllcltly instantiated specializations) have
unordered initialization. Other e i > non-local variables with static storage
duration have ordered initialization. ijleets Variables w1th ordered initialization defined within a single
translation unit shall be initialized in the order of their definitions in the translation unit. If a program
starts a thread (30.3), the subsequent initialization of an-ebjeet a variable is unsequenced with respect to
the initialization of an—ebjeet a variable defined in a different translation unit. Otherwise, the initialization
of an-ebjeet a variable is indeterminately sequenced with respect to the initialization of an-ebjeet a variable
defined in a different translation unit. If a program starts a thread, the subsequent unordered initialization
of an—ebjeet a variable is unsequenced with respect to every other dynamic initialization. Otherwise, the
unordered initialization of an—ebjeet a variable is indeterminately sequenced with respect to every other

§ 3.6.2 60

©ISO/IEC N3090=10-0080

dynamic initialization. [Note: This definition permits initialization of a Sequence of ordered ebjec—‘&s rariables
concurrently Wlth another sequence. — end note] [Note: 85 S >
: - The initialization of local static ebjeets \(uldblos is descrlbed in 6.7. —end note]

a non-local

3 An implementation is permitted to perform the initialization of :
variable with static storage duration as a static initialization even if Such initialization is not required to be
done statically, provided that

— the dynamic version of the initialization does not change the value of any other object of namespace
scope prior to its initialization, and

— the static version of the initialization produces the same value in the initialized ebjeet variable as
would be produced by the dynamic initialization if all ebjeets variables not required to be initialized
statically were initialized dynamically.

— [Note: as a consequence, if the initialization of an object obj1 refers to an object obj2 of namespace
scope potentially requiring dynamic initialization and defined later in the same translation unit, it is
unspecified whether the value of obj2 used will be the value of the fully initialized obj2 (because obj2
was statically initialized) or will be the value of obj2 merely zero-initialized. For example,

inline double fd() { return 1.0; }

extern double di;

double d2 = di; // unspecified:
// may be statically initialized to 0.0 or
// dynamically initialized to 1.0

double d1 = £d(); // may be initialized statically to 1.0

— end note]

4 Tt is implementation-defined whether the dynamic initialization {8:5;-94+12112:6-1) of an—ebject—of
namespace—seope a non-local variable with static storage duration is done before the first statement of
main. If the initialization is deferred to some point in time after the first statement of main, it shall occur
before the first use of any function or ebjeet variable defined in the same translation unit as the ebjeet
variable to be initialized.?* [Ezample:

// - File 1 -

#include "a.h"

#include "b.h"

B b;

A::AQ0{
b.Use();

}

// - File 2 -
#include "a.h"
A a;

// - File 3 -
#include "a.h"
#include "b.h"
extern A a;
extern B b;

int main() {

34) An-objeet-defined-innamespaeceseope A non-local variable with static storage duration having initialization with side-effects

must be initialized even if it is not used (3.7.1).

§ 3.6.2 61

©ISO/IEC N3090=10-0080

a.Use();
b.Use();
}

It is implementation-defined whether either a or b is initialized before main is entered or whether the
initializations are delayed until a is first used in main. In particular, if a is initialized before main is entered,
it is not guaranteed that b will be initialized before it is used by the initialization of a, that is, before A: : A
is called. If, however, a is initialized at some point after the first statement of main, b will be initialized
prior to its use in A::A. — end ezample]

It is 1mplementat10n—deﬁned whether the dynamic initialization {8:59-4+3424—12.6-1)of an—-object—of

of a non-local variable with static or thread storage duration is done before

the ﬁrst statement of the initial function of the thread. If the initialization is deferred to some point in
time after the first statement of the initial function of the thread, it shall occur before the first use of any
objeet variable with thread storage duration defined in the same translation unit as the ebjeet variable to
be initialized.

3 : 33} [Note: If the 1111t1(1hz(1t1()11 ()f a non-local \dlldbl(‘
W 1th stdtu or thl(‘dd storage dllldtloll t(‘IlIllndtLS by throwing an exception, std::terminate is called

(see 15.5.1). — end note]

3.6.3 Termination [basic.start.term)|

Destructors (12.4) for initialized objects (that is, objects whose lifetime (3.8) has begun) with static storage
duration are called as a result of returning from main and as a result of calling std: :exit (18.5). Destructors
for initialized objects with thread storage duration within a given thread are called as a result of returning
from the initial function of that thread and as a result of that thread calling std: :exit. The completions
of the destructors for all initialized objects with thread storage duration within that thread are sequenced
before the initiation of the destructors of any object with static storage duration. If the completion of the
constructor or dynamic initialization of an object with thread storage duration is sequenced before that of
another, the completion of the destructor of the second is sequenced before the initiation of the destructor
of the first. If the completion of the constructor or dynamic initialization of an object with static storage
duration is sequenced before that of another, the completion of the destructor of the second is sequenced
before the initiation of the destructor of the first. [Note: this definition permits concurrent destruction.
— end note] If an object is initialized statically, the object is destroyed in the same order as if the object
was dynamically initialized. For an object of array or class type, all subobjects of that object are destroyed
before any leeal block-scope object with static storage duration initialized during the construction of the
subobjects is destroyed. [Note: If the destruction of a non-local object with static or thread storage duration
terminates by throwing an exception, std: :terminate is called (see 15.5.1). — end note]

If a function contains a teeat block-scope object of static or thread storage duration that has been destroyed
and the function is called during the destruction of an object with static or thread storage duration, the
program has undefined behavior if the flow of control passes through the definition of the previously destroyed
leeal block-scope object. Likewise, the behavior is undefined if the funetionldoeal block-scope object is used
indirectly (i.e., through a pointer) after its destruction.

If the completion of the initialization of a-ren-teeal an object with static storage duration is sequenced before
a call to std::atexit (see <cstdlib>, 18.5), the call to the function passed to std::atexit is sequenced
before the call to the destructor for the object. If a call to std: :atexit is sequenced before the completion
of the initialization of a—nen-leeal an object with static storage duration, the call to the destructor for the
object is sequenced before the call to the function passed to std::atexit. If a call to std::atexit is

§3.6.3 62

©ISO/IEC N3090=10-0080

sequenced before another call to std: :atexit, the call to the function passed to the second std::atexit
call is sequenced before the call to the function passed to the first std: :atexit call.

If there is a use of a standard library object or function not permitted within signal handlers (18.10) that
does not happen before (1.10) completion of destruction of objects with static storage duration and execution
of std::atexit registered functions (18.5), the program has undefined behavior. [Note: if there is a use
of an object with static storage duration that does not happen before the object’s destruction, the program
has undefined behavior. Terminating every thread before a call to std::exit or the exit from main is
sufficient, but not necessary, to satisfy these requirements. These requirements permit thread managers as
static-storage-duration objects. — end note|

Calling the function std::abort() declared in <cstdlib> terminates the program without executing any
destructors and without calling the functions passed to std::atexit() or std::at_quick_exit().

3.7 Storage duration [basic.stc]

Storage duration is the property of an object that defines the minimum potential lifetime of the storage
containing the object. The storage duration is determined by the construct used to create the object and is
one of the following:

— static storage duration

— thread storage duration

— automatic storage duration
— dynamic storage duration

Static, thread, and automatic storage durations are associated with objects introduced by declarations (3.1)
and implicitly created by the implementation (12.2). The dynamic storage duration is associated with objects
created with operator new (5.3.4).

The storage duration categories apply to references as well. The lifetime of a reference is its storage duration.

3.7.1 Static storage duration [basic.stc.static]

All ebjeets variables which do not have dynamic storage duration, do not have thread storage duration, and
are not local have static storage duration. The storage for these ebjeets entities shall last for the duration
of the program (3.6.2, 3.6.3).

If an-ebjeet—of a variable with static storage duration has initialization or a destructor with side effects, it
shall not be eliminated even if it appears to be unused, except that a class object or its copy/move may be
eliminated as specified in 12.8.

The keyword static can be used to declare a local variable with static storage duration. [Note: 6.7 describes
the initialization of local static variables; 3.6.3 describes the destruction of local static variables. — end
note |

The keyword static applied to a class data member in a class definition gives the data member static
storage duration.

3.7.2 Thread storage duration [basic.stc.thread]

All ebjeets— :es variables declared with the thread_local keyword have thread storage duration.
The storage for these %je%ﬁﬂdﬁefereﬁeeb entities shall last for the duration of the thread in which they
are created. There is a distinct object or reference per thread, and use of the declared name refers to the

objeetorreference entity associated with the current thread.

§3.7.2 63

©ISO/IEC N3090=10-0080

An-objeet-orreference A variable with thread storage duration shall be initialized before its first use and, if
constructed, shall be destroyed on thread exit.

3.7.3 Automatic storage duration [basic.stc.auto]

Local ebjeets variables explicitly declared register or not explicitly declared static or extern have auto-
matic storage duration. The storage for these ebjeets entities lasts until the block in which they are created
exits.

[Note: these ebjeets variables are initialized and destroyed as described in 6.7. — end note|

If a named-antomatie-objeet variable with automatic storage duration has initialization or a destructor with
side effects, it shall not be destroyed before the end of its block, nor shall it be eliminated as an optimization
even if it appears to be unused, except that a class object or its copy/move may be eliminated as specified
in 12.8.

3.7.4 Dynamic storage duration [basic.stc.dynamic]

Objects can be created dynamically during program execution (1.9), using new-expressions (5.3.4), and
destroyed using delete-expressions (5.3.5). A C++ implementation provides access to, and management
of, dynamic storage via the global allocation functions operator new and operator newl[] and the global
deallocation functions operator delete and operator deletel[].

The library provides default definitions for the global allocation and deallocation functions. Some global
allocation and deallocation functions are replaceable (18.6.1). A C++ program shall provide at most one
definition of a replaceable allocation or deallocation function. Any such function definition replaces the
default version provided in the library (17.6.3.6). The following allocation and deallocation functions (18.6)
are implicitly declared in global scope in each translation unit of a program.

void* operator new(std::size_t) throw(std::bad_alloc);
void* operator new[] (std::size_t) throw(std::bad_alloc);
void operator delete(void#*) throw();

void operator delete[](void*) throw();

These implicit declarations introduce only the function names operator new, operator new[], operator
delete, operator delete[]. [Note: the implicit declarations do not introduce the names std, std: :bad_-
alloc, and std::size_t, or any other names that the library uses to declare these names. Thus, a new-
expression, delete-expression or function call that refers to one of these functions without including the
header <new> is well-formed. However, referring to std, std::bad_alloc, and std::size_t is ill-formed
unless the name has been declared by including the appropriate header. — end note] Allocation and/or
deallocation functions can also be declared and defined for any class (12.5).

Any allocation and/or deallocation functions defined in a C++ program, including the default versions in
the library, shall conform to the semantics specified in 3.7.4.1 and 3.7.4.2.

3.7.4.1 Allocation functions [basic.stc.dynamic.allocation]

An allocation function shall be a class member function or a global function; a program is ill-formed if an
allocation function is declared in a namespace scope other than global scope or declared static in global
scope. The return type shall be void*. The first parameter shall have type std::size_t (18.2). The first
parameter shall not have an associated default argument (8.3.6). The value of the first parameter shall be
interpreted as the requested size of the allocation. An allocation function can be a function template. Such
a template shall declare its return type and first parameter as specified above (that is, template parameter
types shall not be used in the return type and first parameter type). Template allocation functions shall
have two or more parameters.

§3.7.4.1 64

©ISO/IEC N3090=10-0080

The allocation function attempts to allocate the requested amount of storage. If it is successful, it shall
return the address of the start of a block of storage whose length in bytes shall be at least as large as
the requested size. There are no constraints on the contents of the allocated storage on return from the
allocation function. The order, contiguity, and initial value of storage allocated by successive calls to an
allocation function are unspecified. The pointer returned shall be suitably aligned so that it can be converted
to a pointer of any complete object type with a fundamental alignment requirement (3.11) and then used
to access the object or array in the storage allocated (until the storage is explicitly deallocated by a call to
a corresponding deallocation function). Even if the size of the space requested is zero, the request can fail.
If the request succeeds, the value returned shall be a non-null pointer value (4.10) p0 different from any
previously returned value pl, unless that value pl was subsequently passed to an operator delete. The
effect of dereferencing a pointer returned as a request for zero size is undefined.3®

An allocation function that fails to allocate storage can invoke the currently installed new-handler func-
tion (18.6.2.3), if any. [Note: A program-supplied allocation function can obtain the address of the cur-
rently installed new_handler using the std::set_new_handler function (18.6.2.4). —end note] If an
allocation function declared with an-empty a non-throwing exception-specification (15.4)threw- fails to
allocate storage, it shall return a null pointer. Any other allocation function that fails to allocate storage
shall indicate failure only by throwing an exception of a type that would match a handler (15.3) of type
std::bad_alloc (18.6.2.1).

A global allocation function is only called as the result of a new expression (5.3.4), or called directly using the
function call syntax (5.2.2), or called indirectly through calls to the functions in the C++ standard library.
[Note: in particular, a global allocation function is not called to allocate storage for objects with static
storage duration (3.7.1), for objects or references with thread storage duration (3.7.2), for objects of type
std: :type_info (5.2.8), or for the copy of an object thrown by a throw expression (15.1). — end note]

3.7.4.2 Deallocation functions [basic.stc.dynamic.deallocation]

Deallocation functions shall be class member functions or global functions; a program is ill-formed if deal-
location functions are declared in a namespace scope other than global scope or declared static in global
scope.

Each deallocation function shall return void and its first parameter shall be void*. A deallocation function
can have more than one parameter. If a class T has a member deallocation function named operator delete
with exactly one parameter, then that function is a usual (non-placement) deallocation function. If class T
does not declare such an operator delete but does declare a member deallocation function named operator
delete with exactly two parameters, the second of which has type std::size_t (18.2), then this function
is a usual deallocation function. Similarly, if a class T has a member deallocation function named operator
delete[] with exactly one parameter, then that function is a usual (non-placement) deallocation function.
If class T does not declare such an operator delete[] but does declare a member deallocation function
named operator delete[] with exactly two parameters, the second of which has type std::size_t, then
this function is a usual deallocation function. A deallocation function can be an instance of a function
template. Neither the first parameter nor the return type shall depend on a template parameter. [Note:
that is, a deallocation function template shall have a first parameter of type void* and a return type of
void (as specified above). —end note| A deallocation function template shall have two or more function
parameters. A template instance is never a usual deallocation function, regardless of its signature.

If a deallocation function terminates by throwing an exception, the behavior is undefined. The value of the
first argument supplied to a deallocation function may be a null pointer value; if so, and if the deallocation
function is one supplied in the standard library, the call has no effect. Otherwise, the value supplied
to operator delete(void*) in the standard library shall be one of the values returned by a previous

35) The intent is to have operator new() implementable by calling std::malloc() or std::calloc(), so the rules are sub-
stantially the same. C++ differs from C in requiring a zero request to return a non-null pointer.

§3.7.4.2 65

©ISO/IEC N3090=10-0080

invocation of either operator new(std: :size_t) or operator new(std::size_t, const std::nothrow_-
t&) in the standard library, and the value supplied to operator delete[] (void*) in the standard library
shall be one of the values returned by a previous invocation of either operator new[] (std::size_t) or
operator new[] (std::size_t, const std::nothrow_t&) in the standard library.

4 If the argument given to a deallocation function in the standard library is a pointer that is not the null pointer
value (4.10), the deallocation function shall deallocate the storage referenced by the pointer, rendering invalid
all pointers referring to any part of the deallocated storage. The effect of using an invalid pointer value
(including passing it to a deallocation function) is undefined.3¢

3.7.4.3 Safely-derived pointers [basic.stc.dynamic.safety]

1 A traceable pointer object is
— an object of pointer-to-object type, or
— an object of an integral type that is at least as large as std: :intptr_t, or

— a sequence of elements in an array of character type, where the size and alignment of the sequence
match that of some pointer-to-object type.

2 A pointer value is a safely-derived pointer to a dynamic object only if it has pointer-to-object type and it is
one of the following:

— the value returned by a call to the C++ standard library implementation of : : operator new(std::size_-
£);%7

— the result of taking the address of an object (or one of its subobjects) designated by an lvalue resulting
from dereferencing a safely-derived pointer value;

— the result of well-defined pointer arithmetic using a safely-derived pointer value;

— the result of a well-defined pointer conversion of a safely-derived pointer value;

— the result of a reinterpret_cast of a safely-derived pointer value;

— the result of a reinterpret_cast of an integer representation of a safely-derived pointer value;

— the value of an object whose value was copied from a traceable pointer object, where at the time of
the copy the source object contained a copy of a safely-derived pointer value.

3 An integer value is an integer representation of a safely-derived pointer only if its type is at least as large as
std: :intptr_t and it is one of the following:

— the result of a reinterpret_cast of a safely-derived pointer value;
— the result of a valid conversion of an integer representation of a safely-derived pointer value;

— the value of an object whose value was copied from a traceable pointer object, where at the time of
the copy the source object contained an integer representation of a safely-derived pointer value;

— the result of an additive or bitwise operation, one of whose operands is an integer representation of a
safely-derived pointer value P, if that result converted by reinterpret_cast<void*> would compare
equal to a safely-derived pointer computable from reinterpret_cast<void*>(P).

36) On some implementations, it causes a system-generated runtime fault.

37) This section does not impose restrictions on dereferencing pointers to memory not allocated by ::operator new. This
maintains the ability of many C++ implementations to use binary libraries and components written in other languages. In
particular, this applies to C binaries, because dereferencing pointers to memory allocated by malloc is not restricted.

§3.7.43 66

©ISO/IEC N3090=10-0080

An implementation may have relaxed pointer safety, in which case the validity of a pointer value does

not depend on whether it is a safely-derived pointer value. Alternatively, an implementation may have
strict pointer safety, in which case, if H a pointer value that is not a safely-derived pointer value is deref-
erenced or deallocated, and the referenced complete object is of dynamic storage duration and has not
previously been declared reachable (20.9.12), the behavior is undefined. [Note: this is true even if the
unsafely-derived pointer value might compare equal to some safely-derived pointer value. — end note] It is
implementation defined whether an implementation has relaxed or strict pointer safety.

3.7.5 Duration of subobjects [basic.stc.inherit]

The storage duration of member subobjects, base class subobjects and array elements is that of their complete
object (1.8).

3.8 Object lifetime [basic.life]

The lifetime of an object is a runtime property of the object. An object is said to have non-trivial initialization
if it is of a class or aggregate type and it or one of its members is initialized by a constructor other
than a trivial default constructor. [Note: initialization by a trivial copy/move constructor is non-trivial
initialization. — end note] The lifetime of an object of type T begins when:

— storage with the proper alignment and size for type T is obtained, and
— if the object has non-trivial initialization, its initialization is complete.
The lifetime of an object of type T ends when:
— if T is a class type with a non-trivial destructor (12.4), the destructor call starts, or
— the storage which the object occupies is reused or released.

[Note: the lifetime of an array object starts as soon as storage with proper size and alignment is obtained,
and its lifetime ends when the storage which the array occupies is reused or released. 12.6.2 describes the
lifetime of base and member subobjects. — end note|

The properties ascribed to objects throughout this International Standard apply for a given object only
during its lifetime. [Note: in particular, before the lifetime of an object starts and after its lifetime ends
there are significant restrictions on the use of the object, as described below, in 12.6.2 and in 12.7. Also,
the behavior of an object under construction and destruction might not be the same as the behavior of an
object whose lifetime has started and not ended. 12.6.2 and 12.7 describe the behavior of objects during the
construction and destruction phases. — end note|

A program may end the lifetime of any object by reusing the storage which the object occupies or by
explicitly calling the destructor for an object of a class type with a non-trivial destructor. For an object
of a class type with a non-trivial destructor, the program is not required to call the destructor explicitly
before the storage which the object occupies is reused or released; however, if there is no explicit call to
the destructor or if a delete-expression (5.3.5) is not used to release the storage, the destructor shall not be
implicitly called and any program that depends on the side effects produced by the destructor has undefined
behavior.

Before the lifetime of an object has started but after the storage which the object will occupy has been
allocated>® or, after the lifetime of an object has ended and before the storage which the object occupied is
reused or released, any pointer that refers to the storage location where the object will be or was located
may be used but only in limited ways. Sueh For an object under construction or destruction, see 12.7.
Otherwise, such a pointer refers to allocated storage (3.7.4.2), and using the pointer as if the pointer were of

38) For example, before the construction of a global object of non-POD class type (12.7).

§ 3.8 67

©ISO/IEC N3090=10-0080

type voidx, is well-defined. Such a pointer may be dereferenced but the resulting lvalue may only be used
in limited ways, as described below. The program has undefined behavior if:

— the object will be or was of a class type with a non-trivial destructor and the pointer is used as the
operand of a delete-expression,

— the pointer is used to access a non-static data member or call a non-static member function of the
object, or

— the pointer is implicitly converted (4.10) to a pointer to a base class type, or

— the pointer is used as the operand of a static_cast (5.2.9) (except when the conversion is to voidx,
or to void* and subsequently to charx, or unsigned char*), or

— the pointer is used as the operand of a dynamic_cast (5.2.7). [Example:
#include <cstdlib>
struct B {
virtual void £(Q);
void mutate();

virtual “B();
};

struct D1 : B { void £(); };
struct D2 : B { void £O); };

void B::mutate() {

new (this) D2; // reuses storage — ends the lifetime of *this
£0; // undefined behavior
. = this; // OK, this points to valid memory
}
void g() {

void* p = std::malloc(sizeof(D1) + sizeof(D2));
B* pb = new (p) Di;
pb->mutate();

&pb; // OK: pb points to valid memory

void* q = pb; // OK: pb points to valid memory

pb—>£(); // undefined behavior, lifetime of *pb has ended
}

— end example]

6 Similarly, before the lifetime of an object has started but after the storage which the object will occupy has
been allocated or, after the lifetime of an object has ended and before the storage which the object occupied
is reused or released, any lvalue—which glvalue that refers to the original object may be used but only in
limited ways. Sueh For an object under construction or destruction, see 12.7. Otherwise, such andvalae a
glvalue refers to allocated storage (3.7.4.2), and using the properties of the }wadue-whieh glvalue that do not
depend on its value is well-defined. The program has undefined behavior if:

— an lvalue-to-rvalue conversion (4.1) is applied to such antvalae a glvalue,

— the fvatue glvalue is used to access a non-static data member or call a non-static member function of
the object, or

— the kvalue glvalue is implicitly converted (4.10) to a reference to a base class type, or

§ 3.8 68

©ISO/IEC N3090=10-0080

— the }value glvalue is used as the operand of a static_cast (5.2.9) except when the conversion is
ultimately to cv char& or cv unsigned char&, or

— the kvalue glvalue is used as the operand of a dynamic_cast (5.2.7) or as the operand of typeid.

7 If, after the lifetime of an object has ended and before the storage which the object occupied is reused or
released, a new object is created at the storage location which the original object occupied, a pointer that
pointed to the original object, a reference that referred to the original object, or the name of the original
object will automatically refer to the new object and, once the lifetime of the new object has started, can
be used to manipulate the new object, if:

— the storage for the new object exactly overlays the storage location which the original object occupied,
and

— the new object is of the same type as the original object (ignoring the top-level cv-qualifiers), and

— the type of the original object is not const-qualified, and, if a class type, does not contain any non-static
data member whose type is const-qualified or a reference type, and

— the original object was a most derived object (1.8) of type T and the new object is a most derived
object of type T (that is, they are not base class subobjects). [Example:

struct C {
int i;
void £();
const C& operator=(const C&);

};

const C& C::operator=(const C& other) {
if (this != &other) {

this->"C(); // lifetime of *this ends
new (this) C(other); // new object of type C created
£0; // well-defined
}
return *this;
}
C ci;
C c2;
cl = c2; // well-defined
cl.£0); // well-defined; c1 refers to a new object of type C

— end example]

8 If a program ends the lifetime of an object of type T with static (3.7.1), thread (3.7.2), or automatic (3.7.3)
storage duration and if T has a non-trivial destructor,3® the program must ensure that an object of the
original type occupies that same storage location when the implicit destructor call takes place; otherwise the
behavior of the program is undefined. This is true even if the block is exited with an exception. [Ezample:

class T { };

struct B {
“BO;

};

39) That is, an object for which a destructor will be called implicitly—upon exit from the block for an object with automatic
storage duration, upon exit from the thread for an object with thread storage duration, or upon exit from the program for an
object with static storage duration.

§ 3.8 69

10

©ISO/IEC N3090=10-0080

void h() {
B b;
new (&b) T;
} // undefined behavior at block exit

— end example]

Creating a new object at the storage location that a const object with static, thread, or automatic storage
duration occupies or, at the storage location that such a const object used to occupy before its lifetime
ended results in undefined behavior. [Ezample:

struct B {
BO;
“BO;

};

const B b;
void h() {
b."BQO);

new (&b) const B; // undefined behavior
}

— end example]

In this section, “before” and “after” refer to the “happens before” relation (1.10). [Note: Therefore,
undefined behavior results if an object that is being constructed in one thread is referenced from another
thread without adequate synchronization. — end note |

3.9 Types [basic.types]

[Note: 3.9 and the subclauses thereof impose requirements on implementations regarding the representation
of types. There are two kinds of types: fundamental types and compound types. Types describe objects
(1.8), references (8.3.2), or functions (8.3.5).

For any object (other than a base-class subobject) of trivially copyable type T, whether or not the object
holds a valid value of type T, the underlying bytes (1.7) making up the object can be copied into an array
of char or unsigned char.*? If the content of the array of char or unsigned char is copied back into the
object, the object shall subsequently hold its original value. [Ezample:

#define N sizeof (T)
char buf[N];

T obj; // obj initialized to its original value
std: :memcpy (buf, &obj, N); // between these two calls to std: :memcpy,
// obj might be modified
std: :memcpy (&obj, buf, N); // at this point, each subobject of obj of scalar type

// holds its original value

— end example]

For any trivially copyable type T, if two pointers to T point to distinct T objects obj1l and obj2, where
neither obj1 nor obj2 is a base-class subobject, if the underlying bytes (1.7) making up objl are copied
into obj2,*! obj2 shall subsequently hold the same value as obj1. [Ezample:

40) By using, for example, the library functions (17.6.1.2) std: :memcpy or std: :memmove.
41) By using, for example, the library functions (17.6.1.2) std: :memcpy or std: :memmove.

§ 3.9 70

©ISO/IEC N3090=10-0080

T* tip;

T* t2p;
// provided that t2p points to an initialized object ...

std: :memcpy(tlp, t2p, sizeof(T));
// at this point, every subobject of trivially copyable type in *tlp contains
// the same value as the corresponding subobject in *t2p

— end example]

4 The object representation of an object of type T is the sequence of N unsigned char objects taken up by
the object of type T, where N equals sizeof (T). The value representation of an object is the set of bits that
hold the value of type T. For trivially copyable types, the value representation is a set of bits in the object
representation that determines a value, which is one discrete element of an implementation-defined set of
values.*2

5 A class that has been declared but not defined, or an array of unknown size or of incomplete element type, is
an incompletely-defined object type.*® Incompletely-defined object types and the void types are incomplete
types (3.9.1). Objects shall not be defined to have an incomplete type.

6 A class type (such as “class X”) might be incomplete at one point in a translation unit and complete later
on; the type “class X” is the same type at both points. The declared type of an array object might be
an array of incomplete class type and therefore incomplete; if the class type is completed later on in the
translation unit, the array type becomes complete; the array type at those two points is the same type. The
declared type of an array object might be an array of unknown size and therefore be incomplete at one point
in a translation unit and complete later on; the array types at those two points (“array of unknown bound
of T” and “array of N T”) are different types. The type of a pointer to array of unknown size, or of a type
defined by a typedef declaration to be an array of unknown size, cannot be completed. [Ezample:

class X; // X is an incomplete type

extern X* xp; // xp is a pointer to an incomplete type
extern int arr[]; // the type of arr is incomplete

typedef int UNKA[]; // UNKA is an incomplete type

UNKA* arrp; // arrp is a pointer to an incomplete type

UNKA** arrpp;

void foo() {

Xpt++; // ill-formed: X is incomplete
arrp++; // ill-formed: incomplete type
arrpp++; // OK: sizeof UNKA* is known
}
struct X { int i; }; // mow X is a complete type
int arr[10]; // now the type of arr is complete
X x;
void bar() {
xp = &x; // OK; type is “pointer to X”
arrp = &arr; // ill-formed: different types
Xpt++; // OK: X is complete
arrp++; // ill-formed: UNKA can’t be completed
}

— end example]

42) The intent is that the memory model of C++ is compatible with that of ISO/IEC 9899 Programming Language C.
43) The size and layout of an instance of an incompletely-defined object type is unknown.

§3.9 71

10

11

©ISO/IEC N3090=10-0080

[Note: the rules for declarations and expressions describe in which contexts incomplete types are prohibited.
— end note]

An object type is a (possibly cv-qualified) type that is not a function type, not a reference type, and not a
void type.

Arithmetic types (3.9.1), enumeration types, pointer types, pointer to member types (3.9.2), std: :nullptr_-
t, and cv-qualified versions of these types (3.9.3) are collectively called scalar types. Scalar types, POD
classes (Clause 9), arrays of such types and cv-qualified versions of these types (3.9.3) are collectively called
POD types. Scalar types, trivially copyable class types (Clause 9), arrays of such types, and cv-qualified
versions of these types (3.9.3) are collectively called trivially copyable types. Scalar types, trivial class types
(Clause 9), arrays of such types and cv-qualified versions of these types (3.9.3) are collectively called trivial
types. Scalar types, standard-layout class types (Clause 9), arrays of such types and cv-qualified versions of
these types (3.9.3) are collectively called standard-layout types.

A type is a literal type if it is:
— a scalar type; or
— a class type (Clause 9) with
— a trivial copy constructor,

— no non-trivial move constructor,

— a trivial destructor,

— a trivial default constructor or at least one constexpr constructor other than the copy or move
constructor, and

— all non-static data members and base classes of literal types; or
— an array of literal type.

If two types T1 and T2 are the same type, then T1 and T2 are layout-compatible types. [Note: Layout-
compatible enumerations are described in 7.2. Layout-compatible standard-layout structs and standard-
layout unions are described in 9.2. — end note]|

3.9.1 Fundamental types [basic.fundamental]

Objects declared as characters (char) shall be large enough to store any member of the implementation’s ba-
sic character set. If a character from this set is stored in a character object, the integral value of that character
object is equal to the value of the single character literal form of that character. It is implementation-defined
whether a char object can hold negative values. Characters can be explicitly declared unsigned or signed.
Plain char, signed char, and unsigned char are three distinct types. A char, a signed char, and an
unsigned char occupy the same amount of storage and have the same alignment requirements (3.11); that
is, they have the same object representation. For character types, all bits of the object representation par-
ticipate in the value representation. For unsigned character types, all possible bit patterns of the value
representation represent numbers. These requirements do not hold for other types. In any particular imple-
mentation, a plain char object can take on either the same values as a signed char or an unsigned char;
which one is implementation-defined.

Y s

There are five standard signed integer types : “signed char”, “short int”, “int”, “long int”, and “long
long int”. In this list, each type provides at least as much storage as those preceding it in the list.
There may also be implementation-defined extended signed integer types. The standard and extended signed
integer types are collectively called signed integer types. Plain ints have the natural size suggested by the

§3.9.1 72

©ISO/IEC N3090=10-0080

architecture of the execution environment®*; the other signed integer types are provided to meet special
needs.

For each of the standard signed integer types, there exists a corresponding (but different) standard un-
signed integer type: “unsigned char”, “unsigned short int”, “unsigned int”, “unsigned long int”,
and “unsigned long long int”, each of which occupies the same amount of storage and has the same
alignment requirements (3.11) as the corresponding signed integer type?®; that is, each signed integer type
has the same object representation as its corresponding unsigned integer type. Likewise, for each of the
extended signed integer types there exists a corresponding extended unsigned integer type with the same
amount of storage and alignment requirements. The standard and extended unsigned integer types are
collectively called unsigned integer types. The range of non-negative values of a signed integer type is a
subrange of the corresponding unsigned integer type, and the value representation of each corresponding
signed /unsigned type shall be the same. The standard signed integer types and standard unsigned integer
types are collectively called the standard integer types, and the extended signed integer types and extended
unsigned integer types are collectively called the extended integer types.

Unsigned integers, declared unsigned, shall obey the laws of arithmetic modulo 2™ where n is the number
of bits in the value representation of that particular size of integer.46

Type wchar_t is a distinct type whose values can represent distinct codes for all members of the largest
extended character set specified among the supported locales (22.3.1). Type wchar_t shall have the same
size, signedness, and alignment requirements (3.11) as one of the other integral types, called its underlying
type. Types char16_t and char32_t denote distinct types with the same size, signedness, and alignment as
uint_least16_t and uint_least32_t, respectively, in <stdint.h>, called the underlying types.

Values of type bool are either true or false.*” [Note: there are no signed, unsigned, short, or long

bool types or values. — end note] Values of type bool participate in integral promotions (4.5).

Types bool, char, char16_t, char32_t, wchar_t, and the signed and unsigned integer types are collectively
called integral types.*® A synonym for integral type is integer type. The representations of integral types
shall define values by use of a pure binary numeration system.*® [Ezample: this International Standard
permits 2’s complement, 1’s complement and signed magnitude representations for integral types. — end
example]

There are three floating point types: float, double, and long double. The type double provides at least
as much precision as float, and the type long double provides at least as much precision as double.
The set of values of the type float is a subset of the set of values of the type double; the set of values
of the type double is a subset of the set of values of the type long double. The value representation of
floating-point types is implementation-defined. Integral and floating types are collectively called arithmetic
types. Specializations of the standard template std::numeric_limits (18.3) shall specify the maximum
and minimum values of each arithmetic type for an implementation.

The void type has an empty set of values. The void type is an incomplete type that cannot be completed. It
is used as the return type for functions that do not return a value. Any expression can be explicitly converted

44) that is, large enough to contain any value in the range of INT_MIN and INT_MAX, as defined in the header <climits>.

45) See 7.1.6.2 regarding the correspondence between types and the sequences of type-specifiers that designate them.

46) This implies that unsigned arithmetic does not overflow because a result that cannot be represented by the resulting
unsigned integer type is reduced modulo the number that is one greater than the largest value that can be represented by the
resulting unsigned integer type.

47) Using a bool value in ways described by this International Standard as “undefined,” such as by examining the value of an
uninitialized automatic variable object, might cause it to behave as if it is neither true nor false.

48) Therefore, enumerations (7.2) are not integral; however, enumerations can be promoted to integral types as specified in 4.5.

49) A positional representation for integers that uses the binary digits O and 1, in which the values represented by successive
bits are additive, begin with 1, and are multiplied by successive integral power of 2, except perhaps for the bit with the highest
position. (Adapted from the American National Dictionary for Information Processing Systems.)

§3.9.1 73

10

11

1

2

©ISO/IEC N3090=10-0080

to type cv void (5.4). An expression of type void shall be used only as an expression statement (6.2), as an
operand of a comma expression (5.18), as a second or third operand of ?: (5.16), as the operand of typeid,
or as the expression in a return statement (6.6.3) for a function with the return type void.

A value of type std: :nullptr_t is a null pointer constant (4.10). Such values participate in the pointer and
the pointer to member conversions (4.10, 4.11). sizeof (std: :nullptr_t) shall be equal to sizeof (void*).

[Note: even if the implementation defines two or more basic types to have the same value representation,
they are nevertheless different types. — end note|

3.9.2 Compound types [basic.compound]

Compound types can be constructed in the following ways:
— arrays of objects of a given type, 8.3.4;

— functions, which have parameters of given types and return void or references or objects of a given
type, 8.3.5;

— pointers to void or objects or functions (including static members of classes) of a given type, 8.3.1;
— references to objects or functions of a given type, 8.3.2. There are two types of references:

— lvalue reference

— rwvalue reference

— classes containing a sequence of objects of various types (Clause 9), a set of types, enumerations and
functions for manipulating these objects (9.3), and a set of restrictions on the access to these entities
(Clause 11);

— unions, which are classes capable of containing objects of different types at different times, 9.5;

— enumerations, which comprise a set of named constant values. Each distinct enumeration constitutes
a different enumerated type, 7.2;

— pointers to non-static °° class members, which identify members of a given type within objects of a
given class, 8.3.3.

These methods of constructing types can be applied recursively; restrictions are mentioned in 8.3.1, 8.3.4,
8.3.5, and 8.3.2.

A pointer to objects of type T is referred to as a “pointer to T.” [Ezample: a pointer to an object of type
int is referred to as “pointer to int ” and a pointer to an object of class X is called a “pointer to X.” —end
example] Except for pointers to static members, text referring to “pointers” does not apply to pointers to
members. Pointers to incomplete types are allowed although there are restrictions on what can be done with
them (3.11). A valid value of an object pointer type represents either the address of a byte in memory (1.7)
or a null pointer (4.10). If an object of type T is located at an address A, a pointer of type cv T* whose value
is the address A is said to point to that object, regardless of how the value was obtained. [Note: for instance,
the address one past the end of an array (5.7) would be considered to point to an unrelated object of the
array’s element type that might be located at that address. There are further restrictions on pointers to
objects with dynamic storage duration; see 3.7.4.3. — end note] The value representation of pointer types
is implementation-defined. Pointers to cv-qualified and cv-unqualified versions (3.9.3) of layout-compatible
types shall have the same value representation and alignment requirements (3.11). [Note: pointers to
over-aligned types (3.11) have no special representation, but their range of valid values is restricted by the
extended alignment requirement. This International Standard specifies only two ways of obtaining such a

50) Static class members are objects or functions, and pointers to them are ordinary pointers to objects or functions.

§3.9.2 74

©ISO/IEC N3090=10-0080

pointer: taking the address of a valid object with an over-aligned type, and using one of the runtime pointer
alignment functions. An implementation may provide other means of obtaining a valid pointer value for an
over-aligned type. — end note]

Objects of cv-qualified (3.9.3) or cv-unqualified type void#* (pointer to void), can be used to point to objects
of unknown type. A void* shall be able to hold any object pointer. A cv-qualified or cv-unqualified (3.9.3)
void* shall have the same representation and alignment requirements as a cv-qualified or cv-unqualified
char*.

3.9.3 CV-qualifiers [basic.type.qualifier]

A type mentioned in 3.9.1 and 3.9.2 is a cv-unqualified type. Each type which is a cv-unqualified complete
or incomplete object type or is void (3.9) has three corresponding cv-qualified versions of its type: a
const-qualified version, a wvolatile-qualified version, and a const-volatile-qualified version. The term object
type (1.8) includes the cv-qualifiers specified when the object is created. The presence of a const specifier
in a decl-specifier-seq declares an object of const-qualified object type; such object is called a const object.
The presence of a volatile specifier in a decl-specifier-seq declares an object of volatile-qualified object type;
such object is called a wvolatile object. The presence of both cv-qualifiers in a decl-specifier-seq declares an
object of const-volatile-qualified object type; such object is called a const volatile object. The cv-qualified or
cv-unqualified versions of a type are distinct types; however, they shall have the same representation and
alignment requirements (3.9).51

A compound type (3.9.2) is not cv-qualified by the cv-qualifiers (if any) of the types from which it is com-
pounded. Any cv-qualifiers applied to an array type affect the array element type, not the array type (8.3.4).

Each non-static, non-mutable, non-reference data member of a const-qualified class object is const-quali-
fied, each non-static, non-reference data member of a volatile-qualified class object is volatile-qualified and
similarly for members of a const-volatile class. See 8.3.5 and 9.3.2 regarding function types that have
cv-qualifiers.

There is a partial ordering on cv-qualifiers, so that a type can be said to be more cv-qualified than another.
Table 8 shows the relations that constitute this ordering.

Table 8 — Relations on const and volatile

no cv-qualifier < const
no cv-qualifier < volatile
no cv-qualifier < const volatile
const < const volatile
volatile < const volatile

In this International Standard, the notation cv (or cvl, cv2, etc.), used in the description of types, represents
an arbitrary set of cv-qualifiers, i.e., one of {const}, {volatile}, {const, volatile}, or the empty set.
Cv-qualifiers applied to an array type attach to the underlying element type, so the notation “cv T,” where
T is an array type, refers to an array whose elements are so-qualified. Such array types can be said to be
more (or less) cv-qualified than other types based on the cv-qualification of the underlying element types.

3.10 Lvalues and rvalues [basic.lval]

51) The same representation and alignment requirements are meant to imply interchangeability as arguments to functions,
return values from functions, and non-static data members of unions.

§ 3.10 75

©ISO/IEC N3090=10-0080

Expressions are categorized according to the taxonomy in Figure 1.

expression
glvalue rvalue
lvalue xvalue prvalue

Figure 1 — Expression category taxonomy

— An lwalue (so called, historically, because lvalues could appear on the left-hand side of an assignment
expression) designates a function or an object. [Example: If E is an expression of pointer type, then
*E is an lvalue expression referring to the object or function to which E points. As another example,
the result of calling a function whose return type is an lvalue reference is an lvalue. end example]

— An awvalue (an “eXpiring” value) also refers to an object, usually near the end of its lifetime (so that its
resources may be moved, for example). An xvalue is the result of certain kinds of expressions involving
rvalue references (8.3.2). [Ezample: The result of calling a function whose return type is an rvalue
reference is an xvalue. end example]

— A glvalue (“generalized” lvalue) is an lvalue or an xvalue.

— An rvalue (so called, historically, because rvalues could appear on the right-hand side of an assignment
expressions) is an xvalue, a temporary object (12.2) or subobject thereof, or a value that is not
associated with an object.

§ 3.10 76

10

©ISO/IEC N3090=10-0080

— A prvalue (“pure” rvalue) is an rvalue that is not an xvalue. [Ezample: The result of calling a function
whose return type is not a reference is a prvalue. The value of a literal such as 12, 7.3e5, or true is
also a prvalue. end example]

Every expression belongs to exactly one of the fundamental classifications in this taxonomy: lvalue, xvalue,
or prvalue. This property of an expression is called its value category. [Note: The discussion of each built-in
operator in Clause 5 indicates the category of the value it yields and the value categories of the operands
it expects. For example, the built-in assignment operators expect that the left operand is an lvalue and

that the right operand is a prvalue and yield an lvalue as the result. User-defined operators are functions,

and the categories of values they expect and yield are determined by their parameter and return types.
— end note

Whenever antvalie a glvalue appears in a context where an—+valie a prvalue is expected, the Ivalue glvalue
is converted to an—rvatue a prvalue; see 4.1, 4.2, and 4.3.

The discussion of reference initialization in 8.5.3 and of temporaries in 12.2 indicates the behavior of lvalues
and rvalues in other significant contexts.

Class #vatues prvalues can have cv-qualified types; non-class #vattes prvalues always have cv-unqualified
types. Rwaluwes Prvalues shall always have complete types or the void type; in addition to these types,
}vatues glvalues can also have incomplete types.

An lvalue for an object is necessary in order to modify the object except that an rvalue of class type can
also be used to modify its referent under certain circumstances. [Ezample: a member function called for an
object (9.3) can modify the object. — end example|

Functions cannot be modified, but pointers to functions can be modifiable.

A pointer to an incomplete type can be modifiable. At some point in the program when the pointed to type
is complete, the object at which the pointer points can also be modified.

The referent of a const-qualified expression shall not be modified (through that expression), except that if
it is of class type and has a mutable component, that component can be modified (7.1.6.1).

If an expression can be used to modify the object to which it refers, the expression is called modifiable. A
program that attempts to modify an object through a nonmodifiable lvalue or rvalue expression is ill-formed.

If a program attempts to access the stored value of an object through antvakie a glvalue of other than one
of the following types the behavior is undefined®?

— the dynamic type of the object,

— a cv-qualified version of the dynamic type of the object,

— a type similar (as defined in 4.4) to the dynamic type of the object,

— a type that is the signed or unsigned type corresponding to the dynamic type of the object,

— a type that is the signed or unsigned type corresponding to a cv-qualified version of the dynamic type
of the object,

— an aggregate or union type that includes one of the aforementioned types among its elements or non-
static data members (including, recursively, an element or non-static data member of a subaggregate
or contained union),

— a type that is a (possibly cv-qualified) base class type of the dynamic type of the object,

— a char or unsigned char type.

53) The intent of this list is to specify those circumstances in which an object may or may not be aliased.

§ 3.10 7

©ISO/IEC N3090=10-0080

3.11 Alignment [basic.align)]

Object types have alignment requirements (3.9.1, 3.9.2) which place restrictions on the addressses at which
an object of that type may be allocated. An aligment is an implementation-defined integer value representing
the number of bytes between successive addresses at which a given object can be allocated. An object type
imposes an alignment requirement on every object of that type; stricter alignment can be requested using
the alignment attribute (7.6.2).

A fundamental alignment is represented by an alignment less than or equal to the greatest alignment sup-
ported by the implementation in all contexts, which is equal to alignof (std::max_align_t) (18.2).

An eztended alignment is represented by an alignment greater than alignof (std::max_align_t). It is
implementation-defined whether any extended alignments are supported and the contexts in which they are
supported (7.6.2). A type having an extended alignment requirement is an over-aligned type. [Note: every
over-aligned type is or contains a class type with a non-static data member to which an extended alignment
has been applied. — end note |

Alignments are represented as values of the type std: :size_t. Valid alignments include only those values
returned by an alignof expression for the fundamental types plus an additional implementation-defined set
of values which may be empty.>*

Alignments have an order from weaker to stronger or stricter alignments. Stricter alignments have larger
alignment values. An address that satisfies an alignment requirement also satisfies any weaker valid alignment
requirement.

The alignment requirement of a complete type can be queried using an alignof expression (5.3.6). Fur-
thermore, the types char, signed char, and unsigned char shall have the weakest alignment require-
ment. [Note: this enables the character types to be used as the underlying type for an aligned memory
area (7.6.2). — end note

Comparing alignments is meaningful and provides the obvious results:
— Two alignments are equal when their numeric values are equal.
— Two alignments are different when their numeric values are not equal.
— When an alignment is larger than another it represents a stricter alignment.

[Note: the runtime pointer alignment function (20.9.13) can be used to obtain an aligned pointer within a
buffer; the aligned-storage templates in the library (20.7.6.6) can be used to obtain aligned storage. — end
note |

If a request for a specific extended alignment in a specific context is not supported by an implementation,
the program is ill-formed. Additionally, a request for runtime allocation of dynamic storage for which the
requested alignment cannot be honored shall be treated as an allocation failure.

54) It is intended that every valid alignment value be an integral power of two.

§ 3.11 78

©ISO/IEC N3090=10-0080

4 Standard conversions [conv]

Standard conversions are implicit conversions defined for built-in types. Clause 4 enumerates the full set
of such conversions. A standard conversion sequence is a sequence of standard conversions in the following
order:

— Zero or one conversion from the following set: Ivalue-to-rvalue conversion, array-to-pointer conversion,
and function-to-pointer conversion.

— Zero or one conversion from the following set: integral promotions, floating point promotion, integral
conversions, floating point conversions, floating-integral conversions, pointer conversions, pointer to
member conversions, and boolean conversions.

— Zero or one qualification conversion.

[Note: a standard conversion sequence can be empty, i.e., it can consist of no conversions. — end note|
A standard conversion sequence will be applied to an expression if necessary to convert it to a required
destination type.

[Note: expressions with a given type will be implicitly converted to other types in several contexts:

— When used as operands of operators. The operator’s requirements for its operands dictate the desti-
nation type (Clause 5).

— When used in the condition of an if statement or iteration statement (6.4, 6.5). The destination type
is bool.

— When used in the expression of a switch statement. The destination type is integral (6.4).

— When used as the source expression for an initialization (which includes use as an argument in a
function call and use as the expression in a return statement). The type of the entity being initialized
is (generally) the destination type. See 8.5, 8.5.3.

— end note]

An expression e can be implicitly converted to a type T if and only if the declaration T t=e; is well-formed,
for some invented temporary variable t (8.5). Certain language constructs require that an expression be
converted to a Boolean value. An expression e appearing in such a context is said to be contextually
converted to bool and is well-formed if and only if the declaration bool t(e); is well-formed, for some
invented temporary variable t (8.5). The effect of either implicit conversion is the same as performing the
declaration and initialization and then using the temporary variable as the result of the conversion. The
result is an lvalue if T is an lvalue reference type or an rvalue reference to function type (8.3.2), an xvalue
if T is an rvalue reference to object type, and an—+value a prvalue otherwise. The expression e is used as an
Ivatae a glvalue if and only if the initialization uses it as antvalie a glvalue.

[Note: For user-defined types, user-defined conversions are considered as well; see 12.3. In general, an
implicit conversion sequence (13.3.3.1) consists of a standard conversion sequence followed by a user-defined
conversion followed by another standard conversion sequence. — end note |

[Note: There are some contexts where certain conversions are suppressed. For example, the lvalue-to-
rvalue conversion is not done on the operand of the unary & operator. Specific exceptions are given in the
descriptions of those operators and contexts. — end note]

79

©ISO/IEC N3090=10-0080

4.1 Lvalue-to-rvalue conversion [conv.lval]

Andvalae A glvalue (3.10) of a non-function, non-array type T can be converted to an-svalae a prvalue.®® If
T is an incomplete type, a program that necessitates this conversion is ill-formed. If the object to which the
Ivalue glvalue refers is not an object of type T and is not an object of a type derived from T, or if the object
is uninitialized, a program that necessitates this conversion has undefined behavior. If T is a non-class type,

the type of the #valie prvalue is the cv-unqualified version of T. Otherwise, the type of the #value prvalue is
T.56

When an lvalue-to-rvalue conversion occurs in an unevaluated operand or a subexpression thereof (Clause 5)
the value contained in the referenced object is not accessed. Otherwise, if the valae glvalue has a class type,
the conversion copy-initializes a temporary of type T from the }valae glvalue and the result of the conversion
is an—+valie a prvalue for the temporary. Otherwise, if the kvalue glvalue has (possibly cv-qualified) type
std: :nullptr_t, the #value prvalue result is a null pointer constant (4.10). Otherwise, the value contained
in the object indicated by the lvalue glvalue is the rvalue prvalue result.

[Note: See also 3.10. — end note]

4.2 Array-to-pointer conversion [conv.array]

An lvalue or rvalue of type “array of N T” or “array of unknown bound of T” can be converted to an—+value
a prvalue of type “pointer to T”. The result is a pointer to the first element of the array.

4.3 Function-to-pointer conversion [conv.func]

An lvalue of function type T can be converted to an—+rvalie a prvalue of type “pointer to T.” The result is a
pointer to the function.®”

[Note: See 13.4 for additional rules for the case where the function is overloaded. — end note]

4.4 Qualification conversions [conv.qual]

An—+vatae A prvalue of type “pointer to cvl T” can be converted to an—+valie a prvalue of type “pointer to
cv2 T” if “cv2 T” is more cv-qualified than “cvl T”.

An-rvalie A prvalue of type “pointer to member of X of type cvl T” can be converted to an+valie a prvalue
of type “pointer to member of X of type cv2 T” if “cv2 T” is more cv-qualified than “cv! T”.

[Note: Function types (including those used in pointer to member function types) are never cv-qualified (8.3.5).
— end note]

A conversion can add cv-qualifiers at levels other than the first in multi-level pointers, subject to the following
rules:%®

Two pointer types T1 and T2 are similar if there exists a type T and integer n > 0 such that:
T11is cvy o pointer to cvy; pointer to --- cvy -1 pointer to cvy g, T
and

T2 is cva o pointer to cvg ;1 pointer to --- cvg ,—1 pointer to cvg, T

55) For historical reasons, this conversion is called the “Ivalue-to-rvalue” conversion, even though that name does not accurately
reflect the taxonomy of expressions described in 3.10.

56) In C++ class #values prvalues can have cv-qualified types (because they are objects). This differs from ISO C, in which
non-lvalues never have cv-qualified types.

57) This conversion never applies to non-static member functions because an lvalue that refers to a non-static member function
cannot be obtained.

58) These rules ensure that const-safety is preserved by the conversion.

§ 4.4 80

©ISO/IEC N3090=10-0080

where each cv; ; is const, volatile, const volatile, or nothing. The n-tuple of cv-qualifiers after the
first in a pointer type, e.g., cvi,1, cv1,2, -+, cV1,, in the pointer type 711, is called the cv-qualification
signature of the pointer type. An expression of type T'1 can be converted to type T2 if and only if the
following conditions are satisfied:

— the pointer types are similar.
— for every j > 0, if const is in cvy ; then const is in cvs j, and similarly for volatile.
— if the cv1; and cvy ; are different, then const is in every cva) for 0 < k < j.

[Note: if a program could assign a pointer of type T** to a pointer of type const T#* (that is, if line #1
below were allowed), a program could inadvertently modify a const object (as it is done on line #2). For
example,

int main() {

const char ¢ = ’c’;

char* pc;

const char** pcc = &pc; // #1: not allowed

*pcc = &c;

*pc = ’C’; // #2: modifies a const object
}

— end note

A multi-level pointer to member type, or a multi-level mized pointer and pointer to member type has the
form:

C’U()PO to C’U1P1 to - .- Cvn—lpn—l to CUp, T
where P; is either a pointer or pointer to member and where T is not a pointer type or pointer to member
type.
Two multi-level pointer to member types or two multi-level mixed pointer and pointer to member types T1
and T2 are similar if there exists a type T and integer n > 0 such that:

T1is cvi,0Fo to cv1 1Py to -+ cvip_1Py_q1 to corp T
and

T2 is C'U270P0 to C’U271P1 to - .- cvg,n_an_l to CU2.n T

For similar multi-level pointer to member types and similar multi-level mixed pointer and pointer to member
types, the rules for adding cv-qualifiers are the same as those used for similar pointer types.

4.5 Integral promotions [conv.prom]

An—rvalae A prvalue of an integer type other than bool, char16_t, char32_t, or wchar_t whose integer
conversion rank (4.13) is less than the rank of int can be converted to am—value a prvalue of type int if
int can represent all the values of the source type; otherwise, the source #valie prvalue can be converted to
anrvalte a prvalue of type unsigned int.

An-rvalue A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted to an+value a prvalue
of the first of the following types that can represent all the values of its underlying type: int, unsigned
int, long int, unsigned long int, long long int, or unsigned long long int. If none of the types in
that list can represent all the values of its underlying type, an+value a prvalue of type char16_t, char32_t,
or wchar_t can be converted to asrvalue a prvalue of its underlying type.

§ 4.5 81

©ISO/IEC N3090=10-0080

An—+valie A prvalue of an unscoped enumeration type whose underlying type is not fixed (7.2) can be
converted to an—+value a prvalue of the first of the following types that can represent all the values of the
enumeration (i.e., the values in the range b,in t0 bypnae as described in 7.2): int, unsigned int, long int,
unsigned long int, long long int, or unsigned long long int. If none of the types in that list can
represent all the values of the enumeration, an—+valae a prvalue of an unscoped enumeration type can be
converted to an—+value a prvalue of the extended integer type with lowest integer conversion rank (4.13)
greater than the rank of long long in which all the values of the enumeration can be represented. If there
are two such extended types, the signed one is chosen.

An-rvatae A prvalue of an unscoped enumeration type whose underlying type is fixed (7.2) can be converted to
af-rvakie a prvalue of its underlying type. Moreover, if integral promotion can be applied to its underlying
type, an—rvalie a prvalue of an unscoped enumeration type whose underlying type is fixed can also be
converted to an—rvalue a prvalue of the promoted underlying type.

An-rvalae A prvalue for an integral bit-field (9.6) can be converted to an+value a prvalue of type int if int
can represent all the values of the bit-field; otherwise, it can be converted to unsigned int if unsigned int
can represent all the values of the bit-field. If the bit-field is larger yet, no integral promotion applies to it.
If the bit-field has an enumerated type, it is treated as any other value of that type for promotion purposes.

Anrvalae A prvalue of type bool can be converted to an+vatie a prvalue of type int, with false becoming
zero and true becoming one.

These conversions are called integral promotions.

4.6 Floating point promotion [conv.fpprom]

Anrvalae A prvalue of type float can be converted to an—+value a prvalue of type double. The value is
unchanged.

This conversion is called floating point promotion.

4.7 Integral conversions [conv.integral]

An—rvate A prvalue of an integer type can be converted to an—+vakie a prvalue of another integer type. An
rvatte A prvalue of an unscoped enumeration type can be converted to an—rvalue a prvalue of an integer

type.

If the destination type is unsigned, the resulting value is the least unsigned integer congruent to the source
integer (modulo 2™ where n is the number of bits used to represent the unsigned type). [Note: In a two’s
complement representation, this conversion is conceptual and there is no change in the bit pattern (if there
is no truncation). — end note]

If the destination type is signed, the value is unchanged if it can be represented in the destination type (and
bit-field width); otherwise, the value is implementation-defined.

If the destination type is bool, see 4.12. If the source type is bool, the value false is converted to zero and
the value true is converted to one.

The conversions allowed as integral promotions are excluded from the set of integral conversions.

4.8 Floating point conversions [conv.double]

An-rvalae A prvalue of floating point type can be converted to an+valie a prvalue of another floating point
type. If the source value can be exactly represented in the destination type, the result of the conversion
is that exact representation. If the source value is between two adjacent destination values, the result of

the conversion is an implementation-defined choice of either of those values. Otherwise, the behavior is
undefined.

§ 4.8 82

©ISO/IEC N3090=10-0080

The conversions allowed as floating point promotions are excluded from the set of floating point conversions.

4.9 Floating-integral conversions [conv.fpint]

Anevalae A prvalue of a floating point type can be converted to an+valie a prvalue of an integer type. The
conversion truncates; that is, the fractional part is discarded. The behavior is undefined if the truncated
value cannot be represented in the destination type. [Note: If the destination type is bool, see 4.12. — end
note]

An-rvalae A prvalue of an integer type or of an unscoped enumeration type can be converted to an—+value a
prvalue of a floating point type. The result is exact if possible. If the value being converted is in the range of
values that can be represented but the value cannot be represented exactly, it is an implementation-defined
choice of either the next lower or higher representable value. [Note: loss of precision occurs if the integral
value cannot be represented exactly as a value of the floating type. — end note] If the value being converted
is outside the range of values that can be represented, the behavior is undefined. If the source type is bool,
the value false is converted to zero and the value true is converted to one.

4.10 Pointer conversions [conv.ptr]

A null pointer constant is an integral constant expression (5.19) #valae prvalue of integer type that evaluates
to zero or an—rvalue a prvalue of type std::nullptr_t. A null pointer constant can be converted to a
pointer type; the result is the null pointer value of that type and is distinguishable from every other value of
pointer to object or pointer to function type. Two null pointer values of the same type shall compare equal.
The conversion of a null pointer constant to a pointer to cv-qualified type is a single conversion, and not
the sequence of a pointer conversion followed by a qualification conversion (4.4). A null pointer constant of
integral type can be converted to anrvalie a prvalue of type std: :nullptr_t. [Note: The resulting zvalue
prvalue is not a null pointer value. — end note]

An-—rvalue A prvalue of type “pointer to cv T,” where T is an object type, can be converted to anrvalae a
prvalue of type “pointer to cv void”. The result of converting a “pointer to cv T” to a “pointer to cv void”
points to the start of the storage location where the object of type T resides, as if the object is a most derived
object (1.8) of type T (that is, not a base class subobject). The null pointer value is converted to the null
pointer value of the destination type.

An—rvatae A prvalue of type “pointer to cv D”, where D is a class type, can be converted to an—+value a
prvalue of type “pointer to cv B”, where B is a base class (Clause 10) of D. If B is an inaccessible (Clause 11)
or ambiguous (10.2) base class of D, a program that necessitates this conversion is ill-formed. The result of
the conversion is a pointer to the base class subobject of the derived class object. The null pointer value is

converted to the null pointer value of the destination type.

4.11 Pointer to member conversions [conv.mem]

A null pointer constant (4.10) can be converted to a pointer to member type; the result is the null member
pointer value of that type and is distinguishable from any pointer to member not created from a null pointer
constant. Two null member pointer values of the same type shall compare equal. The conversion of a null
pointer constant to a pointer to member of cv-qualified type is a single conversion, and not the sequence of
a pointer to member conversion followed by a qualification conversion (4.4).

Anrvalue A prvalue of type “pointer to member of B of type cv T”, where B is a class type, can be converted
to anrvaltue a prvalue of type “pointer to member of D of type cv T”, where D is a derived class (Clause 10) of
B. If B is an inaccessible (Clause 11), ambiguous (10.2), or virtual (10.1) base class of D, or a base class of a
virtual base class of D, a program that necessitates this conversion is ill-formed. The result of the conversion
refers to the same member as the pointer to member before the conversion took place, but it refers to the
base class member as if it were a member of the derived class. The result refers to the member in D’s instance

§4.11 83

1

1

©ISO/IEC N3090=10-0080

of B. Since the result has type “pointer to member of D of type cv T”, it can be dereferenced with a D object.
The result is the same as if the pointer to member of B were dereferenced with the B subobject of D. The
null member pointer value is converted to the null member pointer value of the destination type.>®

4.12 Boolean conversions [conv.bool]

An—rvalae A prvalue of arithmetic, unscoped enumeration, pointer, or pointer to member type can be
converted to an-rvalae a prvalue of type bool. A zero value, null pointer value, or null member pointer value
is converted to false; any other value is converted to true. An-—+valie A prvalue of type std: :nullptr_t
can be converted to an—+valie a prvalue of type bool; the resulting value is false.

4.13 Integer conversion rank [conv.rank]

Every integer type has an integer conversion rank defined as follows:

— No two signed integer types other than char and signed char (if char is signed) shall have the same
rank, even if they have the same representation.

— The rank of a signed integer type shall be greater than the rank of any signed integer type with a
smaller size.

— The rank of long long int shall be greater than the rank of long int, which shall be greater than
the rank of int, which shall be greater than the rank of short int, which shall be greater than the
rank of signed char.

— The rank of any unsigned integer type shall equal the rank of the corresponding signed integer type.

— The rank of any standard integer type shall be greater than the rank of any extended integer type
with the same size.

— The rank of char shall equal the rank of signed char and unsigned char.
— The rank of bool shall be less than the rank of all other standard integer types.
— The ranks of char16_t, char32_t, and wchar_t shall equal the ranks of their underlying types (3.9.1).

— The rank of any extended signed integer type relative to another extended signed integer type with
the same size is implementation-defined, but still subject to the other rules for determining the integer
conversion rank.

— For all integer types T1, T2, and T3, if T1 has greater rank than T2 and T2 has greater rank than T3,
then T1 shall have greater rank than T3.

[Note: The integer conversion rank is used in the definition of the integral promotions (4.5) and the usual
arithmetic conversions (5). — end note]

59) The rule for conversion of pointers to members (from pointer to member of base to pointer to member of derived) appears
inverted compared to the rule for pointers to objects (from pointer to derived to pointer to base) (4.10, Clause 10). This
inversion is necessary to ensure type safety. Note that a pointer to member is not a pointer to object or a pointer to function
and the rules for conversions of such pointers do not apply to pointers to members. In particular, a pointer to member cannot
be converted to a voidx.

§4.13 84

©ISO/IEC N3090=10-0080

5 Expressions [expr]

[Note: Clause 5 defines the syntax, order of evaluation, and meaning of expressions.’ An expression is a
sequence of operators and operands that specifies a computation. An expression can result in a value and
can cause side effects. — end note]

[Note: Operators can be overloaded, that is, given meaning when applied to expressions of class type (Clause 9)
or enumeration type (7.2). Uses of overloaded operators are transformed into function calls as described
in 13.5. Overloaded operators obey the rules for syntax specified in Clause 5, but the requirements of operand
type, fvalue value category, and evaluation order are replaced by the rules for function call. Relations be-
tween operators, such as ++a meaning a+=1, are not guaranteed for overloaded operators (13.5), and are not
guaranteed for operands of type bool. — end note]

Clause 5 defines the effects of operators when applied to types for which they have not been overloaded.
Operator overloading shall not modify the rules for the built-in operators, that is, for operators applied to
types for which they are defined by this Standard. However, these built-in operators participate in overload
resolution, and as part of that process user-defined conversions will be considered where necessary to convert
the operands to types appropriate for the built-in operator. If a built-in operator is selected, such conversions
will be applied to the operands before the operation is considered further according to the rules in Clause 5;
see 13.3.1.2, 13.6.

If during the evaluation of an expression, the result is not mathematically defined or not in the range of
representable values for its type, the behavior is undefined. [Note: most existing implementations of C++
ignore integer overflows. Treatment of division by zero, forming a remainder using a zero divisor, and all
floating point exceptions vary among machines, and is usually adjustable by a library function. — end note

If an expression initially has the type “}value reference to T” (8.3.2, 8.5.3), the type is adjusted to T prior to
any further analysis;. +he The expression designates the object or function denoted by the wahie reference,
and the expression is an lvalue or an xvalue, depending on the expression.

1 xvalue if it is:

H-is-antvalues [Note: An expression is ar

— the result of calling a function, whether implicitly or explicitly, whose return type is an rvalue reference
to object type,

— a cast to an rvalue reference to object type,

— a class member access expression designating a non-static data member in which the object expression

is an xvalue, or

— a .* pointer-to-member expression in which the first operand is an xvalue and the second operand is
a pointer to data member.

In general, the effect of this rule is that named rvalue references are treated as lvalues and unnamed rvalue
references to objects are treated as rvalues: xvalues; rvalue references to functions are treated as lvalues
whether named or not. — end note]

60) The precedence of operators is not directly specified, but it can be derived from the syntax.

85

10

©ISO/IEC N3090=10-0080

[Example:

struct A {
int m;
};
A&& operator+(A, A);
Ak& £0);

A a;
A%& ar = a static_cast<A&&>(a);

The expressions £ (), £ () .m, static cast<A&&>(a), and a + a are rvalues xvalues-oftypeA. The expres-
sion ar is an lvalue-ef-typet. — end example]

An expression designating an object is called an object-expression.

In some contexts, unevaluated operands appear (5.2.8, 5.3.3, 5.3.7, 7.1.6.2). An unevaluated operand is not
evaluated. [Note: In an unevaluated operand, a non-static class member may be named (5.1) and naming
of objects or functions does not, by itself, require that a definition be provided (3.2). — end note]

Whenever an—tvalae a glvalue expression appears as an operand of an operator that expects an—rvalue
a prvalue for that operand, the lvalue-to-rvalue (4.1), array-to-pointer (4.2), or function-to-pointer (4.3)
standard conversions are applied to convert the expression to an—evalie a prvalue. [Note: because cv-
qualifiers are removed from the type of an expression of non-class type when the expression is converted to
an—+valie a prvalue, an lvalue expression of type const int can, for example, be used where an—+valie a
prvalue expression of type int is required. — end note|

Many binary operators that expect operands of arithmetic or enumeration type cause conversions and yield
result types in a similar way. The purpose is to yield a common type, which is also the type of the result.
This pattern is called the usual arithmetic conversions, which are defined as follows:

— If either operand is of scoped enumeration type (7.2), no conversions are performed; if the other
operand does not have the same type, the expression is ill-formed.

— If either operand is of type long double, the other shall be converted to long double.
— Otherwise, if either operand is double, the other shall be converted to double.
— Otherwise, if either operand is float, the other shall be converted to float.

— Otherwise, the integral promotions (4.5) shall be performed on both operands.’! Then the following
rules shall be applied to the promoted operands:

— If both operands have the same type, no further conversion is needed.

— Otherwise, if both operands have signed integer types or both have unsigned integer types, the
operand with the type of lesser integer conversion rank shall be converted to the type of the
operand with greater rank.

— Otherwise, if the operand that has unsigned integer type has rank greater than or equal to the
rank of the type of the other operand, the operand with signed integer type shall be converted to
the type of the operand with unsigned integer type.

— Otherwise, if the type of the operand with signed integer type can represent all of the values of
the type of the operand with unsigned integer type, the operand with unsigned integer type shall
be converted to the type of the operand with signed integer type.

61) As a consequence, operands of type bool, char16_t, char32_t, wchar_t, or an enumerated type are converted to some
integral type.

86

11

1

©ISO/IEC N3090=10-0080

— Otherwise, both operands shall be converted to the unsigned integer type corresponding to the
type of the operand with signed integer type.

The values of the floating operands and the results of floating expressions may be represented in greater
precision and range than that required by the type; the types are not changed thereby.%2

5.1 Primary expressions [expr.prim)]

5.1.1 General [expr.prim.general]

PrIMary-expression:
literal
this
(expression)
id-expression
lambda-expression

id-expression:
unqualified-id
qualified-id

unqualified-id:
identifier
operator-function-id
conversion-function-id
literal-operator-id
~ class-name
~ decltype-specifier
template-id

A literal is a primary expression. Its type depends on its form (2.14). A string literal is an lvalue; all other
literals are #valkies prvalues.

The keyword this names a pointer to the object for which a non-static member function (9.3.2) is invoked
or a non-static data member’s initializer (9.2) is evaluated. The keyword this shall be used only inside
the body of a non-static elass member function-bedy (9.3) of the nearest enclosing class or in a brace-or-
equal-initializer for a non-static data member (9.2). The type of the expression is a pointer to the class of
the function or non-static data member, possibly with cv-qualifiers on the class type. The expression is a#
rvalie a prvalue.

[Ezample:
class Outer {
int alsizeof (*this)]; // error: not inside a member function
unsigned int sz = sizeof (*this); // OK: in brace-or-equal-initializer
void £() {
int bl[sizeof (*this)]; // OK

struct Inner {
int c[sizeof (*this)]; // error: not inside a member function of Inner

62) The cast and assignment operators must still perform their specific conversions as described in 5.4, 5.2.9 and 5.17.

§5.1.1 87

©ISO/IEC N3090=10-0080

end ezample |

The operator :: followed by an identifier, a qualified-id, an operator-function-id, or a literal-operator-id is a
primary-expression. Its type is specified by the declaration of the identifier, qualified-id, operator-function-
id, or literal-operator-id. The result is the entity denoted by the identifier, qualified-id, operator-function-id,
or literal-operator-id. The result is an lvalue if the entity is a function or variable and a prvalue otherwise.
The identifier, qualified-id, operator-function-id, or literal-operator-id shall have global namespace scope or
be Vlslble in global scope because of a using-directive (7.3.4). [Note: the use of :: allows a-typean-obieet;
: ‘ space an entity declared in the global namespace to be referred to even
if its }éeﬂmﬁef name has been hidden (3.4.3). — end note]

A parenthesized expression is a primary expression whose type and value are identical to those of the
enclosed expression. The presence of parentheses does not affect whether the expression is an lvalue. The
parenthesized expression can be used in exactly the same contexts as those where the enclosed expression
can be used, and with the same meaning, except as otherwise indicated.

An id-expression is a restricted form of a primary-ezpression. [Note: an id-expression can appear after .
and -> operators (5.2.5). — end note]

An identifier is an id-expression provided it has been suitably declared (Clause 7). [Note: for operator-
function-ids, see 13.5; for conversion-function-ids, see 12.3.2; for literal-operator-ids, see 13.5.8; for template-
ids, see 14.3. A class-name or decltype-specifier prefixed by ~ denotes a destructor; see 12.4. Within the
definition of a non-static member function, an identifier that names a non-static member is transformed to a
class member access expression (9.3.1). — end note] The type of the expression is the type of the identifier.
The result is the entity denoted by the identifier. The result is an lvalue if the entity is a function, variable,
or data member and a prvalue otherwise.

qualified-id:
tiopt nested-name-specifier template,,; unqualified-id
11 identifier
11 operator-function-id
:: literal-operator-id
11 template-id

nested-name-specifier:
type-name ::
namespace-name : :
decltype-specifier : :
nested-name-specifier identifier : :
nested-name-specifier template,,; simple-template-id : :

A nested-name-specifier that names denotes a class, optionally followed by the keyword template (14.3),
and then followed by the name of a member of either that class (9.2) or one of its base classes (Clause 10), is
a qualified-id; 3.4.3.1 describes name lookup for class members that appear in qualified-ids. The result is the
member. The type of the result is the type of the member. The result is an lvalue if the member is a static
member function or a data member and a prvalue otherwise. [Note: a class member can be referred to using
a qualified-id at any point in its potential scope (3.3.7). — end note] Where class-name :: class-name is
used, and the two class-names refer to the same class, this notation names the constructor (12.1). Where
class-name : :~ class-name is used, the two class-names shall refer to the same class; this notation names
the destructor (12.4). The form ~ decltype-specifier also denotes the destructor, but it shall not be used as
the unqualified-id in a qualified-id. [Note: a typedef-name that names a class is a class-name (9.1). —end
note]

A nested-name-specifier that names a namespace (7.3), followed by the name of a member of that namespace
(or the name of a member of a namespace made visible by a using-directive) is a qualified-id; 3.4.3.2 describes
name lookup for namespace members that appear in qualified-ids. The result is the member. The type of

§5.1.1 88

10

1

©ISO/IEC N3090=10-0080

the result is the type of the member. The result is an lvalue if the member is a function or a variable and a
prvalue otherwise.

A nested-name-specifier that nesses denotes an enumeration (7.2), followed by the name of an enumerator
of that enumeration, is a qualified-id that refers to the enumerator. The result is the enumerator. The type
of the result is the type of the enumeration. The result is an—+valie a prvalue.

In a qualified-id, if the id-expression is a conversion-function-id, its conversion-type-id shall denote the same
type in both the context in which the entire qualified-id occurs and in the context of the class denoted by
the nested-name-specifier.

An id-expression that denotes a non-static data member or non-static member function of a class can only
be used:

— as part of a class member access (5.2.5) in which the object-expression refers to the member’s class or
a class derived from that class, or

— to form a pointer to member (5.3.1), or

— in the body of a non-static member function of that class or of a class derived from that class (9.3.1),
or

— in a mem-initializer for a constructor for that class or for a class derived from that class (12.6.2), or

— in a brace-or-equal-initializer for a non-static data member of that class or of a class derived from that
class (12.6.2), or

— if that id-expression denotes a non-static data member and it appears in an unevaluated operand.

[Example:
struct S {
int m;
3
int i = sizeof(S::m); // OK
int j = sizeof(S::m + 42); // OK

— end example]

5.1.2 Lambda expressions [expr.prim.lambda]

Lambda expressions provide a concise way to create simple function objects. [Ezample:

#include <algorithm>
#include <cmath>
void abssort(float *x, unsigned N) {
std::sort(x, x + N,
[1(float a, float b) {
return std::abs(a) < std::abs(b);
b;
}

— end example]

lambda-expression:
lambda-introducer lambda-declaratoroy,; compound-statement

lambda-introducer:
[lambda-captureop: 1

§5.1.2 89

2

©ISO/IEC N3090=10-0080

lambda-capture:

capture-default

capture-list

capture-default , capture-list
capture-default:

&

capture-list:
capture . .. op
capture-list , capture . ..oy
capture:
identifier
& identifier
this
lambda-declarator:
(parameter-declaration-clause) attribute-specifierop: mutable,p:
exception-specificationp: trailing-return-typeopt

The evaluation of a lambda-expression results in an—+value a prvalue temporary (12.2). This temporary
is called the closure object. A lambda-expression shall not appear in an unevaluated operand (Clause 5).
[Note: a closure object behaves like a function object (20.8). — end note]

The type of the lambda-expression (which is also the type of the closure object) is a unique, unnamed non-
union class type — called the closure type — whose properties are described below. This class type is not an
aggregate (8.5.1). The closure type is declared in the smallest block scope, class scope, or namespace scope
that contains the corresponding lambda-expression. [Note: this determines the set of namespaces and classes
associated with the closure type (3.4.2). The parameter types of a lambda-declarator do not affect these
associated namespaces and classes. — end note] An implementation may define the closure type differently
from what is described below provided this does not alter the observable behavior of the program other than
by changing:

— the size and /or alignment of the closure type,
— whether the closure type is trivially copyable (Clause 9),
— whether the closure type is a standard-layout class (Clause 9), or
— whether the closure type is a POD class (Clause 9).
An implementation shall not add members of rvalue reference type to the closure type.

If a lambda-expression does not include a lambda-declarator, it is as if the lambda-declarator were (). If
a lambda-expression does not include a trailing-return-type, it is as if the trailing-return-type denotes the
following type:

— if the compound-statement if of the form
{ return attribute-specifierop; expression ;

the type of the returned expression after lvalue-to-rvalue conversion (4.1), array-to-pointer conver-
sion (4.2), and function-to-pointer conversion (4.3);

— otherwise, void.

[Example:
auto x1 = [J(int i){ return i; }; // OK: return type is int
auto x2 = [1{ return { 1, 2 }; }; // error: the return type is void (a

// braced-init-list is not an expression)

§5.1.2 90

©ISO/IEC N3090=10-0080

— end example]

The closure type for a lambda-expression has a public inline function call operator (13.5.4) whose param-
eters and return type are described by the lambda-expression’s parameter-declaration-clause and trailing-
return-type respectively. This function call operator is declared const (9.3.1) if and only if the lambda-
expression’s parameter-declaration-clause is not followed by mutable. It is niet neither virtual nor declared
volatile. Default arguments (8.3.6) shall not be specified in the parameter-declaration-clause of a lambda-
declarator. Any exception-specification specified on a lambda-expression applies to the corresponding func-
tion call operator. Any attribute-specifiers appearing immediately after the lambda-expression’s parameter-
declaration-clause appertain to the type of the corresponding function call operator. [Note: names referenced
in the lambda-declarator are looked up in the context in which the lambda-ezpression appears. — end note|

The closure type for a lambda-expression with no lambda-capture has a public non-virtual non-explicit const
conversion function to pointer to function having the same parameter and return types as the closure type’s

function call operator. The value returned by this conversion function shall be the address of a function

that, when invoked, has the same effect as invoking the closure type’s function call operator.

The lambda-expression’s compound-statement yields the function-body (8.4) of the function call operator,
but for purposes of name lookup (3.4), determining the type and value of this (9.3.2) and transforming id-
expressions referring to non-static class members into class member access expressions using (*this) (9.3.1),
the compound-statement is considered in the context of the lambda-expression. | Example:

struct S1 {
int x, y;
int operator() (int);
void £() {
[=1O->int {
return operator() (this->x + y); // equivalent to S1::operator() (this->x + (*this).y)
// this has type S1*
1

};

— end example]

If a lambda-capture includes a capture-default that is &, the identifiers in the lambda-capture shall not be
preceded by &. If a lambda-capture includes a capture-default that is =, the lambda-capture shall not contain
this and each identifier it contains shall be preceded by &. An identifier or this shall not appear more than
once in a lambda-capture. | Example:

struct S2 { void f(int i); };
void S2::f(int i) {
[&, 11{ }; // OK
[&, &i1{ }; // error: i preceded by & when & is the default
[=, thisl{ }; // error: this when = is the default
[i, i1{ }; // error: i repeated
}

— end example|

A lambda-expression whose smallest enclosing scope is a block scope (3.3.3) is a local lambda expression; any
other lambda-expression shall not have a capture-list in its lambda-introducer. The reaching scope of a local

§5.1.2 91

10

11

12

©ISO/IEC N3090=10-0080

lambda expression is the set of enclosing scopes up to and including the innermost enclosing function and
its parameters. [Note: this reaching scope includes any intervening lambda-expressions. — end note]

The identifiers in a capture-list are looked up using the usual rules for unqualified name lookup (3.4.1);
each such lookup shall find a variable erreferenece with automatic storage duration declared in the reaching
scope of the local lambda expression. An entity (i.e. a variable;a—+eferenee; or this) is said to be explicitly
captured if it appears in the lambda-expression’s capture-list.

If a lambda-expression has an associated capture-default and its compound-statement uses (3.2) this or a
variable er—+reference with automatic storage duration and the used entity is not explicitly captured, then
the used entity is said to be implicitly captured; such entities shall be declared within the reaching scope of
the lambda expression. [Note: the implicit capture of an entity by a nested lambda-expression can cause its
implicit capture by the containing lambda-expression (see below). Implicit uses of this can result in implicit
capture. — end note|

An entity is captured if it is captured explicitly or implicitly. An entity captured by a lambda-expression is
used (3.2) in the scope containing the lambda-expression. If this is captured by a local lambda expression,
its nearest enclosing function shall be a non-static member function. If a lambda-expression uses (3.2)
this or a variable erreferenee with automatic storage duration from its reaching scope, that entity shall
be captured by the lambda-expression. If a lambda-expression captures an entity and that entity is not
defined or captured in the immediately enclosing lambda expression or function, the program is ill-formed.
[Ezample:

void f1(int i) {
int const N = 20;
auto m1 = [=]{
int const M = 30;
auto m2 = [i]{

int x[N][M]; // OK: N and M are not "used"
x[0J[0] = 1i; // OK: i is explicitly captured by m2
// and implicitly captured by ml
};
I8
struct s1 {
int f;

int work(int n) {
int m = n*n;

int j = 40;
auto m3 = [this,m] {
auto mé4 = [&,j] { // error: j not captured by m3
int x = n; // error: n implicitly captured by m4
// but not captured by m3
X += m; // OK: m implicitly captured by m4
// and explicitly captured by m3
X += i; // error: i is outside of the reaching scope
X += f; // OK: this captured implicitly by m4
// and explicitly by m3
};
};
}
};

— end example]

§5.1.2 92

13

14

15

16

17

18

©ISO/IEC N3090=10-0080

A lambda-expression appearing in a default argument shall not implicitly or explicitly capture any entity.
[Example:

void £20) {
int i = 1;
void gl(int = ([i]{ return i; }) (); // ill-formed
void g2(int = ([i]l{ return 0; })()); // ill-formed
void g3(int = ([=]{ return i; })O); // ill-formed
void g4(int = ([=]{ return 0; })()); // OK
void gb(int = ([]{ return sizeof i; })()); // OK

}

— end example|

An entity is captured by copy if it is implicitly captured and the capture-default is = or if it is explicitly
captured with a capture that does not include an &. For each entity captured by copy, an unnamed non-
static data member is declared in the closure type. The declaration order of these members is unspecified.
The type of such a data member is the type of the corresponding captured entity if the entity is not a
reference to an object, or the referenced type otherwise. [Note: if the captured entity is a reference to a
function, the corresponding data member is also a reference to a function. — end note

An entity is captured by reference if it is implicitly or explicitly captured but not captured by copy. It is
unspecified whether additional unnamed non-static data members are declared in the closure type for entities
captured by reference.

If a lambda-expression m1 captures an entity and that entity is captured by an immediately enclosing lambda-
expression m2, then m1’s capture is transformed as follows:

— if m2 captures the entity by copy, m1 captures the corresponding non-static data member of m2’s closure
type;
— if m2 captures the entity by reference, m1 captures the same entity captured by m2.

[Example: the nested lambda expressions and invocations below will output 123234.

int a=1, b=1, ¢c = 1;
auto m1 = [a, &b, &c]() mutable {
auto m2 = [a, b, &c]() mutable {
std::cout << a << b << c;
a=4; b=4; c =4
};
a=3; b=3; c=3;
m2Q) ;
};
a=2; b=2; c=2;
miQ);
std::cout << a << b << c;

— end example]

Every id-expression that is a use (3.2) of an entity captured by copy is transformed into an access to
the corresponding unnamed data member of the closure type. If this is captured, each use of this is
transformed into an access to the corresponding unnamed data member of the closure type, cast (5.4) to the
type of this. [Note: the cast ensures that the transformed expression is an—+valae a prvalue. — end note]

Every occurrence of decltype((x)) where x is a possibly parenthesized id-ezpression that names an entity
of automatic storage duration is treated as if x were transformed into an access to a corresponding data
member of the closure type that would have been declared if x were a use of the denoted entity. [Ezxample:

§5.1.2 93

19

20

21

22

23

©ISO/IEC N3090=10-0080

void £3() {
float x, &r = x;
[=]1 { // x and T are not captured (appearance in a decltype operand is not a “use”)
decltype(x) yi; // y1 has type float

decltype((x)) y2 = y1; //y2 has type float const& because this lambda
// is not mutable and x is an lvalue
// Tl has type £loat& (transformation not considered)

decltype(r) ri H
y2; // r2 has type float const&

decltype((r)) r2
};
}

yi

— end example]

The closure type associated with a lambda-expression has a deleted (8.4.3) default constructor and a
deleted copy assignment operator. It has an implicitly-declared copy constructor (12.8) and may have
an implicitly-declared move constructor (12.8). [Note: the copy/move constructor is implicitly defined in
the same way as any other implicitly declared copy/move constructor would be implicitly defined. — end
note |

The closure type associated with a lambda-expression has an implicitly-declared destructor (12.4).

When the lambda-expression is evaluated, the entities that are captured by copy are used to direct-initialize
each corresponding non-static data member of the resulting closure object. (For array members, the array
elements are direct-initialized in increasing subscript order.) These initializations are performed in the (un-
specified) order in which the non-static data members are declared. [Note: this ensures that the destructions
will occur in the reverse order of the constructions. — end note]

[Note: If an entity is implicitly or explicitly captured by reference, invoking the function call operator of
the corresponding lambda-expression after the lifetime of the entity has ended is likely to result in undefined
behavior. — end note]

A capture followed by an ellipsis is a pack expansion (14.6.3). [Example:

template<class... Args>

void f(Args... args) {
auto Im = [&, args...] { return g(args...); };
mQ);

b

— end example |

§5.1.2 94

1

2

©ISO/IEC

5.2 Postfix expressions

Postfix expressions group left-to-right.

postfiz-erpression:

Primary-exrpression

postfiz-expression [expression]
postfir-expression [braced-init-list]
postfiz-expression (expression-listop;)
simple-type-specifier (expression-listop:)
typename-specifier (expression-listop;)
simple-type-specifier braced-init-list
typename-specifier braced-init-list
postfiz-expression . template,p: id-expression
postfiz-expression => template,y; id-expression
postfir-expression . pseudo-destructor-name
postfiz-expression => pseudo-destructor-name
postfir-erpression ++

postfiz-expression —=

dynamic_cast < type-id > (expression)
static_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)
const_cast < type-id > (expression)

typeid (expression)

typeid (type-id)

expression-list:

initializer-list

pseudo-destructor-name:

tiopt nested-name-specifierop: type-name :: ~ type-name
tiopt nested-name-specifier template simple-template-id : : ~ type-name

i opt mested-name-specifierop: ~ type-name
~ decltype-specifier

N3090=10-0080

[expr.post]

[Note: The > token following the type-id in a dynamic_cast, static_cast, reinterpret_cast, or const_-
cast may be the product of replacing a >> token by two consecutive > tokens (14.3). — end note]

5.2.1 Subscripting

[expr.sub]

A postfix expression followed by an expression in square brackets is a postfix expression. One of the expres-
sions shall have the type “pointer to T” and the other shall have unscoped enumeration or integral type.
The result is an lvalue of type “T.” The type “T” shall be a completely-defined object type.®> The expression
E1[E2] is identical (by definition) to * ((E1)+(E2)) [Note: see 5.3 and 5.7 for details of * and + and 8.3.4
for details of arrays. — end note|

A braced-init-list may appear as a subscript for a user-defined operator[]. In that case, the initializer list
is treated as the initializer for the subscript argument of the operator[]. An initializer list shall not be
used with the built-in subscript operator.

[Example:

struct X {

})
X x;

x[{1,2,3}] = 7;

Z operator[](std::initializer_list<int>);

63) This is true even if the subscript operator is used in the following common idiom: &x[0].

§5.2.1

// OK: meaning x.operator[]({1,2,3})

95

©ISO/IEC N3090=10-0080

int a[10];
al{1,2,3}] = 7; // error: built-in subscript operator

— end example|

5.2.2 Function call [expr.call]

There are two kinds of function call: ordinary function call and member function®® (9.3) call. A function
call is a postfix expression followed by parentheses containing a possibly empty, comma-separated list of
expressions which constitute the arguments to the function. For an ordinary function call, the postfix
expression shall be either an lvalue that refers to a function (in which case the function-to-pointer standard
conversion (4.3) is suppressed on the postfix expression), or it shall have pointer to function type. Calling
a function through an expression whose function type has a language linkage that is different from the
language linkage of the function type of the called function’s definition is undefined (7.5). For a member
function call, the postfix expression shall be an implicit (9.3.1, 9.4) or explicit class member access (5.2.5)
whose id-expression is a function member name, or a pointer-to-member expression (5.5) selecting a function
member; the call is as a member of the object pointed to or referred to by the object expression (5.2.5, 5.5).
In the case of an implicit class member access, the implied object is the one pointed to by this. [Note: a
member function call of the form £ () is interpreted as (*this) .f() (see 9.3.1). — end note] If a function
or member function name is used, the name can be overloaded (Clause 13), in which case the appropriate
function shall be selected according to the rules in 13.3. If the selected function is non-virtual, or if the
id-expression in the class member access expression is a qualified-id, that function is called. Otherwise, its
final overrider (10.3) in the dynamic type of the object expression is called. [Note: the dynamic type is
the type of the object pointed or referred to by the current value of the object expression. 12.7 describes
the behavior of virtual function calls when the object-expression refers to an object under construction or
destruction. — end note|

[Note: if a function or member function name is used, and name lookup (3.4) does not find a declaration of
that name, the program is ill-formed. No function is implicitly declared by such a call. — end note]

The type of the function call expression is the return type of the statically chosen function (i.e., ignoring the
virtual keyword), even if the type of the function actually called is different. This type shall be a complete
object type, a reference type or the type void.

When a function is called, each parameter (8.3.5) shall be initialized (8.5, 12.8, 12.1) with its corresponding
argument. If the function is a non-static member function, the this parameter of the function (9.3.2) shall
be initialized with a pointer to the object of the call, converted as if by an explicit type conversion (5.4).
[Note: There is no access or ambiguity checking on this conversion; the access checking and disambiguation
are done as part of the (possibly implicit) class member access operator. See 10.2, 11.2, and 5.2.5. —
end note] When a function is called, the parameters that have object type shall have completely-defined
object type. [Note: this still allows a parameter to be a pointer or reference to an incomplete class type.
However, it prevents a passed-by-value parameter to have an incomplete class type. — end note| During
the initialization of a parameter, an implementation may avoid the construction of extra temporaries by
combining the conversions on the associated argument and/or the construction of temporaries with the
initialization of the parameter (see 12.2). The lifetime of a parameter ends when the function in which it
is defined returns. The initialization and destruction of each parameter occurs within the context of the
calling function. [Example: the access of the constructor, conversion functions or destructor is checked at
the point of call in the calling function. If a constructor or destructor for a function parameter throws an
exception, the search for a handler starts in the scope of the calling function; in particular, if the function
called has a function-try-block (Clause 15) with a handler that could handle the exception, this handler is
not considered. — end example] The value of a function call is the value returned by the called function

64) A static member function (9.4) is an ordinary function.

§ 5.2.2 96

10

©ISO/IEC N3090=10-0080

except in a virtual function call if the return type of the final overrider is different from the return type of
the statically chosen function, the value returned from the final overrider is converted to the return type of
the statically chosen function.

[Note: a function can change the values of its non-const parameters, but these changes cannot affect the
values of the arguments except where a parameter is of a reference type (8.3.2); if the reference is to a
const-qualified type, const_cast is required to be used to cast away the constness in order to modify
the argument’s value. Where a parameter is of const reference type a temporary object is introduced if
needed (7.1.6, 2.14, 2.14.5, 8.3.4, 12.2). In addition, it is possible to modify the values of nonconstant objects
through pointer parameters. — end note |

A function can be declared to accept fewer arguments (by declaring default arguments (8.3.6)) or more

arguments (by using the ellipsis, ..., or a function parameter pack (8.3.5)) than the number of parameters
in the function definition (8.4). [Note: this implies that, except where the ellipsis (...) or a function
parameter pack is used, a parameter is available for each argument. — end note]

When there is no parameter for a given argument, the argument is passed in such a way that the receiving
function can obtain the value of the argument by invoking va_arg (18.10). [Note: This paragraph does not
apply to arguments passed to a function parameter pack. Function parameter packs are expanded during
template instantiation (14.6.3), thus each such argument has a corresponding parameter when a function
template specialization is actually called. — end note] The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and
function-to-pointer (4.3) standard conversions are performed on the argument expression. An argument that
has (possibly cv-qualified) type std: :nullptr t is converted to type void* (4.10). After these conversions,

if the argument does not have arithmetic, enumeration, pointer, pointer to member, or class type, the
program is ill-formed. Passing a potentially-evaluated argument of class type (Clause 9) with a non-trivial
copy constructor or a non-trivial destructor with no corresponding parameter is conditionally-supported,
with implementation-defined semantics. If the argument has integral or enumeration type that is subject to
the integral promotions (4.5), or a floating point type that is subject to the floating point promotion (4.6),
the value of the argument is converted to the promoted type before the call. These promotions are referred
to as the default argument promotions.

[Note: The evaluations of the postfix expression and of the argument expressions are all unsequenced
relative to one another. All side effects of argument expression evaluations are sequenced before the function
is entered (see 1.9). — end note]|

Recursive calls are permitted, except to the function named main (3.6.1).

A function call is an lvalue if-a 3 ‘ : srepee if the result type is an lvalue
reference type or an rvalue reference to fun(rlon th(‘ an xvalue if th(‘ result type is an rvalue reference to
object type, and a prvalue otherwise.

5.2.3 Explicit type conversion (functional notation) [expr.type.conv]|

A simple-type-specifier (7.1.6.2) or typename-specifier (14.7) followed by a parenthesized expression-list con-
structs a value of the specified type given the expression list. If the expression list is a single expression, the
type conversion expression is equivalent (in definedness, and if defined in meaning) to the corresponding cast
expression (5.4). If the type specified is a class type, the class type shall be complete. If the expression list
specifies more than a single value, the type shall be a class with a suitably declared constructor (8.5, 12.1),
and the expression T(x1, x2, ...) is equivalent in effect to the declaration T t(x1, x2, ...); for some
invented temporary variable t, with the result being the value of t as an—+vatue a prvalue.

The expression T(), where T is a simple-type-specifier or typename-specifier for a non-array complete object
type or the (possibly cv-qualified) void type, creates sm—rvalae a prvalue of the specified type, which is
value-initialized (8.5; no initialization is done for the void() case). [Note: if T is a non-class type that is

§5.2.3 97

©ISO/IEC N3090=10-0080

cv-qualified, the cv-qualifiers are ignored when determining the type of the resulting #value prvalue (3.10).
— end note]

Similarly, a simple-type-specifier or typename-specifier followed by a braced-init-list creates a temporary
object of the specified type direct-list-initialized (8.5.4) with the specified braced-init-list, and its value is
that temporary object as an—+rvalie a prvalue.

5.2.4 Pseudo destructor call [expr.pseudo]

The use of a pseudo-destructor-name after a dot . or arrow —-> operator represents the destructor for the
non-class type named denoted by type-name or decltype-specifier . The result shall only be used as the
operand for the function call operator (), and the result of such a call has type void. The only effect is the
evaluation of the postfiz-expression before the dot or arrow.

The left-hand side of the dot operator shall be of scalar type. The left-hand side of the arrow operator shall
be of pointer to scalar type. This scalar type is the object type. The cv-unqualified versions of the object
type and of the type designated by the pseudo-destructor-name shall be the same type. Furthermore, the
two type-names in a pseudo-destructor-name of the form

Dlopt nested—name—speciﬁergm type-name :: ~ type-name
shall designate the same scalar type.

5.2.5 Class member access [expr.ref]

A postfix expression followed by a dot . or an arrow ->, optionally followed by the keyword template (14.9.1),
and then followed by an id-expression, is a postfix expression. The postfix expression before the dot or arrow
is evaluated;%® the result of that evaluation, together with the id-expression, determines the result of the
entire postfix expression.

For the first option (dot) the type of the first expression (the object expression) shall be “class object” (of a
complete type). For the second option (arrow) the type of the first expression (the pointer ezpression) shall
be “pointer to class object” (of a complete type). In these cases, the id-expression shall name a member
of the class or of one of its base classes. [Note: because the name of a class is inserted in its class scope
(Clause 9), the name of a class is also considered a nested member of that class. — end note] [Note: 3.4.5
describes how names are looked up after the . and -> operators. — end note]

If E1 has the type “pointer to class X,” then the expression E1->E2 is converted to the equivalent form
(*(E1)) .E2; the remainder of 5.2.5 will address only the first option (dot)%6. Abbreviating object-expression.id-
expression as E1.E2, then the type and lvalue-properties value category of this expression are determined as
follows. In the remainder of 5.2.5, cq represents either const or the absence of const and vg represents either
volatile or the absence of volatile. cv represents an arbitrary set of cv-qualifiers, as defined in 3.9.3.

If E2 is declared to have type “reference to T,” then E1.E2 is an lvalue; the type of E1.E2 is T. Otherwise,
one of the following rules applies.

— If E2 is a static data member and the type of E2 is T, then E1.E2 is an lvalue; the expression designates
the named member of the class. The type of E1.E2 is T.

— If E2 is a non-static data member and the type of E1l is “cql vgl X”, and the type of E2 is “cq2 vg2
T”, the expression designates the named member of the object designated by the first expression. If
El is an lvalue, then E1.E2 is an lvalue; if E1 is an xvalue, then E1.E2 is an xvalue; otherwise, it is a#
rvalwe a prvalue. Let the notation vql2 stand for the “union” of vql and vq2; that is, if vgl or vg2 is

65) If the class member access expression is evaluated, the subexpression evaluation happens even if the result is unnecessary
to determine the value of the entire postfix expression, for example if the id-expression denotes a static member.
66) Note that if E1 has the type “pointer to class X,” then (*(E1)) is an lvalue.

§5.2.5 93

©ISO/IEC N3090=10-0080

volatile, then vgl2 is volatile. Similarly, let the notation cq12 stand for the “union” of cq! and
cq2; that is, if cql or cq2 is const, then cq12 is const. If E2 is declared to be a mutable member, then
the type of E1.E2 is “vg12 T”. If E2 is not declared to be a mutable member, then the type of E1.E2
is “cql2 vql2 T”.

— If E2 is a (possibly overloaded) member function, function overload resolution (13.3) is used to deter-
mine whether E1.E2 refers to a static or a non-static member function.

— If it refers to a static member function and the type of E2 is “function of parameter-type-list
returning T”, then E1.E2 is an lvalue; the expression designates the static member function. The
type of E1.E2 is the same type as that of E2, namely “function of parameter-type-list returning
T”.

— Otherwise, if E1.E2 refers to a non-static member function and the type of E2 is “function of
parameter-type-list cv ref-qualifier,,: returning T”, then E1.E2 is an—rvalue a prvalue. The
expression designates a non-static member function. The expression can be used only as the
left-hand operand of a member function call (9.3). [Note: any redundant set of parentheses
surrounding the expression is ignored (5.1). —end note] The type of E1.E2 is “function of
parameter-type-list cv returning T”.

— If E2 is a nested type, the expression E1.E2 is ill-formed.

— If E2 is a member enumerator and the type of E2 is T, the expression E1.E2 is an—+rvalue a prvalue.
The type of E1.E2 is T.

If E2 is a non-static data member or a non-static member function, the program is ill-formed if the class of
which E2 is directly a member is an ambiguous base (10.2) of the naming class (11.2) of E2.

5.2.6 Increment and decrement [expr.post.incr]

The value of a postfix ++ expression is the value of its operand. [Note: the value obtained is a copy of
the original value — end note] The operand shall be a modifiable lvalue. The type of the operand shall be
an arithmetic type or a pointer to a complete object type. The value of the operand object is modified by
adding 1 to it, unless the object is of type bool, in which case it is set to true. [Note: this use is deprecated,
see Annex D. — end note| The value computation of the ++ expression is sequenced before the modification
of the operand object. With respect to an indeterminately-sequenced function call, the operation of postfix
++ is a single evaluation. [Note: Therefore, a function call shall not intervene between the lvalue-to-rvalue
conversion and the side effect associated with any single postfix ++ operator. — end note] The result is an
rvatie a prvalue. The type of the result is the cv-unqualified version of the type of the operand. See also 5.7
and 5.17.

The operand of postfix —- is decremented analogously to the postfix ++ operator, except that the operand
shall not be of type bool. [Note: For prefix increment and decrement, see 5.3.2. — end note]

5.2.7 Dynamic cast [expr.dynamic.cast]

The result of the expression dynamic_cast<T>(v) is the result of converting the expression v to type T. T
shall be a pointer or reference to a complete class type, or “pointer to cv void.” The dynamic_cast operator
shall not cast away constness (5.2.11).

If T is a pointer type, v shall be an—+vatie a prvalue of a pointer to complete class type, and the result is a#
rvatie a prvalue of type T. If T is an lvalue reference type, v shall be an lvalue of a complete class type, and
the result is an lvalue of the type referred to by T. If T is an rvalue reference type, v shall be an expression
having a complete class type, and the result is an #value xvalue of the type referred to by T.

§5.2.7 99

©ISO/IEC N3090=10-0080

If the type of v is the same as T, or it is the same as T except that the class object type in T is more
cv-qualified than the class object type in v, the result is v (converted if necessary).

If the value of v is a null pointer value in the pointer case, the result is the null pointer value of type T.

If T is “pointer to cvl B” and v has type “pointer to cv2 D” such that B is a base class of D, the result is a
pointer to the unique B subobject of the D object pointed to by v. Similarly, if T is “reference to cvi B” and
v has type cv2 D such that B is a base class of D, the result is the unique B subobject of the D object referred
to by v. 67 The result is an lvalue if T is an lvalue reference, or an #vakhie xvalue if T is an rvalue reference.
In both the pointer and reference cases, the program is ill-formed if cv2 has greater cv-qualification than
cvl or if B is an inaccessible or ambiguous base class of D. [Example:

struct B { };
struct D : B { };
void foo(D* dp) {
B* Dbp = dynamic_cast<B*>(dp); // equivalent to B¥ bp = dp;
}

— end example |

Otherwise, v shall be a pointer to or an lvalue of a polymorphic type (10.3).

If T is “pointer to cv void,” then the result is a pointer to the most derived object pointed to by v. Otherwise,
a run-time check is applied to see if the object pointed or referred to by v can be converted to the type
pointed or referred to by T.

If C is the class type to which T points or refers, the run-time check logically executes as follows:

— If, in the most derived object pointed (referred) to by v, v points (refers) to a public base class
subobject of a C object, and if only one object of type C is derived from the subobject pointed (referred)
to by v the result points (refers) to that C object.

— Otherwise, if v points (refers) to a public base class subobject of the most derived object, and the
type of the most derived object has a base class, of type C, that is unambiguous and public, the result
points (refers) to the C subobject of the most derived object.

— Otherwise, the run-time check fails.

The value of a failed cast to pointer type is the null pointer value of the required result type. A failed cast
to reference type throws std: :bad_cast (18.7.2).

[Example:

class A { virtual void £(); };
class B { virtual void g(); };
class D : public virtual A, private B { };

void g() {
D d;
B* bp = (Bx)&d; // cast needed to break protection
Ax ap = &d; // public derivation, no cast needed
D& dr = dynamic_cast<D&>(*bp); // fails
ap = dynamic_cast<A*>(bp); // fails
bp = dynamic_cast<B*>(ap); // fails
ap = dynamic_cast<A*>(&d); // succeeds
bp = dynamic_cast<B*>(&d); // ill-formed (not a run-time check)
}

67) The most derived object (1.8) pointed or referred to by v can contain other B objects as base classes, but these are ignored.

§ 5.2.7 100

©ISO/IEC N3090=10-0080

class E : public D, public B { };
class F : public E, public D { };

void h() {
F f;
Ax ap = &f; // succeeds: finds unique A
D* dp = dynamic_cast<D*>(ap); // fails: yields O
// £ has two D subobjects
Ex ep = (Ex¥)ap; // ill-formed: cast from virtual base
E* epl = dynamic_cast<Ex>(ap); // succeeds
}

— end example] [Note: 12.7 describes the behavior of a dynamic_cast applied to an object under construc-
tion or destruction. — end note]

5.2.8 Type identification [expr.typeid]

The result of a typeid expression is an lvalue of static type const std: :type_info (18.7.1) and dynamic type
const std: :type_info or const name where name is an implementation-defined class publicly derived from
std : : type_info which preserves the behavior described in 18.7.1.%% The lifetime of the object referred to by
the lvalue extends to the end of the program. Whether or not the destructor is called for the std: :type_info
object at the end of the program is unspecified.

When typeid is applied to antvalue a glvalue expression whose type is a polymorphic class type (10.3), the
result refers to a std: :type_info object representing the type of the most derived object (1.8) (that is, the
dynamic type) to which the value glvalue refers. If the lvalue glvalue expression is obtained by applying the
unary * operator to a pointer’ and the pointer is a null pointer value (4.10), the typeid expression throws
the std: :bad_typeid exception (18.7.3).

When typeid is applied to an expression other than antvalie a glvalue of a polymorphic class type, the result
refers to a std::type_info object representing the static type of the expression. Lvalue-to-rvalue (4.1),
array-to-pointer (4.2), and function-to-pointer (4.3) conversions are not applied to the expression. If the
type of the expression is a class type, the class shall be completely-defined. The expression is an unevaluated
operand (Clause 5).

When typeid is applied to a type-id, the result refers to a std::type_info object representing the type of
the type-id. If the type of the type-id is a reference to a possibly cv-qualified type, the result of the typeid
expression refers to a std: :type_info object representing the cv-unqualified referenced type. If the type of
the type-id is a class type or a reference to a class type, the class shall be completely-defined.

The top-level cv-qualifiers of the lvalue glvalue expression or the type-id that is the operand of typeid are
always ignored. [Ezample:

class D{ ... };

D d1;

const D d2;

typeid(d1) == typeid(d2); // yields true
typeid(D) == typeid(const D); // yields true
typeid(D) == typeid(d2); // yields true
typeid(D) == typeid(const D&); // yields true

— end example]

68) The recommended name for such a class is extended_type_info.
69) If p is an expression of pointer type, then *p, (*p), *(p), ((xp)), *((p)), and so on all meet this requirement.

§5.2.8 101

©ISO/IEC N3090=10-0080

If the header <typeinfo> (18.7.1) is not included prior to a use of typeid, the program is ill-formed.

[Note: 12.7 describes the behavior of typeid applied to an object under construction or destruction. — end
note |
5.2.9 Static cast [expr.static.cast]

The result of the expression static_cast<T>(v) is the result of converting the expression v to type T.
If T is an lvalue reference type or an rvalue reference to function type, the result is an Ivalue; if T is an
rvalue reference to object type, the result is an xvalue; otherwise, the result is an—+valie a prvalue. The
static_cast operator shall not cast away constness (5.2.11).

An lvalue of type “cv! B,” where B is a class type, can be cast to type “reference to cv2 D,” where D is a class
derived (Clause 10) from B, if a valid standard conversion from “pointer to D” to “pointer to B” exists (4.10),
cv2 is the same cv-qualification as, or greater cv-qualification than, cvl, and B is neither a virtual base class
of D nor a base class of a virtual base class of D. The result has type “cv2 D.” An #value xvalue of type “cuvl
B” may be cast to type “rvalue reference to cv2 D” with the same constraints as for an lvalue of type “cvi B.”
If the object of type “cvl B” is actually a subobject of an object of type D, the result refers to the enclosing
object of type D. Otherwise, the result of the cast is undefined. | Ezample:

struct B { };
struct D : public B { };

D d;
B &br = d;
static_cast<D&> (br) ; // produces lvalue to the original d object

— end example]

Antvalue A glvalue of type “cvl T1” can be cast to type “rvalue reference to cv2 T2” if “cv2 T2” is reference-
compatible with “cvf T1” (8.5.3). The result refers to the object or the specified base class subobject thereof.
If T2 is an inaccessible (Clause 11) or ambiguous (10.2) base class of T1, a program that necessitates such a
cast is ill-formed.

Otherwise, an expression e can be explicitly converted to a type T using a static_cast of the form static_-
cast<T>(e) if the declaration T t(e); is well-formed, for some invented temporary variable t (8.5). The
effect of such an explicit conversion is the same as performing the declaration and initialization and then
using the temporary variable as the result of the conversion. The expression e is used as antvatue a glvalue
if and only if the initialization uses it as antvalue a glvalue.

Otherwise, the static_cast shall perform one of the conversions listed below. No other conversion shall be
performed explicitly using a static_cast.

Any expression can be explicitly converted to type cv void. The expression value is discarded. [Note:
however, if the value is in a temporary wariable object (12.2), the destructor for that wariable object is not
executed until the usual time, and the value of the wariable object is preserved for the purpose of executing
the destructor. — end note| The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3)
standard conversions are not applied to the expression.

The inverse of any standard conversion sequence (Clause 4), other than the lvalue-to-rvalue (4.1), array-to-
pointer (4.2), function-to-pointer (4.3), and boolean (4.12) conversions, can be performed explicitly using
static_cast. A program is ill-formed if it uses static_cast to perform the inverse of an ill-formed standard
conversion sequence. [Example:

struct B { };
struct D : private B { };
void £() {

§5.2.9 102

10

11

12

13

©ISO/IEC N3090=10-0080

static_cast<D*>((B*)0); // Error: B is a private base of D.
static_cast<int B::*>((int D::%)0); // Error: B is a private base of D.
}

— end example]

The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) conversions are applied to
the operand. Such a static_cast is subject to the restriction that the explicit conversion does not cast
away constness (5.2.11), and the following additional rules for specific cases:

A value of a scoped enumeration type (7.2) can be explicitly converted to an integral type. The value is
unchanged if the original value can be represented by the specified type. Otherwise, the resulting value is
unspecified. A value of a scoped enumeration type can also be explicitly converted to a floating-point type;
the result is the same as that of converting from the original value to the floating-point type.

A value of integral or enumeration type can be explicitly converted to an enumeration type. The value is
unchanged if the original value is within the range of the enumeration values (7.2). Otherwise, the resulting
enumeration value is unspecified.

An-evalie A prvalue of type “pointer to cvl B,” where B is a class type, can be converted to an+valuea prvalue
of type “pointer to cv2 D,” where D is a class derived (Clause 10) from B, if a valid standard conversion from
“pointer to D” to “pointer to B” exists (4.10), cv2 is the same cv-qualification as, or greater cv-qualification
than, cvi, and B is neither a virtual base class of D nor a base class of a virtual base class of D. The null
pointer value (4.10) is converted to the null pointer value of the destination type. If the #valie prvalue of
type “pointer to cvl B” points to a B that is actually a subobject of an object of type D, the resulting pointer
points to the enclosing object of type D. Otherwise, the result of the cast is undefined.

Anevalae A prvalue of type “pointer to member of D of type cvl T” can be converted to an—+vakie a prvalue
of type “pointer to member of B” of type cv2 T, where B is a base class (Clause 10) of D, if a valid standard
conversion from “pointer to member of B of type T” to “pointer to member of D of type T” exists (4.11),
and cv2 is the same cv-qualification as, or greater cv-qualification than, cv1.7”° The null member pointer
value (4.11) is converted to the null member pointer value of the destination type. If class B contains the
original member, or is a base or derived class of the class containing the original member, the resulting
pointer to member points to the original member. Otherwise, the result of the cast is undefined. [Note:
although class B need not contain the original member, the dynamic type of the object on which the pointer
to member is dereferenced must contain the original member; see 5.5. — end note]

An-rvalue A prvalue of type “pointer to cvl void” can be converted to an+valae a prvalue of type “pointer
to cv2 T,” where T is an object type and cv2 is the same cv-qualification as, or greater cv-qualification than,
cvl. The null pointer value is converted to the null pointer value of the destination type. A value of type
pointer to object converted to “pointer to cv void” and back, possibly with different cv-qualification, shall
have its original value. [Ezample:

T* pl = new T;
const T* p2 = static_cast<const T*>(static_cast<void*>(p1));
bool b = pl == p2; //b will have the value true.

— end example]
5.2.10 Reinterpret cast [expr.reinterpret.cast]

The result of the expression reinterpret_cast<T>(v) is the result of converting the expression v to type
T. If T is an lvalue reference type or an rvalue reference to function type, the result is an lvalue; if T is an

70) Function types (including those used in pointer to member function types) are never cv-qualified; see 8.3.5.

§ 5.2.10 103

10

©ISO/IEC N3090=10-0080

rvalue reference to object type, the result is an #value xvalue; otherwise, the result is an—+valae a prvalue
and the lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are
performed on the expression v. Conversions that can be performed explicitly using reinterpret_cast are
listed below. No other conversion can be performed explicitly using reinterpret_cast.

(5.2.11).

The reinterpret_cast operator shall not cast away constness

3 > B, >

An expression of integral, enumeration, pointer, or pointer-to-member type can be explicitly converted to
its own type; such a cast yields the value of its operand.

[Note: The mapping performed by reinterpret_cast might, or might not, produce a representation dif-
ferent from the original value. — end note]

A pointer can be explicitly converted to any integral type large enough to hold it. The mapping function is
implementation-defined. [Note: it is intended to be unsurprising to those who know the addressing structure
of the underlying machine. — end note] A value of type std::nullptr_t can be converted to an integral
type; the conversion has the same meaning and validity as a conversion of (void*)0 to the integral type.
[Note: a reinterpret_cast cannot be used to convert a value of any type to the type std::nullptr_t.
— end note]

A value of integral type or enumeration type can be explicitly converted to a pointer. A pointer converted
to an integer of sufficient size (if any such exists on the implementation) and back to the same pointer type
will have its original value; mappings between pointers and integers are otherwise implementation-defined.
[Note: Except as described in 3.7.4.3, the result of such a conversion will not be a safely-derived pointer
value. — end note]

A pointer to a function can be explicitly converted to a pointer to a function of a different type. The effect
of calling a function through a pointer to a function type (8.3.5) that is not the same as the type used in
the definition of the function is undefined. Except that converting an—+vatie a prvalue of type “pointer to
T1” to the type “pointer to T2” (where T1 and T2 are function types) and back to its original type yields the
original pointer value, the result of such a pointer conversion is unspecified. [Note: see also 4.10 for more
details of pointer conversions. — end note]

A pointer to an object can be explicitly converted to a pointer to a different object type.”t When an-+valhie
a prvalue v of type “pointer to T1” is converted to the type “pointer to cv T2”, the result is static_cast<cwv
T2*>(static_cast<cv void*>(v)) if both T1 and T2 are standard-layout types (3.9) and the alignment
requirements of T2 are no stricter than those of T1. Converting an+valie a prvalue of type “pointer to T1”
to the type “pointer to T2” (where T1 and T2 are object types and where the alignment requirements of T2
are no stricter than those of T1) and back to its original type yields the original pointer value. The result of
any other such pointer conversion is unspecified.

Converting a pointer to a function into a pointer to an object type or vice versa is conditionally-supported.
The meaning of such a conversion is implementation-defined, except that if an implementation supports
conversions in both directions, converting an—+valie a prvalue of one type to the other type and back,
possibly with different cv-qualification, shall yield the original pointer value.

The null pointer value (4.10) is converted to the null pointer value of the destination type. [Note: A null
pointer constant of type std: :nullptr_t cannot be converted to a pointer type, and a null pointer constant
of integral type is not necessarily converted to a null pointer value. — end note]

An-rvalue A prvalue of type “pointer to member of X of type T1” can be explicitly converted to an—+vakie
a prvalue of a different type “pointer to member of Y of type T2” if T1 and T2 are both function types or

71) The types may have different cv-qualifiers, subject to the overall restriction that a reinterpret_cast cannot cast away
constness.

§ 5.2.10 104

11

©ISO/IEC N3090=10-0080

both object types.”™ The null member pointer value (4.11) is converted to the null member pointer value of
the destination type. The result of this conversion is unspecified, except in the following cases:

— converting an—+valie a prvalue of type “pointer to member function” to a different pointer to member
function type and back to its original type yields the original pointer to member value.

— converting an—rvalie a prvalue of type “pointer to data member of X of type T1” to the type “pointer
to data member of Y of type T2” (where the alignment requirements of T2 are no stricter than those
of T1) and back to its original type yields the original pointer to member value.

An lvalue expression of type T1 can be cast to the type “reference to T2” if an expression of type “pointer to
T1” can be explicitly converted to the type “pointer to T2” using a reinterpret_cast. That is, a reference
cast reinterpret_cast<T&>(x) has the same effect as the conversion *reinterpret_cast<T*>(&x) with
the built-in & and * operators (and similarly for reinterpret_cast<T&&>(x)). The result refers to the
same object as the source lvalue, but with a different type. The result is an lvalue for an lvalue references
type or an rvalue reference to function type ex and an #value xvalue for an rvalue references to object type.

No temporary is created, no copy is made, and constructors (12.1) or conversion functions (12.3) are not
called.”

5.2.11 Const cast [expr.const.cast]

The result of the expression const_cast<T>(v) is of type T. If T is an lvalue reference type or an rvalue
reference to function type, the result is an Ivalue; if T is an rvalue reference to object type, the result is an
rvalue xvalue; otherwise, the result is an-+value a prvalue and the lvalue-to-rvalue (4.1), array-to-pointer (4.2),
and function-to-pointer (4.3) standard conversions are performed on the expression v. Conversions that can
be performed explicitly using const_cast are listed below. No other conversion shall be performed explicitly
using const_cast.

[Note: Subject to the restrictions in this section, an expression may be cast to its own type using a const_-
cast operator. — end note]

For two pointer types T1 and T2 where
T11is cvy,o pointer to cvy; pointer to ---cvy -1 pointer to cvyy, T
and

T2 is cvg o pointer to cvg; pointer to --- cvy,—1 pointer to cvg, T

where T is any object type or the void type and where cv; j and cvgj may be different cv-qualifications,
an—rvatie a prvalue of type T1 may be explicitly converted to the type T2 using a const_cast. The result
of a pointer const_cast refers to the original object.

For two object types T1 and T2, if a pointer to T1 can be explicitly converted to the type “pointer to T2”
using a const_ cast, then the following conversions can also be made:

— an lvalue of type T1 can be explicitly converted to an Ivalue of type T2 using the cast const_cast<T2&>;

72) T1 and T2 may have different cv-qualifiers, subject to the overall restriction that a reinterpret_cast cannot cast away
constness.
73) This is sometimes referred to as a type pun.

§5.2.11 105

10

11

12

©ISO/IEC N3090=10-0080

— aglvalue of type T1 can be explicitly converted to an xlvalue of type T2 using the cast const_cast<T2&& >;

— if T1 is a class type, a prvalue of type T1 can be explicitly converted to an xvalue of type T2 using the
cast const_cast<T2&&>.

The result of a reference const_cast refers to the original object.

For a const_cast involving pointers to data members, multi-level pointers to data members and multi-level
mixed pointers and pointers to data members (4.4), the rules for const_cast are the same as those used for
pointers; the “member” aspect of a pointer to member is ignored when determining where the cv-qualifiers
are added or removed by the const_cast. The result of a pointer to data member const_cast refers to the
same member as the original (uncast) pointer to data member.

A null pointer value (4.10) is converted to the null pointer value of the destination type. The null member
pointer value (4.11) is converted to the null member pointer value of the destination type.

[Note: Depending on the type of the object, a write operation through the pointer, lvalue or pointer
to data member resulting from a const_cast that casts away a const-qualifier’ may produce undefined
behavior (7.1.6.1). — end note]

The following rules define the process known as casting away constness. In these rules Tn and Xn represent
types. For two pointer types:

X1is Tlecvyy * --- cvi,n * where T1 is not a pointer type

X2 is T2cvgq * -+ cvg, * where T2 is not a pointer type

K is min(N, M)
casting from X1 to X2 casts away constness if, for a non-pointer type T there does not exist an implicit
conversion (Clause 4) from:

Tevy, (N—K+1) * CUL (N—K42) * -+ CUL N *

to

Tcvg (M—K+1) * CU2 (M—K+2) ¥+ CU2 M *

Casting from an lvalue of type T1 to an lvalue of type T2 using an lvalue reference cast or casting from an
expression of type T1 to an #valie xvalue of type T2 using an rvalue reference cast casts away constness if a
cast from an—+valae a prvalue of type “pointer to T1” to the type “pointer to T2” casts away constness.

Casting from an—+value a prvalue of type “pointer to data member of X of type T1” to the type “pointer to
data member of Y of type T2” casts away constness if a cast from an rvalue of type “pointer to T1” to the
type “pointer to T2” casts away constness.

For multi-level pointer to members and multi-level mixed pointers and pointer to members (4.4), the “mem-
ber” aspect of a pointer to member level is ignored when determining if a const cv-qualifier has been cast
away.

[Note: some conversions which involve only changes in cv-qualification cannot be done using const_cast.
For instance, conversions between pointers to functions are not covered because such conversions lead to
values whose use causes undefined behavior. For the same reasons, conversions between pointers to member
functions, and in particular, the conversion from a pointer to a const member function to a pointer to a
non-const member function, are not covered. — end note]

74) const_cast is not limited to conversions that cast away a const-qualifier.

§5.2.11 106

1

©ISO/IEC N3090=10-0080

5.3 Unary expressions [expr.unary]

Expressions with unary operators group right-to-left.

UNATY-ETPTESSION:
postfix-erpression
++ cast-expression
-- cast-expression
unary-operator cast-expression
sizeof wnary-expression
sizeof (type-id)
sizeof ... (identifier)
alignof (type-id)
noexcept-expression
new-erpression
delete-expression

unary-operator: one of
*x &+ -1 o~

5.3.1 Unary operators [expr.unary.op]

The unary * operator performs indirection: the expression to which it is applied shall be a pointer to an
object type, or a pointer to a function type and the result is an lvalue referring to the object or function
to which the expression points. If the type of the expression is “pointer to T,” the type of the result is “T.”
[Note: a pointer to an incomplete type (other than cv void) can be dereferenced. The lvalue thus obtained
can be used in limited ways (to initialize a reference, for example); this lvalue must not be converted to an
rvalue a prvalue, see 4.1. — end note]

The result of each of the following unary operators is an—tvakie a prvalue.

The result of the unary & operator is a pointer to its operand. The operand shall be an lvalue or a qualified-
id. 3 S e e .) . .

” . L«

5 ‘ is—peinter : : 2 If
the operand is a qualified-id naming a non-static member m of some class C with type T, the result has type
“pointer to member of class C of type T” and is a prvalue designating C: :m; the program is ill formed if C is
an ambiguous base (10.2) of the class designated by the nested-name-specifier of the qualified-id. Otherwise,
if the type of the expression is T, the result has type “pointer to T” and is a prvalue that is the address of
the designated object (1.7) or a pointer to the designated function. [Note: In particular, the address of an
object of type “cv T” is “pointer to cv T”, with the same cv-qualification. — end note| [Example:

struct A { int i; };
struct B : A { };
. &B::i ... // has type int A::*

— end example] [Note: a pointer to member formed from a mutable non-static data member (7.1.1) does
not reflect the mutable specifier associated with the non-static data member. — end note|

A pointer to member is only formed when an explicit & is used and its operand is a qualified-id not enclosed
in parentheses. [Note: that is, the expression &(qualified-id), where the qualified-id is enclosed in
parentheses, does not form an expression of type “pointer to member.” Neither does qualified-id, because
there is no implicit conversion from a qualified-id for a non-static member function to the type “pointer to
member function” as there is from an lvalue of function type to the type “pointer to function” (4.3). Nor is
&unqualified-id a pointer to member, even within the scope of the unqualified-id’s class. — end note]

§5.3.1 107

10

©ISO/IEC N3090=10-0080

The address of an object of incomplete type can be taken, but if the complete type of that object is a class
type that declares operator&() as a member function, then the behavior is undefined (and no diagnostic is
required). The operand of & shall not be a bit-field.

The address of an overloaded function (Clause 13) can be taken only in a context that uniquely determines
which version of the overloaded function is referred to (see 13.4). [Note: since the context might determine
whether the operand is a static or non-static member function, the context can also affect whether the
expression has type “pointer to function” or “pointer to member function.” — end note |

The operand of the unary + operator shall have arithmetic, unscoped enumeration, or pointer type and the
result is the value of the argument. Integral promotion is performed on integral or enumeration operands.
The type of the result is the type of the promoted operand.

The operand of the unary - operator shall have arithmetic or unscoped enumeration type and the result
is the negation of its operand. Integral promotion is performed on integral or enumeration operands. The
negative of an unsigned quantity is computed by subtracting its value from 2", where n is the number of
bits in the promoted operand. The type of the result is the type of the promoted operand.

The operand of the logical negation operator ! is contextually converted to bool (Clause 4); its value is
true if the converted operand is false and false otherwise. The type of the result is bool.

The operand of ~ shall have integral or unscoped enumeration type; the result is the one’s complement of
its operand. Integral promotions are performed. The type of the result is the type of the promoted operand.
There is an ambiguity in the unary-expression “X(), where X is a class-name or decltype-specifier . The
ambiguity is resolved in favor of treating ~ as a unary complement rather than treating ~X as referring to a
destructor.

5.3.2 Increment and decrement [expr.pre.incr|

The operand of prefix ++ is modified by adding 1, or set to true if it is bool (this use is deprecated). The
operand shall be a modifiable lvalue. The type of the operand shall be an arithmetic type or a pointer to
a completely-defined object type. The result is the updated operand; it is an lvalue, and it is a bit-field if
the operand is a bit-field. If x is not of type bool, the expression ++x is equivalent to x+=1 [Note: see the
discussions of addition (5.7) and assignment operators (5.17) for information on conversions. — end note |

The operand of prefix -- is modified by subtracting 1. The operand shall not be of type bool. The
requirements on the operand of prefix —- and the properties of its result are otherwise the same as those of
prefix ++. [Note: For postfix increment and decrement, see 5.2.6. — end note|

5.3.3 Sizeof [expr.sizeof]

The sizeof operator yields the number of bytes in the object representation of its operand. The operand is
either an expression, which is an unevaluated operand (Clause 5), or a parenthesized type-id. The sizeof
operator shall not be applied to an expression that has function or incomplete type, to an enumeration
type whose underlying type is not fixed before all its enumerators have been declared, to the parenthesized
name of such types, or to an lvalue that designates a bit-field. sizeof (char), sizeof (signed char) and
sizeof (unsigned char) are 1. The result of sizeof applied to any other fundamental type (3.9.1) is
implementation-defined. [Note: in particular, sizeof (bool), sizeof (char16_t), sizeof (char32_t), and
sizeof (wchar_t) are implementation-defined.”® — end note] [Note: See 1.7 for the definition of byte
and 3.9 for the definition of object representation. — end note|

When applied to a reference or a reference type, the result is the size of the referenced type. When applied
to a class, the result is the number of bytes in an object of that class including any padding required for
placing objects of that type in an array. The size of a most derived class shall be greater than zero (1.8).

75) sizeof (bool) is not required to be 1.

§5.3.3 108

©ISO/IEC N3090=10-0080

The result of applying sizeof to a base class subobject is the size of the base class type.”® When applied
to an array, the result is the total number of bytes in the array. This implies that the size of an array of n
elements is n times the size of an element.

The sizeof operator can be applied to a pointer to a function, but shall not be applied directly to a function.

The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are not
applied to the operand of sizeof.

The identifier in a sizeof... expression shall name a parameter pack. The sizeof... operator yields the
number of arguments provided for the parameter pack identifier. The parameter pack is expanded (14.6.3)
by the sizeof... operator. [Ezample:

template<class... Types>
struct count {

static const std::size_t value = sizeof...(Types);
};

— end example|

The result of sizeof and sizeof... is a constant of type std::size_t. [Note: std::size_t is defined in
the standard header <cstddef> (18.2). — end note]

5.3.4 New [expr.new]

The new-expression attempts to create an object of the type-id (8.1) or new-type-id to which it is applied.
The type of that object is the allocated type. This type shall be a complete object type, but not an
abstract class type or array thereof (1.8, 3.9, 10.4). It is implementation-defined whether over-aligned types
are supported (3.11). [Note: because references are not objects, references cannot be created by new-
expressions. — end note] [Note: the type-id may be a cv-qualified type, in which case the object created
by the new-expression has a cv-qualified type. — end note]

new-expression:
t:opt new new-placement,p; new-type-id new-initializer,p:
i opt new new-placement,p; (type-id) new-initializerop:

new-placement:
(expression-list)

new-type-id:
type-specifier-seq new-declaratorop;

new-declarator:
ptr-operator new-declarator,p:
noptr-new-declarator

noptr-new-declarator:
[expression 1 atlribule-specifierypy:
noptr-new-declarator [constant-expression 1 altribute-specifiery,:

new-initializer:
(expression-listops)
braced-init-list
Entities created by a new-expression have dynamic storage duration (3.7.4). [Note: the lifetime of such an
entity is not necessarily restricted to the scope in which it is created. — end note] If the entity is a non-
array object, the new-expression returns a pointer to the object created. If it is an array, the new-expression
returns a pointer to the initial element of the array.

76) The actual size of a base class subobject may be less than the result of applying sizeof to the subobject, due to virtual
base classes and less strict padding requirements on base class subobjects.

§ 5.3.4 109

©ISO/IEC N3090=10-0080

If the auto type-specifier appears in the type-specifier-seq of a new-type-id or type-id of a new-expression, the
new-expression shall contain a new-initializer of the form

(assignment-expression)

The allocated type is deduced from the new-initializer as follows: Let e be the assignment-expression in the
new-initializer and T be the new-type-id or type-id of the new-expression, then the allocated type is the type
deduced for the variable x in the invented declaration (7.1.6.4):

T x(e);
[Example:
new auto(1); // allocated type is int
auto x = new auto(’a’); // allocated type is char, x is of type char*

— end example]

The new-type-id in a new-expression is the longest possible sequence of new-declarators. [Note: this prevents
ambiguities between the declarator operators &, &&, *, and [] and their expression counterparts. — end
note] [Example:

new int * ij; // syntax error: parsed as (new int*) i, not as (new int)*i

The * is the pointer declarator and not the multiplication operator. — end example]
[Note: parentheses in a new-type-id of a new-expression can have surprising effects. [Ezample:

new int(x[10]) (); // error

is ill-formed because the binding is

(new int) (x[101)O); // error

Instead, the explicitly parenthesized version of the new operator can be used to create objects of compound
types (3.9.2):

new (int (x[10]1)Q);

allocates an array of 10 pointers to functions (taking no argument and returning int. — end ezample]
— end note]

When the allocated object is an array (that is, the noptr-new-declarator syntax is used or the new-type-id or
type-id denotes an array type), the new-expression yields a pointer to the initial element (if any) of the array.
[Note: both new int and new int[10] have type int* and the type of new int[i][10] is int () [10]
— end note] The attribute-specifier in a noptr-new-declarator appertains to the associated array type.

Every constant-expression in a noptr-new-declarator shall be an integral constant expression (5.19) and
evaluate to a strictly positive value. The expression in a noptr-new-declarator shall be of integral type,
unscoped enumeration type, or a class type for which a single non-explicit conversion function to integral or
unscoped enumeration type exists (12.3). If the expression is of class type, the expression is converted by
calling that conversion function, and the result of the conversion is used in place of the original expression.
If the value of the expression is negative, the behavior is undefined. [Ezample: given the definition int
n = 42, new float[n] [5] is well-formed (because n is the expression of a noptr-new-declarator), but new
float[5] [n] is ill-formed (because n is not a constant expression). If n is negative, the effect of new
float [n] [5] is undefined. — end example]

§5.34 110

10

11

12

13

©ISO/IEC N3090=10-0080

When the value of the expression in a noptr-new-declarator is zero, the allocation function is called to
allocate an array with no elements. If the value of that expression is such that the size of the allocated object
would exceed the implementation-defined limit, no storage is obtained and the new-expression terminates
by throwing an exception of a type that would match a handler (15.3) of type std::bad_array_new_-
length (18.6.2.2).

A new-expression obtains storage for the object by calling an allocation function (3.7.4.1). If the new-
expression terminates by throwing an exception, it may release storage by calling a deallocation func-
tion (3.7.4.2). If the allocated type is a non-array type, the allocation function’s name is operator new and
the deallocation function’s name is operator delete. If the allocated type is an array type, the allocation
function’s name is operator newl[] and the deallocation function’s name is operator deletel[]. [Note: an
implementation shall provide default definitions for the global allocation functions (3.7.4, 18.6.1.1, 18.6.1.2).
A C++ program can provide alternative definitions of these functions (17.6.3.6) and/or class-specific ver-
sions (12.5). — end note]

If the new-expression begins with a unary :: operator, the allocation function’s name is looked up in the
global scope. Otherwise, if the allocated type is a class type T or array thereof, the allocation function’s
name is looked up in the scope of T. If this lookup fails to find the name, or if the allocated type is not a
class type, the allocation function’s name is looked up in the global scope.

A new-expression passes the amount of space requested to the allocation function as the first argument of
type std::size_t. That argument shall be no less than the size of the object being created; it may be
greater than the size of the object being created only if the object is an array. For arrays of char and
unsigned char, the difference between the result of the new-expression and the address returned by the
allocation function shall be an integral multiple of the strictest fundamental alignment requirement (3.11) of
any object type whose size is no greater than the size of the array being created. [Note: Because allocation
functions are assumed to return pointers to storage that is appropriately aligned for objects of any type with
fundamental alignment, this constraint on array allocation overhead permits the common idiom of allocating
character arrays into which objects of other types will later be placed. — end note]

The new-placement syntax is used to supply additional arguments to an allocation function. If used, overload
resolution is performed on a function call created by assembling an argument list consisting of the amount of
space requested (the first argument) and the expressions in the new-placement part of the new-expression (the
second and succeeding arguments). The first of these arguments has type std::size_t and the remaining
arguments have the corresponding types of the expressions in the new-placement.

[Example:
— new T results in a call of operator new(sizeof (T)),
— new(2,f) T results in a call of operator new(sizeof(T),2,f),
— new T[5] results in a call of operator newl[] (sizeof (T)*5+x), and
— new(2,f) T[5] results in a call of operator new[] (sizeof (T)*5+y,2,f).

Here, x and y are non-negative unspecified values representing array allocation overhead; the result of the
new-expression will be offset by this amount from the value returned by operator new[]. This overhead
may be applied in all array new-expressions, including those referencing the library function operator
new[] (std::size_t, void*) and other placement allocation functions. The amount of overhead may vary
from one invocation of new to another. — end example|

[Note: unless an allocation function is declared with an-empty a non-throwing exception-specification (15.4),
throwl) it indicates failure to allocate storage by throwing a std: :bad_alloc exception (Clause 15, 18.6.2.1);
it returns a non-null pointer otherwise. If the allocation function is declared with an-empty a non-throwing
exception-specification, threw it returns null to indicate failure to allocate storage and a non-null pointer

§5.34 111

14

15

16

17

18

19

20

©ISO/IEC N3090=10-0080

otherwise. — end note| If the allocation function returns null, initialization shall not be done, the dealloca-
tion function shall not be called, and the value of the new-expression shall be null.

[Note: when the allocation function returns a value other than null, it must be a pointer to a block of storage
in which space for the object has been reserved. The block of storage is assumed to be appropriately aligned
and of the requested size. The address of the created object will not necessarily be the same as that of the
block if the object is an array. — end note]

A new-expression that creates an object of type T initializes that object as follows:

— If the new-initializer is omitted, the object is default-initialized (8.5); if no initialization is performed,
the object has indeterminate value.

— Otherwise, the mew-initializer is interpreted according to the initialization rules of 8.5 for direct-
initialization.

The invocation of the allocation function is indeterminately sequenced with respect to the evaluations of

expressions in the new-initializer. Initialization of the allocated object is sequenced before the value com-

putation of the new-expression. It is unspecified whether expressions in the new-initializer are evaluated if
the allocation function returns the null pointer or exits using an exception.

If the new-expression creates an object or an array of objects of class type, access and ambiguity control
are done for the allocation function, the deallocation function (12.5), and the constructor (12.1). If the
new expression creates an array of objects of class type, access and ambiguity control are done for the
destructor (12.4).

If any part of the object initialization described above’” terminates by throwing an exception and a suitable
deallocation function can be found, the deallocation function is called to free the memory in which the object
was being constructed, after which the exception continues to propagate in the context of the new-expression.
If no unambiguous matching deallocation function can be found, propagating the exception does not cause
the object’s memory to be freed. [Note: This is appropriate when the called allocation function does not
allocate memory; otherwise, it is likely to result in a memory leak. — end note]|

If the new-expression begins with a unary :: operator, the deallocation function’s name is looked up in the
global scope. Otherwise, if the allocated type is a class type T or an array thereof, the deallocation function’s
name is looked up in the scope of T. If this lookup fails to find the name, or if the allocated type is not a
class type or array thereof, the deallocation function’s name is looked up in the global scope.

A declaration of a placement deallocation function matches the declaration of a placement allocation function
if it has the same number of parameters and, after parameter transformations (8.3.5), all parameter types
except the first are identical. Any non-placement deallocation function matches a non-placement allocation
function. If the lookup finds a single matching deallocation function, that function will be called; otherwise,
no deallocation function will be called. If the lookup finds the two-parameter form of a usual deallocation
function (3.7.4.2) and that function, considered as a placement deallocation function, would have been
selected as a match for the allocation function, the program is ill-formed. [Exzample:

struct S {
// Placement allocation function:
static void* operator new(std::size_t, std::size_t);

// Usual (non-placement) deallocation function:
static void operator delete(void*, std::size_t);

};

Sx p = new (0) S; // ill-formed: mnon-placement deallocation function matches

77) This may include evaluating a new-initializer and/or calling a constructor.

§5.34 112

21

©ISO/IEC N3090=10-0080

// placement allocation function

— end example]

If a new-expression calls a deallocation function, it passes the value returned from the allocation function
call as the first argument of type void*. If a placement deallocation function is called, it is passed the same
additional arguments as were passed to the placement allocation function, that is, the same arguments as
those specified with the new-placement syntax. If the implementation is allowed to make a copy of any
argument as part of the call to the allocation function, it is allowed to make a copy (of the same original
value) as part of the call to the deallocation function or to reuse the copy made as part of the call to the
allocation function. If the copy is elided in one place, it need not be elided in the other.

5.3.5 Delete [expr.delete]

The delete-expression operator destroys a most derived object (1.8) or array created by a new-expression.

delete-expression:
tiopt delete cast-expression
tiopt delete [] cast-expression

The first alternative is for non-array objects, and the second is for arrays. Whenever the delete key-
word is immediately followed by empty square brackets, it shall be interpreted as the second alternative.”
The operand shall have a pointer to object type, or a class type having a single non-explicit conversion
function (12.3.2) to a pointer to object type. The result has type void.”™

If the operand has a class type, the operand is converted to a pointer type by calling the above-mentioned
conversion function, and the converted operand is used in place of the original operand for the remainder of
this section. In either alternative, the value of the operand of delete may be a null pointer value. If it is
not a null pointer value, in the first alternative (delete object), the value of the operand of delete shall be
a pointer to a non-array object or a pointer to a subobject (1.8) representing a base class of such an object
(Clause 10). If not, the behavior is undefined. In the second alternative (delete array), the value of the
operand of delete shall be the pointer value which resulted from a previous array new-expression.®? If not,
the behavior is undefined. [Note: this means that the syntax of the delete-ezpression must match the type

of the object allocated by new, not the syntax of the new-expression. — end note] [Note: a pointer to a
const type can be the operand of a delete-expression; it is not necessary to cast away the constness (5.2.11)
of the pointer expression before it is used as the operand of the delete-expression. — end note]

In the first alternative (delete object), if the static type of the object to be deleted is different from its
dynamic type, the static type shall be a base class of the dynamic type of the object to be deleted and the
static type shall have a virtual destructor or the behavior is undefined. In the second alternative (delete
array) if the dynamic type of the object to be deleted differs from its static type, the behavior is undefined.

The cast-expression in a delete-expression shall be evaluated exactly once.

If the object being deleted has incomplete class type at the point of deletion and the complete class has a
non-trivial destructor or a deallocation function, the behavior is undefined.

If the value of the operand of the delete-expression is not a null pointer value, the delete-expression will
invoke the destructor (if any) for the object or the elements of the array being deleted. In the case of an

78) A lambda expression with a lambda-introducer that consists of empty square brackets can follow the delete keyword if
the lambda expression is enclosed in parentheses.

79) This implies that an object cannot be deleted using a pointer of type void* because void is not an object type.

80) For non-zero-length arrays, this is the same as a pointer to the first element of the array created by that new-ezxpression.
Zero-length arrays do not have a first element.

§5.3.5 113

10

©ISO/IEC N3090=10-0080

array, the elements will be destroyed in order of decreasing address (that is, in reverse order of the completion
of their constructor; see 12.6.2).

If the value of the operand of the delete-expression is not a null pointer value, the delete-expression will
call a deallocation function (3.7.4.2). Otherwise, it is unspecified whether the deallocation function will be
called. [Note: The deallocation function is called regardless of whether the destructor for the object or some
element of the array throws an exception. — end note|

[Note: An implementation provides default definitions of the global deallocation functions operator delete()
for non-arrays (18.6.1.1) and operator delete[]() for arrays (18.6.1.2). A C++ program can provide al-
ternative definitions of these functions (17.6.3.6), and/or class-specific versions (12.5). — end note]

When the keyword delete in a delete-expression is preceded by the unary :: operator, the global dealloca-
tion function is used to deallocate the storage.

Access and ambiguity control are done for both the deallocation function and the destructor (12.4, 12.5).

5.3.6 Alignof [expr.alignof]

An alignof expression yields the alignment requirement of its operand type. The operand shall be a type-id
representing a complete object type or an array thereof or a reference to a complete object type.

The result is an integral constant of type std: :size_t.

When alignof is applied to a reference type, the result shall be the alignment of the referenced type. When
alignof is applied to an array type, the result shall be the alignment of the element type.

5.3.7 noexcept operator [expr.unary.noexcept]

The noexcept operator determines whether the evaluation of its operand, which is an unevaluated operand

(Clause 5), can throw an exception (15.1).

noexcepl-erpression:
noexcept (expression)

The result of the noexcept operator is a constant of type bool and is an rvalue.

The result of the noexcept operator is false if in a potentially-evaluated context the expression would

contain

— a potentially evaluated call® to a function, member function, function pointer, or member function
pointer that does not have a non-throwing exception-specification (15.4),

— a potentially evaluated throw-ezpression (15.1),

— a potentially evaluated dynamic cast expression dynamic_cast<T>(v), where T is a reference type,
that requires a run-time check (5.2.7), or

— a potentially evaluated typeid expression (5.2.8) applied to a glvalue expression whose type is a
polymorphic class type (10.3).

Otherwise, the result is true.

5.4 Explicit type conversion (cast notation) [expr.cast]

The result of the expression (T) cast-expression is of type T. The result is an lvalue if T is an lvalue reference
type or an rvalue reference to function type and an xvalue if T is an rvalue reference to object type;; otherwise

81) This includes implicit calls such as the call to an allocation function in a new-expression.

§5.4 114

©ISO/IEC N3090=10-0080

the result is an—+vale a prvalue. [Note: if T is a non-class type that is cv-qualified, the cv-qualifiers are
ignored when determining the type of the resulting #value prvalue; see 3.10. — end note]

2 An explicit type conversion can be expressed using functional notation (5.2.3), a type conversion operator
(dynamic_cast, static_cast, reinterpret_cast, const_cast), or the cast notation.

cast-expression:
UNATY-€eTpression
(type-id) cast-expression

3 Any type conversion not mentioned below and not explicitly defined by the user (12.3) is ill-formed.
4 The conversions performed by

— a const_cast (5.2.11),

— a static_cast (5.2.9),

— a static_cast followed by a const_cast,

— a reinterpret_cast (5.2.10), or

— a reinterpret_cast followed by a const_cast,

can be performed using the cast notation of explicit type conversion. The same semantic restrictions and be-
haviors apply, with the exception that in performing a static_cast in the following situations the conversion
is valid even if the base class is inaccessible:

— a pointer to an object of derived class type or an lvalue or rvalue of derived class type may be explicitly
converted to a pointer or reference to an unambiguous base class type, respectively;

— a pointer to member of derived class type may be explicitly converted to a pointer to member of an
unambiguous non-virtual base class type;

— a pointer to an object of an unambiguous non-virtual base class type, antvalie-or+valae a glvalue of an
unambiguous non-virtual base class type, or a pointer to member of an unambiguous non-virtual base
class type may be explicitly converted to a pointer, a reference, or a pointer to member of a derived
class type, respectively.

If a conversion can be interpreted in more than one of the ways listed above, the interpretation that appears
first in the list is used, even if a cast resulting from that interpretation is ill-formed. If a conversion can be
interpreted in more than one way as a static_cast followed by a const_cast, the conversion is ill-formed.
[Example:

struct A { };
struct I1 : A { };
struct I2 : A { };
struct D : I1, I2 { };
A xfoo(D *p) {
return (A*)(p); //ill-formed static_cast interpretation
¥

— end example]

5 The operand of a cast using the cast notation can be an—+value a prvalue of type “pointer to incomplete
class type”. The destination type of a cast using the cast notation can be “pointer to incomplete class type”.
If both the operand and destination types are class types and one or both are incomplete, it is unspecified
whether the static_cast or the reinterpret_cast interpretation is used, even if there is an inheritance
relationship between the two classes. [Note: For example, if the classes were defined later in the translation

§5.4 115

©ISO/IEC N3090=10-0080

unit, a multi-pass compiler would be permitted to interpret a cast between pointers to the classes as if the
class types were complete at the point of the cast. — end note]

5.5 Pointer-to-member operators [expr.mptr.oper]

The pointer-to-member operators =>* and .* group left-to-right.

pm-erpression:
cast-expression
pm-expression .* cast-expression
pm-expression —>* cast-expression

The binary operator .* binds its second operand, which shall be of type “pointer to member of T” (where
T is a completely-defined class type) to its first operand, which shall be of class T or of a class of which T is
an unambiguous and accessible base class. The result is an object or a function of the type specified by the
second operand.

The binary operator =>* binds its second operand, which shall be of type “pointer to member of T” (where
T is a completely-defined class type) to its first operand, which shall be of type “pointer to T” or “pointer to
a class of which T is an unambiguous and accessible base class.” The result is an object or a function of the
type specified by the second operand.

The first operand is called the object expression. If the dynamic type of the object expression does not
contain the member to which the pointer refers, the behavior is undefined.

The restrictions on cv-qualification, and the manner in which the cv-qualifiers of the operands are combined
to produce the cv-qualifiers of the result, are the same as the rules for E1.E2 given in 5.2.5. [Note: it is not
possible to use a pointer to member that refers to a mutable member to modify a const class object. For
example,

struct S {
SO : i {1}
mutable int i;
}
void £()
{
const S cs;
int S::*% pm = &S::i; // pm refers to mutable member S::i
cs.*pm = 88; // ill-formed: cs is a const object
}

— end note]

If the result of .* or —>* is a function, then that result can be used only as the operand for the function call
operator (). [Ezample:

(ptr_to_obj->*ptr_to_mfct) (10);

calls the member function denoted by ptr_to_mfct for the object pointed to by ptr_to_obj. —end
example] In a .* expression whose object expression is an rvalue, the program is ill-formed if the second
operand is a pointer to member function with ref-qualifier & In a ->* expression or in a .* expression
whose object expression is an lvalue, the program is ill-formed if the second operand is a pomter to member
functlon with ref- qualzﬁer &&. The result of a .* expression is : - = = : :

sse : aty s+ whose second ope rand is a pointer to a data member is
of the same value ca‘togor}r (3. 10) as 1ts first op(‘mnd The result of a .* expression whose second operand is
a pointer to a member function is a prvalue. The result of an ->* expression is an lvalue enly if its second

§5.5 116

©ISO/IEC N3090=10-0080

operand is a pointer to data member and a prvalue otherwise. If the second operand is the null pointer to
member value (4.11), the behavior is undefined.

5.6 Multiplicative operators [expr.mul]

The multiplicative operators *, /, and % group left-to-right.

multiplicative-expression:

pm-expression

multiplicative-expression * pm-expression

multiplicative-expression / pm-expression

multiplicative-expression % pm-expression
The operands of * and / shall have arithmetic or unscoped enumeration type; the operands of % shall have
integral or unscoped enumeration type. The usual arithmetic conversions are performed on the operands
and determine the type of the result.

The binary * operator indicates multiplication.

The binary / operator yields the quotient, and the binary % operator yields the remainder from the division
of the first expression by the second. If the second operand of / or % is zero the behavior is undefined. For
integral operands the / operator yields the algebraic quotient with any fractional part discarded;®? if the
quotient a/b is representable in the type of the result, (a/b)*b + a}b is equal to a.

5.7 Additive operators [expr.add]

The additive operators + and - group left-to-right. The usual arithmetic conversions are performed for
operands of arithmetic or enumeration type.

additive-expression.:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

For addition, either both operands shall have arithmetic or unscoped enumeration type, or one operand shall
be a pointer to a completely-defined object type and the other shall have integral or unscoped enumeration

type.
For subtraction, one of the following shall hold:
— both operands have arithmetic or unscoped enumeration type; or

— both operands are pointers to cv-qualified or cv-unqualified versions of the same completely-defined
object type; or

— the left operand is a pointer to a completely-defined object type and the right operand has integral or
unscoped enumeration type.

The result of the binary + operator is the sum of the operands. The result of the binary - operator is the
difference resulting from the subtraction of the second operand from the first.

For the purposes of these operators, a pointer to a nonarray object behaves the same as a pointer to the
first element of an array of length one with the type of the object as its element type.

When an expression that has integral type is added to or subtracted from a pointer, the result has the type
of the pointer operand. If the pointer operand points to an element of an array object, and the array is
large enough, the result points to an element offset from the original element such that the difference of
the subscripts of the resulting and original array elements equals the integral expression. In other words, if

82) This is often called truncation towards zero.

§5.7 117

©ISO/IEC N3090=10-0080

the expression P points to the i-th element of an array object, the expressions (P)+N (equivalently, N+(P))
and (P)-N (where N has the value n) point to, respectively, the i + n-th and 7 — n-th elements of the array
object, provided they exist. Moreover, if the expression P points to the last element of an array object,
the expression (P)+1 points one past the last element of the array object, and if the expression Q points
one past the last element of an array object, the expression (Q)-1 points to the last element of the array
object. If both the pointer operand and the result point to elements of the same array object, or one past
the last element of the array object, the evaluation shall not produce an overflow; otherwise, the behavior is
undefined.

When two pointers to elements of the same array object are subtracted, the result is the difference of the
subscripts of the two array elements. The type of the result is an implementation-defined signed integral
type; this type shall be the same type that is defined as std: :ptrdiff_t in the <cstddef> header (18.2). As
with any other arithmetic overflow, if the result does not fit in the space provided, the behavior is undefined.
In other words, if the expressions P and Q point to, respectively, the i-th and j-th elements of an array object,
the expression (P)-(Q) has the value ¢ — j provided the value fits in an object of type std::ptrdiff_t.
Moreover, if the expression P points either to an element of an array object or one past the last element of
an array object, and the expression Q points to the last element of the same array object, the expression
((Q+1)-(P) has the same value as ((Q)-(P))+1 and as -((P)-((Q)+1)), and has the value zero if the
expression P points one past the last element of the array object, even though the expression (Q)+1 does not
point to an element of the array object. Unless both pointers point to elements of the same array object, or
one past the last element of the array object, the behavior is undefined.®3

If the value 0 is added to or subtracted from a pointer value, the result compares equal to the original pointer
value. If two pointers point to the same object or both point one past the end of the same array or both
are null, and the two pointers are subtracted, the result compares equal to the value 0 converted to the type
std::ptrdiff_t.

5.8 Shift operators [expr.shift]

The shift operators << and >> group left-to-right.

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

The operands shall be of integral or unscoped enumeration type and integral promotions are performed.
The type of the result is that of the promoted left operand. The behavior is undefined if the right operand
is negative, or greater than or equal to the length in bits of the promoted left operand.

The value of E1 << E2 is E1 left-shifted E2 bit positions; vacated bits are zero-filled. If E1 has an unsigned
type, the value of the result is E1 x 2F2, reduced modulo one more than the maximum value representable
in the result type. Otherwise, if E1 has a signed type and non-negative value, and E1 x 2F2 is representable
in the result type, then that is the resulting value; otherwise, the behavior is undefined.

The value of E1 >> E2 is E1 right-shifted E2 bit positions. If E1 has an unsigned type or if E1 has a signed
type and a non-negative value, the value of the result is the integral part of the quotient of E1/2F2. If E1

83) Another way to approach pointer arithmetic is first to convert the pointer(s) to character pointer(s): In this scheme the
integral value of the expression added to or subtracted from the converted pointer is first multiplied by the size of the object
originally pointed to, and the resulting pointer is converted back to the original type. For pointer subtraction, the result of the
difference between the character pointers is similarly divided by the size of the object originally pointed to.

When viewed in this way, an implementation need only provide one extra byte (which might overlap another object in the
program) just after the end of the object in order to satisfy the “one past the last element” requirements.

§5.8 118

©ISO/IEC N3090=10-0080

has a signed type and a negative value, the resulting value is implementation-defined.

5.9 Relational operators [expr.rel]

The relational operators group left-to-right. [Ezample: a<b<c means (a<b)<c and not (a<b)&&(b<c).
— end example]

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

The operands shall have arithmetic, enumeration, or pointer type, or type std: :nullptr_t. The operators
< (less than), > (greater than), <= (less than or equal to), and >= (greater than or equal to) all yield false
or true. The type of the result is bool.

The usual arithmetic conversions are performed on operands of arithmetic or enumeration type. Pointer
conversions (4.10) and qualification conversions (4.4) are performed on pointer operands (or on a pointer
operand and a null pointer constant, or on two null pointer constants, at least one of which is non-integral) to
bring them to their composite pointer type. If one operand is a null pointer constant, the composite pointer
type is std: :nullptr ¢t if the other operand is also a null pointer constant or, if the other operand is a
pointer, the type of the other operand. Otherwise, if one of the operands has type “pointer to cv! void,”
then the other has type “pointer to cv2 T” and the composite pointer type is “pointer to cvi2 void,” where
cv12 is the union of cv! and cv2. Otherwise, the composite pointer type is a pointer type similar (4.4) to the
type of one of the operands, with a cv-qualification signature (4.4) that is the union of the cv-qualification
signatures of the operand types. [Note: this implies that any pointer can be compared to a null pointer
constant and that any object pointer can be compared to a pointer to (possibly cv-qualified) void. — end
note| [Example:

void *p;
const int *q;
int **pi;
const int *const *pci;
void ct() {
P <= q; // Both converted to const void* before comparison
pi <= pci; // Both converted to const int *const * before comparison

}

— end example| Pointers to objects or functions of the same type (after pointer conversions) can be com-
pared, with a result defined as follows:

— If two pointers p and q of the same type point to the same object or function, or both point one past
the end of the same array, or are both null, then p<=q and p>=q both yield true and p<q and p>q
both yield false.

— If two pointers p and q of the same type point to different objects that are not members of the same
object or elements of the same array or to different functions, or if only one of them is null, the results
of p<q, p>q, p<=q, and p>=q are unspecified.

— If two pointers point to non-static data members of the same object, or to subobjects or array elements
of such members, recursively, the pointer to the later declared member compares greater provided the
two members have the same access control (Clause 11) and provided their class is not a union.

— If two pointers point to non-static data members of the same object with different access control
(Clause 11) the result is unspecified.

§5.9 119

©ISO/IEC N3090=10-0080

— If two pointers point to non-static data members of the same union object, they compare equal (after
conversion to voidx, if necessary). If two pointers point to elements of the same array or one beyond
the end of the array, the pointer to the object with the higher subscript compares higher.

— Other pointer comparisons are unspecified.

Pointers to void (after pointer conversions) can be compared, with a result defined as follows: If both
pointers represent the same address or are both the null pointer value, the result is true if the operator is
<= or >= and false otherwise; otherwise the result is unspecified.

If two operands of type std::nullptr_t are compared, the result is true if the operator is <= or >=, and
false otherwise.

If both operands (after conversions) are of arithmetic or enumeration type, each of the operators shall yield
true if the specified relationship is true and false if it is false.

5.10 Equality operators [expr.eq]

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression '= relational-expression

The == (equal to) and the != (not equal to) operators have the same semantic restrictions, conversions, and
result type as the relational operators except for their lower precedence and truth-value result. [Note: a<b
== c<d is true whenever a<b and c<d have the same truth-value. — end note] Pointers of the same type
(after pointer conversions) can be compared for equality. Two pointers of the same type compare equal if
and only if they are both null, both point to the same function, or both represent the same address (3.9.2).

In addition, pointers to members can be compared, or a pointer to member and a null pointer constant.
Pointer to member conversions (4.11) and qualification conversions (4.4) are performed to bring them to a
common type. If one operand is a null pointer constant, the common type is the type of the other operand.
Otherwise, the common type is a pointer to member type similar (4.4) to the type of one of the operands,
with a cv-qualification signature (4.4) that is the union of the cv-qualification signatures of the operand
types. [Note: this implies that any pointer to member can be compared to a null pointer constant. — end
note] If both operands are null, they compare equal. Otherwise if only one is null, they compare unequal.
Otherwise if either is a pointer to a virtual member function, the result is unspecified. Otherwise they
compare equal if and only if they would refer to the same member of the same most derived object (1.8)
or the same subobject if they were dereferenced with a hypothetical object of the associated class type.
[Example:

struct B {
int £();

};

struct L : B { }

struct R : B { };

struct D : L, R { };

)

int (B::*pb) () = &B::f;

int (L::*pl) () = pb;

int (R::*pr)() = pb;

int (D::*pdl)) = pl;

int (D::*pdr) () = pr;

bool x = (pdl == pdr); // false

— end example]

§5.10 120

©ISO/IEC N3090=10-0080

If two operands of type std: :nullptr_t are compared, the result is true if the operator is ==, and false
otherwise.

Each of the operators shall yield true if the specified relationship is true and false if it is false.

5.11 Bitwise AND operator [expr.bit.and]

and-expression:
equality-expression
and-expression & equality-expression
The usual arithmetic conversions are performed; the result is the bitwise AND function of the operands. The
operator applies only to integral or unscoped enumeration operands.

5.12 Bitwise exclusive OR operator [expr.xor]

exclusive-or-expression:
and-expression
exclusive-or-expression ~ and-expression

The usual arithmetic conversions are performed; the result is the bitwise exclusive OR function of the
operands. The operator applies only to integral or unscoped enumeration operands.

5.13 Bitwise inclusive OR operator [expr.or|

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression | exclusive-or-expression

The usual arithmetic conversions are performed; the result is the bitwise inclusive OR function of its operands.
The operator applies only to integral or unscoped enumeration operands.

5.14 Logical AND operator [expr.log.and]

logical-and-expression:
inclusive-or-expression
logical-and-expression && inclusive-or-expression

The && operator groups left-to-right. The operands are both contextually converted to type bool (Clause 4).
The result is true if both operands are true and false otherwise. Unlike &, && guarantees left-to-right
evaluation: the second operand is not evaluated if the first operand is false.

The result is a bool. If the second expression is evaluated, every value computation and side effect associated
with the first expression is sequenced before every value computation and side effect associated with the
second expression.

5.15 Logical OR operator [expr.log.or|

logical-or-expression:
logical-and-expression
logical-or-expression || logical-and-expression

The || operator groups left-to-right. The operands are both contextually converted to bool (Clause 4). It
returns true if either of its operands is true, and false otherwise. Unlike |, || guarantees left-to-right
evaluation; moreover, the second operand is not evaluated if the first operand evaluates to true.

§5.15 121

©ISO/IEC N3090=10-0080

The result is a bool. If the second expression is evaluated, every value computation and side effect associated
with the first expression is sequenced before every value computation and side effect associated with the
second expression.

5.16 Conditional operator [expr.cond]

conditional-expression:

logical-or-expression

logical-or-expression 7 expression : assignment-exrpression
Conditional expressions group right-to-left. The first expression is contextually converted to bool (Clause 4).
It is evaluated and if it is true, the result of the conditional expression is the value of the second expression,
otherwise that of the third expression. Only one of the second and third expressions is evaluated. Every value
computation and side effect associated with the first expression is sequenced before every value computation
and side effect associated with the second or third expression.

If either the second or the third operand has type (possibly cv-qualified) void, then the lvalue-to-rvalue (4.1),
array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are performed on the second and
third operands, and one of the following shall hold:

— The second or the third operand (but not both) is a throw-expression (15.1); the result is of the type
of the other and is an—+vatue a prvalue.

— Both the second and the third operands have type void; the result is of type void and is an—+valie a
prvalue. [Note: this includes the case where both operands are throw-expressions. — end note]

Otherwise, if the second and third operand have different types and either has (possibly cv-qualified) class
type, or if both are fvalues glvalues of the same value category and the same type except for cv-qualification,
an attempt is made to convert each of those operands to the type of the other. The process for determining
whether an operand expression E1 of type T1 can be converted to match an operand expression E2 of type
T2 is defined as follows:

— If E2 is an lvalue: E1 can be converted to match E2 if E1 can be implicitly converted (Clause 4) to the
type “lvalue reference to T2”, subject to the constraint that in the conversion the reference must bind
directly (8.5.3) to an lvalue.

— If E2 is an xvalue: E1 can be converted to match E2 if E1 can be implicitly converted to the type

“rvalue reference to T2”, subject to the constraint that the reference must bind directly.

— If E2 is an rvalue or if neither of the conversions above cannet be done and at least one of the operands
has (possibly cv-qualified) class type:

— if E1 and E2 have class type, and the underlying class types are the same or one is a base class
of the other: E1 can be converted to match E2 if the class of T2 is the same type as, or a base
class of, the class of T1, and the cv-qualification of T2 is the same cv-qualification as, or a greater
cv-qualification than, the cv-qualification of T1. If the conversion is applied, E1 is changed to an
rvatae a prvalue of type T2 by copy-initializing a temporary of type T2 from E1 and using that
temporary as the converted operand.

— Otherwise (i.e., if E1 or E2 has a nonclass type, or if they both have class types but the underlying
classes are not either the same or one a base class of the other): E1 can be converted to match E2
if E1 can be implicitly converted to the type that expression E2 would have if E2 were converted
to an—rvakie a prvalue (or the type it has, if E2 is an—+valae a prvalue).

Using this process, it is determined whether the second operand can be converted to match the third
operand, and whether the third operand can be converted to match the second operand. If both can
be converted, or one can be converted but the conversion is ambiguous, the program is ill-formed.

§ 5.16 122

©ISO/IEC N3090=10-0080

If neither can be converted, the operands are left unchanged and further checking is performed as
described below. If exactly one conversion is possible, that conversion is applied to the chosen operand
and the converted operand is used in place of the original operand for the remainder of this section.

If the second and third operands are lvalues glvalues of the same value category and have the same type, the
result is of that type and is—antvalie value category and it is a bit-field if the second or the third operand
is a bit-field, or if both are bit-fields.

Otherwise, the result is an—+valie a prvalue. If the second and third operands do not have the same type,
and either has (possibly cv-qualified) class type, overload resolution is used to determine the conversions (if
any) to be applied to the operands (13.3.1.2, 13.6). If the overload resolution fails, the program is ill-formed.
Otherwise, the conversions thus determined are applied, and the converted operands are used in place of the
original operands for the remainder of this section.

Lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are per-
formed on the second and third operands. After those conversions, one of the following shall hold:

— The second and third operands have the same type; the result is of that type. If the operands have
class type, the result is an+valie a prvalue temporary of the result type, which is copy-initialized from
either the second operand or the third operand depending on the value of the first operand.

— The second and third operands have arithmetic or enumeration type; the usual arithmetic conversions
are performed to bring them to a common type, and the result is of that type.

— The second and third operands have pointer type, or one has pointer type and the other is a null
pointer constant, or both are null pointer constants, at least one of which is non-integral; pointer
conversions (4.10) and qualification conversions (4.4) are performed to bring them to their composite
pointer type (5.9). The result is of the composite pointer type.

— The second and third operands have pointer to member type, or one has pointer to member type and the
other is a null pointer constant; pointer to member conversions (4.11) and qualification conversions (4.4)
are performed to bring them to a common type, whose cv-qualification shall match the cv-qualification
of either the second or the third operand. The result is of the common type.

5.17 Assignment and compound assignment operators [expr.ass|

The assignment operator (=) and the compound assignment operators all group right-to-left. All require a
modifiable lvalue as their left operand and return an lvalue referring to the left operand. The result in all
cases is a bit-field if the left operand is a bit-field. In all cases, the assignment is sequenced after the value
computation of the right and left operands, and before the value computation of the assignment expression.
With respect to an indeterminately-sequenced function call, the operation of a compound assignment is
a single evaluation. [Note: Therefore, a function call shall not intervene between the lvalue-to-rvalue
conversion and the side effect associated with any single compound assignment operator. — end note|

assignment-expression:
conditional-expression
logical-or-expression assignment-operator initializer-clause
throw-expression
assignment-operator: one of
= %= /= Y= += —= >>= <K= &= "= |=
In simple assignment (=), the value of the expression replaces that of the object referred to by the left
operand.

If the left operand is not of class type, the expression is implicitly converted (Clause 4) to the cv-unqualified
type of the left operand.

§ 5.17 123

©ISO/IEC N3090=10-0080

If the left operand is of class type, the class shall be complete. Assignment to objects of a class is defined
by the copy/move assignment operator (12.8, 13.5.3).

[Note: For class objects, assignment is not in general the same as initialization (8.5, 12.1, 12.6, 12.8). — end
note]

When the left operand of an assignment operator denotes a reference to T, the operation assigns to the
object of type T denoted by the reference.

The behavior of an expression of the form E1 op = E2 is equivalent to E1 = E1 op E2 except that E1 is
evaluated only once. In += and -=, E1 shall either have arithmetic type or be a pointer to a possibly
cv-qualified completely-defined object type. In all other cases, E1 shall have arithmetic type.

If the value being stored in an object is accessed from another object that overlaps in any way the storage of
the first object, then the overlap shall be exact and the two objects shall have the same type, otherwise the
behavior is undefined. [Note: This restriction applies to the relationship between the left and right sides of
the assignment operation; it is not a statement about how the target of the assignment may be aliased in
general. See 3.10. — end note]

A braced-init-list may appear on the right-hand side of

— an assignment to a scalar, in which case the initializer list shall have at most a single element. The
meaning of x={v}, where T is the scalar type of the expression x, is that of x=T(v) except that no
narrowing conversion (8.5.4) is allowed. The meaning of x={} is x=T().

— an assignment defined by a user-defined assignment operator, in which case the initializer list is passed
as the argument to the operator function.

[Ezample:
complex<double> z;
z=91,2}; // meaning z.operator=({1,2})
z+={1, 2 }; // meaning z.operator+=({1,2})
int a, b;
a=b={113 // meaning a=b=1;
a={1}=n0; // syntax error

— end example]

5.18 Comma operator [expr.commal]

The comma operator groups left-to-right.

expression:
assignment-expression
expression , assignment-erpression

A pair of expressions separated by a comma is evaluated left-to-right and the value of the left expression
is discarded.®* The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard
conversions are not applied to the left expression. Every value computation and side effect associated with
the left expression is sequenced before every value computation and side effect associated with the right
expression. The type and value of the result are the type and value of the right operand; the result is an
Fvatueif of the same value category as its right operand-is-an-tvalue, and is a bit-field if its right operand is
antvatie a glvalue and a bit-field.

84) However, an invocation of an overloaded comma operator is an ordinary function call; hence, the evaluations of its argument
expressions are unsequenced relative to one another (see 1.9).

§5.18 124

©ISO/IEC N3090=10-0080

In contexts where comma is given a special meaning, [Ezample: in lists of arguments to functions (5.2.2)
and lists of initializers (8.5) — end example] the comma operator as described in Clause 5 can appear only
in parentheses. [Ezample:

f(a, (=3, t+2), c);

has three arguments, the second of which has the value 5. — end example]

5.19 Constant expressions [expr.const]

Certain contexts require expressions that satisfy additional requirements as detailed in this sub-clause. Such
expressions are called constant expressions. [Note: Those expressions can be evaluated during translation. —
end note

constant-expression:
conditional-expression

A conditional-expression is a constant expression unless it involves one of the following as a potentially evalu-
ated subexpression (3.2), but subexpressions of logical AND (5.14), logical OR (5.15), and conditional (5.16)
operations that are not evaluated are not considered [Note: an overloaded operator invokes a function. — end
note|:

— this (5.1) unless it appears as the postfiz-expression in a class member access expression, including
the result of the implicit transformation in the body of a non-static member function (9.3.1);

— an invocation of a function other than a constexpr function or a constexpr constructor [Note: overload
resolution (13.3) is applied as usual — end note|;

— a—direet—or—indireet an invocation of an undefined constexpr function or an undefined constexpr
constructor outside the definition of a constexpr function or a constexpr constructor;

— an invocation of a constexpr function with arguments that, when implicitly converted to the corresponding

parameter types and substituted for the corresponding parameters in the potential constant expression
of the constexpr function, and the resulting expression implicitly converted to the return type, do not
produce a constant expression; [Example:

constexpr const int* addr(const int& ir) { return &ir; } // OK

static const int x = 5;

constexpr const int* xp = addr(x); // OK: (const intx*)&(const int&)x is an
// address contant expression

addr(5); // error, initializer for constexpr variable not a constant
// expression; (const int*)&(const int&)5 is not a constant
// expression because it takes the address of a temporary

constexpr const int* tp

end example]

— a result that is not mathematically defined or not in the range of representable values for its type;
— a lambda-expression (5.1.2);
— an lvalue-to-rvalue conversion (4.1) unless it is applied to

— antvalie a glvalue of integral or enumeration type that refers to a non-volatile const variable
object with a preceding initialization, initialized with a constant expression, or

— antvalue a glvalue of literal type that refers to a non-volatile object defined with constexpr, or
that refers to a sub-object of such an objects, or

§5.19 125

©ISO/IEC N3090=10-0080

— a glvalue of literal type that refers to a non-volatile temporary object initialized with a constant

expression;3?

— an array-to-pointer conversion (4.2) that is applied to antvalae a glvalue that does not designates an
object with thread-er-automatie static storage duration;

— a unary operator & (5.3.1) that is applied to an lvalue that does not designates an object with thread
er-attomatie static storage duration;

— an id-expression that refers to a variable or data member of reference type;®¢
— a dynamic cast (5.2.7);

— a type conversion from a pointer or pointer-to-member type to a literal type [Note: a user-defined
conversion invokes a function — end note];

— a pseudo-destructor call (5.2.4);

— increment or decrement operations (5.2.6, 5.3.2);

— a typeid expression (5.2.8) whose operand is of a polymorphic class type;

— a new-ezpression (5.3.4);

— a delete-expression (5.3.5);

— a subtraction (5.7) where both operands are pointers;

— a relational (5.9) or equality (5.10) operator where at least one of the operands is a pointer;
— an assignment or a compound assignment (5.17); or

— a throw-ezpression (15.1).

3 A constant expression is an integral constant expression if it is of integral or enumeration type. [Note: such
expressions may be used as array bounds (8.3.4, 5.3.4), as case expressions (6.4.2), as bit-field lengths (9.6),
as enumerator initializers (7.2), and as integral or enumeration non-type template arguments (14.4). — end
note |

4 [Note: Although in some contexts constant expressions must be evaluated during program translation, others
may be evaluated during program execution. Since this International Standard imposes no restrictions on the
accuracy of floating-point operations, it is unspecified whether the evaluation of a floating-point expression
during translation yields the same result as the evaluation of the same expression (or the same operations
on the same values) during program execution.®” [Ezample:

bool £() {
char array[l + int(1 + 0.2 - 0.1 - 0.1)1; // Must be evaluated during translation
int size = 1 + int(1 + 0.2 - 0.1 - 0.1); // May be evaluated at runtime
return sizeof (array) == size;

It is unspecified whether the value of £() will be true or false. — end example] — end note |

85) The temporary must be part of the constant expression, as any longer-lived temporary would have to be bound to a
reference, and reference variables cannot appear in a constant expression.

86) Use of a reference parameter of a constexpr function does not prevent the body from being a potential constant expression
because the parameters are replaced by constant expressions during that determination, and later by arguments to a call.

87) Nonetheless, implementations are encouraged to provide consistent results, irrespective of whether the evaluation was
actually performed during translation or during program execution.

§5.19 126

©ISO/IEC N3090=10-0080

5 If an expression of literal class type is used in a context where an integral constant expression is required,
then that class type shall have a single non-explicit conversion function to an integral or enumeration type
and that conversion function shall be constexpr. [Ezample:

struct A {
constexpr A(int i) : val(i) { }
constexpr operator int() { return val; }
constexpr operator long() { return 43; }
private:
int val;
};
template<int> struct X { };
constexpr A a = 42;
X<a> x; // OK: unique conversion to int
int arylal; // error: ambiguous conversion

— end example|

6 An expression is a potential constant expression if it is a constant expression when all occurrences of function
parameters are replaced as follows:

— for non-reference parameters, by arbitrary prvalue constant expressions of the appropriate types;

— for lvalue reference parameters, by arbitrary variables of the referred-to types with static storage
duration initialized with constant expressions; or

— for rvalue reference parameters, by arbitrary prvalue constant expressions of the referred-to types
implicitly converted to the types of the parameters.

§5.19 127

©ISO/IEC N3090=10-0080

6 Statements [stmt.stmt]

Except as indicated, statements are executed in sequence.

statement:
labeled-statement
attribute-specifierop: expression-statement
attribute-specifierop; compound-statement
attribute-specifierop; selection-statement
attribute-specifierop: iteration-statement
attribute-specifierop; jump-statement
declaration-statement
attribute-specifierop: try-block

The optional attribute-specifier appertains to the respective statement.

6.1 Labeled statement [stmt.label]

A statement can be labeled.
labeled-statement:
attribute-specifierop: identifier : statement
attribute-specifier,p; case constant-expression : statement
attribute-specifier,p; default : statement

The optional attribute-specifier appertains to the label. An identifier label declares the identifier. The only
use of an identifier label is as the target of a goto. The scope of a label is the function in which it appears.
Labels shall not be redeclared within a function. A label can be used in a goto statement before its definition.
Labels have their own name space and do not interfere with other identifiers.

Case labels and default labels shall occur only in switch statements.

6.2 Expression statement [stmt.expr|

Expression statements have the form

expression-statement:
eTPTessioNopt 3

The expression is evaluated and its value is discarded. The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and
function-to-pointer (4.3) standard conversions are not applied to the expression. All side effects from an
expression statement are completed before the next statement is executed. An expression statement with the
expression missing is called a null statement. [Note: Most statements are expression statements — usually
assignments or function calls. A null statement is useful to carry a label just before the } of a compound

statement and to supply a null body to an iteration statement such as a while statement (6.5.1). —end
note]
6.3 Compound statement or block [stmt.block]

So that several statements can be used where one is expected, the compound statement (also, and equiva-
lently, called “block”) is provided.

compound-statement:
{ statement-seqopt ¥

§ 6.3 128

©ISO/IEC N3090=10-0080

statement-seq:
statement
statement-seq statement

A compound statement defines a leeal block scope (3.3). [Note: a declaration is a statement (6.7). — end
note |

6.4 Selection statements [stmt.select]

Selection statements choose one of several flows of control.

selection-statement:
if (condition) statement
if (condition) statement else statement
switch (condition) statement

condition:
expression

attribute-specifieryy, type-specifier-seq &tﬂ—%bd%e—tvﬁe(—lf%ﬂﬁ* declarator = initializer-clause
attribute-specifier,y, type-specifier-seq ttrs 26 declarator braced-init-list

T opt

See 8.3 for the optional attribute-specifier in a condition. In Clause 6, the term substatement refers to the
contained statement or statements that appear in the syntax notation. The substatement in a selection-
statement (each substatement, in the else form of the if statement) implicitly defines a leeal block
scope (3.3). If the substatement in a selection-statement is a single statement and not a compound-statement,
it is as if it was rewritten to be a compound-statement containing the original substatement. [Ezample:

if (x)
int i;

can be equivalently rewritten as

if (x) {
int i;

}

Thus after the if statement, i is no longer in scope. — end ezample]

The rules for conditions apply both to selection-statements and to the for and while statements (6.5). The
declarator shall not specify a function or an array. If the auto type-specifier appears in the type-specifier-seq,
the type of the identifier being declared is deduced from the initializer as described in 7.1.6.4.

A name introduced by a declaration in a condition (either introduced by the type-specifier-seq or the declara-
tor of the condition) is in scope from its point of declaration until the end of the substatements controlled
by the condition. If the name is re-declared in the outermost block of a substatement controlled by the
condition, the declaration that re-declares the name is ill-formed. [Example:

if (int x = £Q)) {

int x; // ill-formed, redeclaration of x
}
else {

int x; // ill-formed, redeclaration of x
}

— end example]

The value of a condition that is an initialized declaration in a statement other than a switch statement is the
value of the declared variable contextually converted to bool (Clause 4). If that conversion is ill-formed, the
program is ill-formed. The value of a condition that is an initialized declaration in a switch statement is the

§ 6.4 129

©ISO/IEC N3090=10-0080

value of the declared variable if it has integral or enumeration type, or of that variable implicitly converted
to integral or enumeration type otherwise. The value of a condition that is an expression is the value of the
expression, contextually converted to bool for statements other than switch; if that conversion is ill-formed,
the program is ill-formed. The value of the condition will be referred to as simply “the condition” where the
usage is unambiguous.

If a condition can be syntactically resolved as either an expression or the declaration of a leeal block-scope
name, it is interpreted as a declaration.

6.4.1 The if statement [stmt.if]

If the condition (6.4) yields true the first substatement is executed. If the else part of the selection
statement is present and the condition yields false, the second substatement is executed. In the second
form of if statement (the one including else), if the first substatement is also an if statement then that
inner if statement shall contain an else part.3®

6.4.2 The switch statement [stmt.switch]

The switch statement causes control to be transferred to one of several statements depending on the value
of a condition.

The condition shall be of integral type, enumeration type, or of a class type for which a single non-explicit
conversion function to integral or enumeration type exists (12.3). If the condition is of class type, the
condition is converted by calling that conversion function, and the result of the conversion is used in place of
the original condition for the remainder of this section. Integral promotions are performed. Any statement
within the switch statement can be labeled with one or more case labels as follows:

case constant-expression :

where the constant-expression shall be an integral constant expression (5.19). The integral constant expres-
sion is implicitly converted to the promoted type of the switch condition. No two of the case constants in
the same switch shall have the same value after conversion to the promoted type of the switch condition.

There shall be at most one label of the form

default :

within a switch statement.

Switch statements can be nested; a case or default label is associated with the smallest switch enclosing
it.

When the switch statement is executed, its condition is evaluated and compared with each case constant. If
one of the case constants is equal to the value of the condition, control is passed to the statement following
the matched case label. If no case constant matches the condition, and if there is a default label, control
passes to the statement labeled by the default label. If no case matches and if there is no default then
none of the statements in the switch is executed.

case and default labels in themselves do not alter the flow of control, which continues unimpeded across
such labels. To exit from a switch, see break, 6.6.1. [Note: usually, the substatement that is the subject
of a switch is compound and case and default labels appear on the top-level statements contained within

88) In other words, the else is associated with the nearest un-elsed if.

§ 6.4.2 130

©ISO/IEC N3090=10-0080

the (compound) substatement, but this is not required. Declarations can appear in the substatement of a
switch-statement. — end note]

6.5 Iteration statements [stmt.iter]

Tteration statements specify looping.

iteration-statement:
while (condition) statement
do statement while (expression) ;
for (for-init-statement conditionoy: ; erpressionop:) statement
for (for-range-declaration : expression) statement

for-init-statement:
expression-statement
stmple-declaration

for-range-declaration:
attribute-specifier,y, type-specifier-seq ttrs

declarator

“Topt

See 8.3 for the optional attribute-specifier in a for-range-declaration. [Note: a for-init-statement ends with
a semicolon. — end note]

The substatement in an iteration-statement implicitly defines a loeal block scope (3.3) which is entered and
exited each time through the loop.

If the substatement in an iteration-statement is a single statement and not a compound-statement, it is as if
it was rewritten to be a compound-statement containing the original statement. [Example:

while (--x >= 0)
int i;
can be equivalently rewritten as

while (--x >= 0) {

int i;
}
Thus after the while statement, i is no longer in scope. — end example]
[Note: The requirements on conditions in iteration statements are described in 6.4. — end note]

A loop that, outside of the for-init-statement in the case of a for statement,
— makes no calls to library I/O functions, and
— does not access or modify volatile objects, and
— performs no synchronization operations (1.10) or atomic operations (Clause 29)

may be assumed by the implementation to terminate. [Note: This is intended to allow compiler transfor-
mations, such as removal of empty loops, even when termination cannot be proven. — end note]

6.5.1 The while statement [stmt.while|

In the while statement the substatement is executed repeatedly until the value of the condition (6.4) becomes
false. The test takes place before each execution of the substatement.

When the condition of a while statement is a declaration, the scope of the variable that is declared extends
from its point of declaration (3.3.2) to the end of the while statement. A while statement of the form

§ 6.5.1 131

©ISO/IEC N3090=10-0080

while (T t = x) statement

is equivalent to

label:
{ // start of condition scope
Tt =x;
if () {
statement
goto label;
}
} // end of condition scope

The ebjeet variable created in a condition is destroyed and created with each iteration of the loop. [Ezample:

struct A {

int val;

A(int i) : val(i) { }

“AOQ {1}

operator bool() { return val != 0; }
}

int i = 1;
while (A a = i) {

//

In the while-loop, the constructor and destructor are each called twice, once for the condition that succeeds
and once for the condition that fails. — end ezample]

6.5.2 The do statement [stmt.do]

The expression is contextually converted to bool (Clause 4); if that conversion is ill-formed, the program is
ill-formed.

In the do statement the substatement is executed repeatedly until the value of the expression becomes false.
The test takes place after each execution of the statement.

6.5.3 The for statement [stmt.for]
The for statement
for (for-init-statement condition.y: ; erpressionep:) statement

is equivalent to

{
for-init-statement
while (condition) {
statement
exrpression ;
}
}

except that names declared in the for-init-statement are in the same declarative-region as those declared in
the condition, and except that a continue in statement (not enclosed in another iteration statement) will
execute expression before re-evaluating condition. [Note: Thus the first statement specifies initialization for
the loop; the condition (6.4) specifies a test, made before each iteration, such that the loop is exited when

§6.5.3 132

©ISO/IEC N3090=10-0080

the condition becomes false; the expression often specifies incrementing that is done after each iteration.
— end note

Either or both of the condition and the expression can be omitted. A missing condition makes the implied
while Clause equivalent to while(true).

If the for-init-statement is a declaration, the scope of the name(s) declared extends to the end of the for-
statement. | Example:

int i = 42;

int a[10];

for (int i = 0; i < 10; i++)
ali] = i;

int j = i; //j = 42
— end example]

6.5.4 The range-based for statement [stmt.ranged]

The range-based for statement
for (for-range-declaration : expression) statement

is equivalent to

{
auto &% __range = (ezpression);
for (auto __begin = begin-expr,
__end = end-ezpr;
__begin != __end;
++__begin) {
for-range-declaration = *__begin;
statement
}
}

where __range, __begin, and __end are variables defined for exposition only, and _RangeT is the type of
the expression, and begin-ezpr and end-expr are determined as follows:.

— if _RangeT is an array type, begin-ezpr and end-erpr are __range and __range + __bound, respec-
tively, where __bound is the array bound. If _RangeT is an array of unknown size or an array of
incomplete type, the program is ill-formed.

— otherwise, begin-expr and end-expr are begin(__range) and end(__range), respectively, where begin
and end are looked up with argument-dependent lookup (3.4.2). For the purposes of this name lookup,
namespace std is an associated namespace.

[Example:

int array(5] = {1, 2, 3, 4, 5 };
for (int& x : array)
X *x= 2;

— end example|

§ 6.5.4 133

©ISO/IEC N3090=10-0080

6.6 Jump statements [stmt.jump]

Jump statements unconditionally transfer control.

Jump-statement:
break ;
continue ;
return expressiongp: ;
return braced-init-list ;
goto identifier ;

On exit from a scope (however accomplished), variables objects with automatic storage duration (3.7.3) that
have been constructed in that scope are destroyed in the reverse order of their construction. [Note: For
temporaries, see 12.2. — end note | Transfer out of a loop, out of a block, or back past an initialized variable
with automatic storage duration involves the destruction of ¥ariables objects with automatic storage duration
that are in scope at the point transferred from but not at the point transferred to. (See 6.7 for transfers into
blocks). [Note: However, the program can be terminated (by calling std::exit () or std::abort() (18.5),
for example) without destroying class objects with automatic storage duration. — end note]

6.6.1 The break statement [stmt.break]

The break statement shall occur only in an iteration-statement or a switch statement and causes termination
of the smallest enclosing iteration-statement or switch statement; control passes to the statement following
the terminated statement, if any.

6.6.2 The continue statement [stmt.cont]

The continue statement shall occur only in an dteration-statement and causes control to pass to the loop-
continuation portion of the smallest enclosing iteration-statement, that is, to the end of the loop. More
precisely, in each of the statements

while (foo) { do { for (;;) {
{ { {
/. /) .. /) ..
} } }
contin: ; contin: ; contin: ;
} } while (foo); }

a continue not contained in an enclosed iteration statement is equivalent to goto contin.

6.6.3 The return statement [stmt.return]

A function returns to its caller by the return statement.

A return statement without an expression can be used only in functions that do not return a value, that is,
a function with the return type void, a constructor (12.1), or a destructor (12.4). A return statement with
an expression of non-void type can be used only in functions returning a value; the value of the expression
is returned to the caller of the function. The value of the expression is implicitly converted to the return
type of the function in which it appears. A return statement can involve the construction and copy or move
of a temporary object (12.2). [Note: A copy or move operation associated with a return statement may
be elided or considered as an rvalue for the purpose of overload resolution in selecting a constructor (12.8).
— end note| A return statement with a braced-init-list initializes the object or reference to be returned from
the function by copy-list-initialization (8.5.4) from the specified initializer list. [Ezample:

std::pair<std::string,int> f(const char* p, int x) {
return {p,x};

§6.6.3 134

©ISO/IEC N3090=10-0080

}

— end example]

Flowing off the end of a function is equivalent to a return with no value; this results in undefined behavior
in a value-returning function.

A return statement with an expression of type “cv void” can be used only in functions with a return type
of cv void; the expression is evaluated just before the function returns to its caller.

6.6.4 The goto statement [stmt.goto]

The goto statement unconditionally transfers control to the statement labeled by the identifier. The identifier
shall be a label (6.1) located in the current function.

6.7 Declaration statement [stmt.dcl]

A declaration statement introduces one or more new identifiers into a block; it has the form

declaration-statement:
block-declaration
If an identifier introduced by a declaration was previously declared in an outer block, the outer declaration
is hidden for the remainder of the block, after which it resumes its force.

Variables with automatic storage duration (3.7.3) are initialized each time their declaration-statement is
executed. Variables with automatic storage duration declared in the block are destroyed on exit from the
block (6.6).

It is possible to transfer into a block, but not in a way that bypasses declarations with initialization. A
program that jumps®® from a point where a leeal variable with automatic storage duration is not in scope to
a point where it is in scope is ill-formed unless the variable has scalar type, class type with a trivial default
constructor and a trivial destructor, a cv-qualified version of one of these types, or an array of one of the
preceding types and is declared without an initializer (8.5). [Example:

void £() {
goto 1x; // ill-formed: jump into scope of a
1ly:
Xa=1;
1x:
goto ly; // OK, jump implies destructor
// call for a followed by construction
// again immediately following label 1y
}

— end example|

The zero-initialization (8.5) of all leeal block-scope ebjeets variables with static storage duration (3.7.1) or
thread storage duration (3.7.2) is performed before any other initialization takes place. Constant initial-
ization (3.6.2) of a leeal block-scope entity with static storage duration, if applicable, is performed before
its block is first entered. An implementation is permitted to perform early initialization of other leeal
block-scope ebjeets variables with static or thread storage duration under the same conditions that an im-
plementation is permitted to statically initialize an-ebjeet a variable with static or thread storage duration

89) The transfer from the condition of a switch statement to a case label is considered a jump in this respect.

§ 6.7 135

2

©ISO/IEC N3090=10-0080

in namespace scope (3.6.2). Otherwise such an-ebjeet a variable is initialized the first time control passes
through its declaration; such an—ebjeet a variable is considered initialized upon the completion of its ini-
tialization. If the initialization exits by throwing an exception, the initialization is not complete, so it will
be tried again the next time control enters the declaration. If control enters the declaration concurrently
while the ebjeet variable is being initialized, the concurrent execution shall wait for completion of the ini-
tialization.’® If control re-enters the declaration recursively while the ebjeet variable is being initialized, the
behavior is undefined. [Example:

int foo(int i) {
static int s = foo(2xi); // recursive call - undefined
return i+1;

}

— end example]

The destructor for a teeat block-scope object with static or thread storage duration will be executed if and
only if the-variable it was constructed. [Note: 3.6.3 describes the order in which leeal block-scope objects
with static and thread storage duration are destroyed. — end note|

6.8 Ambiguity resolution [stmt.ambig)|

There is an ambiguity in the grammar involving expression-statements and declarations: An expression-
statement with a function-style explicit type conversion (5.2.3) as its leftmost subexpression can be indis-
tinguishable from a declaration where the first declarator starts with a (. In those cases the statement is a
declaration. [Note: To disambiguate, the whole statement might have to be examined to determine if it is
an expression-statement or a declaration. This disambiguates many examples. [Ezample: assuming T is a
sitmple-type-specifier (7.1.6),

T(a)->m = 7; // expression-statement
T(a)++; // expression-statement
T(a,5)<<c; // expression-statement
T(*d) (int) ; // declaration
T(e) [5]; // declaration

T = {1, 23 // declaration
T(*g) (double(3)); // declaration

In the last example above, g, which is a pointer to T, is initialized to double(3). This is of course ill-formed
for semantic reasons, but that does not affect the syntactic analysis. — end ezample]

The remaining cases are declarations. [Ezample:

class T {
public:

TO;

T(int);

T(int, int);
};
T(a); // declaration
T(xb) O); // declaration
T(c)=7; // declaration
T(d),e,f=3; // declaration
extern int h;
T(g) (h,2); // declaration

90) The implementation must not introduce any deadlock around execution of the initializer.

§ 6.8 136

©ISO/IEC N3090=10-0080

— end example] — end note]

The disambiguation is purely syntactic; that is, the meaning of the names occurring in such a statement,
beyond whether they are type-names or not, is not generally used in or changed by the disambiguation. Class
templates are instantiated as necessary to determine if a qualified name is a type-name. Disambiguation
precedes parsing, and a statement disambiguated as a declaration may be an ill-formed declaration. If,
during parsing, a name in a template parameter is bound differently than it would be bound during a trial
parse, the program is ill-formed. No diagnostic is required. [Note: This can occur only when the name is
declared earlier in the declaration. — end note| [Example:

struct T1 {
T1 operator() (int x) { return Ti(x); }
int operator=(int x) { return x; }
Ti(int) { }

3

struct T2 { T2@int){ } };

int a, (x(xb)(T2)) (int), c, d;

void £() {
// disambiguation requires this to be parsed as a declaration:
Ti(a) = 3,
T2(4), // T2 will be declared as
(¢ (*b) (T2(c))) (int (d)); // a variable of type T1
// but this will not allow
// the last part of the
// declaration to parse
// properly since it depends
// on T2 being a type-name
}

— end example]

§ 6.8 137

©ISO/IEC N3090=10-0080

7 Declarations [dcl.dcl]

1 Declarations generally specify how names are to be interpreted. Declarations have the form

declaration-seq:
declaration
declaration-seq declaration

declaration:
block-declaration
function-definition
template-declaration
explicit-instantiation
explicit-specialization
linkage-specification
namespace-definition
empty-declaration
attribute-declaration

block-declaration:
stmple-declaration
asm-definition
namespace-alias-definition
using-declaration
using-directive
static__assert-declaration
alias-declaration
opaque-enum-declaration

alias-declaration:
using identifier = type-id ;
simple-declaration:
attribute-specifierop; decl-specifier-seqopt attribute—specifiersm— init-declarator-listop: ;
static__assert-declaration:
static_assert (constant-expression , string-literal) ;
empty-declaration:
attribute-declaration:
attribute-specifier ;
[Note: asm-definitions are described in 7.4, and linkage-specifications are described in 7.5. Function-
definitions are described in 8.4 and template-declarations are described in Clause 14. Namespace-definitions

are described in 7.3.1, using-declarations are described in 7.3.3 and using-directives are described in 7.3.4.
— end note

The simple-declaration

attribute-specifierop: decl-specifier-seqopt Fopr— nit-declarator-list,p ;

is divided into fews three parts. Atrributes are described in 7 6. decl- speczﬁers the principal compo-
nents of a decl- speczj'ier-seq7 are described in 7.1. ¢ declarators,
the components of an init-declarator-list, are described in Clause 8. The optlonal n//rzbu/(’ specifier in a
simple-declaration appertains to each of the entities declared by the declarators; it shall not appear if the

138

©ISO/IEC N3090=10-0080

optional ingt-declarator-list is omitted. [Note: In the declaration for an entity, attributes appertaining to
that entity may appear at the start of the declaration and after the declarator-id for that declaration.
— end note] [Example:

[[noreturn, nothrow]] void f [[noreturn]] O; // OK

— end example

Except where otherwise specified, the meaning of an attribute-declaration is implementation-defined.

A declaration occurs in a scope (3.3); the scope rules are summarized in 3.4. A declaration that declares a
function or defines a class, namespace, template, or function also has one or more scopes nested within it.
These nested scopes, in turn, can have declarations nested within them. Unless otherwise stated, utterances
in Clause 7 about components in, of, or contained by a declaration or subcomponent thereof refer only to
those components of the declaration that are not nested within scopes nested within the declaration.

In a simple-declaration, the optional init-declarator-list can be omitted only when declaring a class (Clause 9)
or enumeration (7.2), that is, when the decl-specifier-seq contains either a class-specifier, an elaborated-
type-specifier with a class-key (9.1), or an enum-specifier. In these cases and whenever a class-specifier or
enum-specifier is present in the decl-specifier-seq, the identifiers in these specifiers are among the names being
declared by the declaration (as class-names, enum-names, or enumerators, depending on the syntax). In such
cases, and except for the declaration of an unnamed bit-field (9.6), the decl-specifier-seq shall introduce one
or more names into the program, or shall redeclare a name introduced by a previous declaration. [Example:

enum { }; // ill-formed
typedef class { }; // ill-formed

— end example]

In a static_assert-declaration the constant-expression shall be a constant expression (5.19) that can be
contextually converted to bool (Clause 4). If the value of the expression when so converted is true, the
declaration has no effect. Otherwise, the program is ill-formed, and the resulting diagnostic message (1.4)
shall include the text of the string-literal, except that characters not in the basic source character set (2.3)
are not required to appear in the diagnostic message. [Ezample:

static_assert(sizeof(long) >= 8, "64-bit code generation required for this library.");

— end example]
An empty-declaration has no effect.

Each init-declarator in the init-declarator-list contains exactly one declarator-id, which is the name declared
by that init-declarator and hence one of the names declared by the declaration. The type-specifiers (7.1.6)
in the decl-specifier-seq and the recursive declarator structure of the init-declarator describe a type (8.3),
which is then associated with the name being declared by the init-declarator.

If the decl-specifier-seq contains the typedef specifier, the declaration is called a typedef declaration and the
name of each init-declarator is declared to be a typedef-name, synonymous with its associated type (7.1.3).
If the decl-specifier-seq contains no typedef specifier, the declaration is called a function declaration if the
type associated with the name is a function type (8.3.5) and an object declaration otherwise.

Syntactic components beyond those found in the general form of declaration are added to a function decla-
ration to make a function-definition. An object declaration, however, is also a definition unless it contains
the extern specifier and has no initializer (3.1). A definition causes the appropriate amount of storage to
be reserved and any appropriate initialization (8.5) to be done.

139

©ISO/IEC N3090=10-0080

Only in function declarations for constructors, destructors, and type conversions can the decl-specifier-seq
be omitted.?! H-it-is-emi : : ;

7.1 Specifiers [dcl.spec]

The specifiers that can be used in a declaration are

decl-specifier:
storage-class-specifier
type-specifier
function-specifier
friend
typedef
constexpr

decl-specifier-seq:

op
decl-specifier attribute-specifierops
decl-specifier decl-specifier-seq

The optional attribute-specifier in a decl-specifier-seq appertains to the type determined by the decl-specifier-seq (8.3).
The attribute-specifier affects the type only for the declaration it appears in, not other declarations involving

the same type.

of-a—declaration- If a type-name is encountered while parsing a decl-specifier-seq, it is interpreted as part
of the decl-specifier-seq if and only if there is no previous type-specifier other than a cv-qualifier in the
decl-specifier-seq. The sequence shall be self-consistent as described below. [Example:

typedef char* Pc;
static Pc; // error: name missing

Here, the declaration static Pc is ill-formed because no name was specified for the static variable of type Pc.
To get a variable called Pc, a type-specifier (other than const or volatile) has to be present to indicate that
the typedef-name Pc is the name being (re)declared, rather than being part of the decl-specifier sequence.
For another example,

void f(comnst Pc); // void f(char* const) (not const charx)
void g(const int Pc); // void g(const int)

— end example]

[Note: since signed, unsigned, long, and short by default imply int, a type-name appearing after one of
those specifiers is treated as the name being (re)declared. [Ezample:

void h(unsigned Pc); // void h(unsigned int)
void k(unsigned int Pc); // void k(unsigned int)
— end example] — end note]
7.1.1 Storage class specifiers [dcl.stc]

The storage class specifiers are

91) The “implicit int” rule of C is no longer supported.

§7.1.1 140

©ISO/IEC N3090=10-0080

storage-class-specifier:

register

static

thread_local

extern

mutable
At most one storage-class-specifier shall appear in a given decl-specifier-seq, except that thread_local may
appear with static or extern. If thread_local appears in any declaration of an—ebjeet—or—referenece a
variable it shall be present in all declarations of that ebjeet-er—+reference entity. If a storage-class- speczﬁer
appears in a decl-specifier-seq, there can be no typedef specifier in the same decl-specifier-seq and the init-
declarator-list of the declaration shall not be empty (except for an anonymous uniondeclared in a named
namespace or in the global namespace, which shall be declared static (9.5)). The storage-class-specifier
applies to the name declared by each init-declarator in the list and not to any names declared by other
specifiers. A storage-class-specifier shall not be specified in an explicit specialization (14.8.3) or an explicit
instantiation (14.8.2) directive.

The register specifier shall be applied only to names of ebjeets variables declared in a block (6.3) or to
function parameters (8.4). It specifies that the named ebjeet variable has automatic storage duration (3.7.3).
An—ebjeet A variable declared without a storage-class-specifier at block scope or declared as a function
parameter has automatic storage duration by default.

A register specifier is a hint to the implementation that the ebjeet variable so declared will be heavily
used. [Note: the hint can be ignored and in most implementations it will be ignored if the address of the
objeet variable is taken. This use is deprecated (see D.4). — end note |

The thread_local specifier indicates that the named entity has thread storage duration (3.7.2). It shall be
applied only to the names of ebj : s variables of namespace seepe ' :
references-of or block scope ¢ ; and to the names of static data members

—specifies the ¢ ‘ ‘ 4 -2)- When thread_local
is applied to a variable of blo(k scope the storage-class-specifier static is 1mp11ed if it does not appear
explicitly.

The static specifier can be applied only to names of ebjeets variables and functions and to anonymous
unions (9.5). There can be no static function declarations within a block, nor any static function pa-
rameters. A static specifier used in the declaration of an-ebjeet a variable declares the ebjeet variable to
have static storage duration (3.7.1), unless accompanied by the thread_local specifier, which declares the
objeet variable to have thread storage duration (3.7.2). A static specifier can be used in declarations of
class members; 9.4 describes its effect. For the linkage of a name declared with a static specifier, see 3.5.

The extern specifier can be applied only to the names of ebjeets variables and functions. The extern
specifier cannot be used in the declaration of class members or function parameters. For the linkage of a
name declared with an extern specifier, see 3.5. [Note: The extern keyword can also be used in ezplicit-
instantiations and linkage-specifications, but it is not a storage-class-specifier in such contexts. — end note|

A name declared in a namespace scope without a storage-class-specifier has external linkage unless it has
internal linkage because of a previous declaration and provided it is not declared const. Objects declared
const and not explicitly declared extern have internal linkage.

The linkages implied by successive declarations for a given entity shall agree. That is, within a given scope,
each declaration declaring the same ebjeet variable name or the same overloading of a function name shall
imply the same linkage. Each function in a given set of overloaded functions can have a different linkage,
however. [Ezample:

static char* £(Q); // £Q) has internal linkage
char* £() // £Q) still has internal linkage

§7.1.1 141

©ISO/IEC

{ /x

e %/}

char* g();

static

{ /x ..

char*x g()

x/ 3}

void h();

inline

inline

void h();

void 1(Q);

void 1();

inline
extern

static
inline
static

int a;

static
extern

int c;
static

extern
static

void m();
void m();

void n();
void n();

int a;

int b;

int b;

int c;

int d;
int d;

— end example]

9 The name of a declared but undefined class can be used in an extern declaration

N3090=10-0080

// g0 has external linkage
// error: inconsistent linkage

// external linkage

// external linkage

// external linkage

// internal linkage

// a has internal linkage
// error: two definitions

// b has internal linkage
// b still has internal linkage

// ¢ has external linkage
// error: inconsistent linkage

// d has external linkage
// error: inconsistent linkage

only be used in ways that do not require a complete class type. [Ezample:

struct
extern
extern

extern void g(S);

S;
S a;
S £O;

void h() {

g(a);

£0;
}

— end example |

// error: S is incomplete
// error: S is incomplete

. Such a declaration can

10 The mutable specifier can be applied only to names of class data members (9.2) and cannot be applied to
names declared const or static, and cannot be applied to reference members. [Ezample:

class X {

mutable const int* p;
mutable int* const q;

};

— end example]

§7.1.1

// OK
// ill-formed

142

11

©ISO/IEC N3090=10-0080

The mutable specifier on a class data member nullifies a const specifier applied to the containing class object
and permits modification of the mutable class member even though the rest of the object is const (7.1.6.1).

7.1.2 Function specifiers [dcl.fct.spec]

Function-specifiers can be used only in function declarations.
function-specifier:

inline

virtual

explicit
A function declaration (8.3.5, 9.3, 11.4) with an inline specifier declares an inline function. The inline
specifier indicates to the implementation that inline substitution of the function body at the point of call
is to be preferred to the usual function call mechanism. An implementation is not required to perform this
inline substitution at the point of call; however, even if this inline substitution is omitted, the other rules
for inline functions defined by 7.1.2 shall still be respected.

A function defined within a class definition is an inline function. The inline specifier shall not appear on
a block scope function declaration.”? If the inline specifier is used in a friend declaration, that declaration
shall be a definition or the function shall have previously been declared inline.

An inline function shall be defined in every translation unit in which it is used and shall have exactly
the same definition in every case (3.2). [Note: a call to the inline function may be encountered before its
definition appears in the translation unit. — end note] If the definition of a function appears in a translation
unit before its first declaration as inline, the program is ill-formed. If a function with external linkage is
declared inline in one translation unit, it shall be declared inline in all translation units in which it appears;
no diagnostic is required. An inline function with external linkage shall have the same address in all
translation units. A static local variable in an extern inline function always refers to the same object.
A string literal in the body of an extern inline function is the same object in different translation units.
[Note: A string literal appearing in a default argument expression is not in the body of an inline function
merely because the expression is used in a function call from that inline function. — end note] A type
defined within the body of an extern inline function is the same type in every translation unit.

The virtual specifier shall be used only in the initial declaration of a non-static class member function;
see 10.3.

The explicit specifier shall be used only in the declaration of a constructor or conversion function within
its class definition; see 12.3.1 and 12.3.2.

7.1.3 The typedef specifier [dcl.typedef]

Declarations containing the decl-specifier typedef declare identifiers that can be used later for naming
fundamental (3.9.1) or compound (3.9.2) types. The typedef specifier shall not be combined in a decl-
specifier-seq with any other kind of specifier except a type-specifier, and it shall not be used in the decl-
specifier-seq of a parameter-declaration (8.3.5) nor in the decl-specifier-seq of a function-definition (8.4).
typedef-name:
identifier

A name declared with the typedef specifier becomes a typedef-name. Within the scope of its declaration, a
typedef-name is syntactically equivalent to a keyword and names the type associated with the identifier in
the way described in Clause 8. A typedef-name is thus a synonym for another type. A typedef-name does
not introduce a new type the way a class declaration (9.1) or enum declaration does. [Ezample: after

typedef int MILES, *KLICKSP;

92) The inline keyword has no effect on the linkage of a function.

§7.1.3 143

©ISO/IEC N3090=10-0080

the constructions

MILES distance;
extern KLICKSP metricp;

are all correct declarations; the type of distance is int and that of metricp is “pointer to int.” —end
example]

A typedef-name can also be introduced by an alias-declaration. The identifier following the using keyword
becomes a typedef-name. It has the same semantics as if it were introduced by the typedef specifier. In
particular, it does not define a new type and it shall not appear in the type-id. | Ezample:

using handler_t = void (*)(int);

extern handler_t ignore;

extern void (*ignore) (int); // redeclare ignore
using cell = pair<voidx, cellx*>; // ill-formed

— end example]

In a given non-class scope, a typedef specifier can be used to redefine the name of any type declared in that
scope to refer to the type to which it already refers. [Ezample:

typedef struct s { /fx...x/ } s;
typedef int I;

typedef int I;

typedef I I;

— end example]

In a given class scope, a typedef specifier can be used to redefine any class-name declared in that scope
that is not also a typedef-name to refer to the type to which it already refers. [Ezample:

struct S {
typedef struct A { } A; // OK
typedef struct B B; // OK
typedef A A; // error
}s

— end example |

In a given scope, a typedef specifier shall not be used to redefine the name of any type declared in that
scope to refer to a different type. [Example:

class complex { /x ...x/ };
typedef int complex; // error: redefinition
— end example]

Similarly, in a given scope, a class or enumeration shall not be declared with the same name as a typedef-name
that is declared in that scope and refers to a type other than the class or enumeration itself. [Ezample:

typedef int complex;
class complex { /* ... x/ }; // error: redefinition
— end example]

[Note: A typedef-name that names a class type, or a cv-qualified version thereof, is also a class-name (9.1).
If a typedef-name is used to identify the subject of an elaborated-type-specifier (7.1.6.3), a class definition
(Clause 9), a constructor declaration (12.1), or a destructor declaration (12.4), the program is ill-formed.
— end note] | Example:

§7.13 144

©ISO/IEC N3090=10-0080

struct S {
SO;
80 ;

};

typedef struct S T;

=TQO; // OK
struct T * p; // error
— end example]

8 If the typedef declaration defines an unnamed class (or enum), the first typedef-name declared by the dec-
laration to be that class type (or enum type) is used to denote the class type (or enum type) for linkage
purposes only (3.5). [Example:

typedef struct { } *ps, S; // 8 is the class name for linkage purposes

— end example]

RRI& r4 = 1i; /)t has-the - type-int&
7.1.4 The friend specifier [dcl.friend]

The friend specifier is used to specify access to class members; see 11.4.

7.1.5 The constexpr specifier [dcl.constexpr]|

1 The constexpr specifier shall be applied only to the definition of an object, the declaration of a function or
function template, or the declaration of a static data member of a literal type (3.9). If any declaration of a
function or function template has constexpr specifier, then all its declarations shall contain the constexpr
specifier. [Note: an explicit specialization can differ from the template declaration with respect to the

constexpr specifier. — end note] [Note: function parameters cannot be declared constexpr. — end note|
[Example:
constexpr int square(int x); // OK: declaration
constexpr int bufsz = 1024; // OK: definition
constexpr struct pixel { // error: pixel is a type
int x;
int y;
constexpr pixel(int); // OK: declaration
3

§7.1.5 145

©ISO/IEC N3090=10-0080

constexpr pixel::pixel(int a)
: x(square(a)), y(square(a)) // OK: definition
{3}
constexpr pixel small(2); // error: square not defined, so small(2)
// mot constant (5.19) so constexpr not satisfied

constexpr int square(int x) { // OK: definition
return x * Xx;

}

constexpr pixel large(4); // OK: square defined

int next(constexpr int x) { // error: not for parameters
return x + 1;

}

extern constexpr int memsz; // error: not a definition

— end example|

2 A constexpr specifier used in the declaration of a function that is not a constructor declares that function
to be a constexpr function. Similarly, a constexpr specifier used in a constructor declaration declares that
constructor to be a constexpr constructor. Constexpr functions and constexpr constructors are implicitly
inline (7.1.2).

3 The definition of a constexpr function shall satisfy the following constraints:
— it shall not be virtual (10.3)

— its return type shall be a literal type or a reference to literal type

— each of its parameter types shall be a literal type or a reference to literal type

— its function-body shall be a compound-statement of the form

{ return ezpression ; }

where expression is a potential constant expression (5.19)

— every implicit conversion used in converting expression to the function return type (8.5) shall be one
of those allowed in a constant expression (5.19).

[Ezample:
constexpr int square(int x)
{ return x * x; } // OK
constexpr long long_max()
{ return 2147483647; } // OK

constexpr int abs(int x)
{ return x <0 ? -x : x; } // OK
constexpr void f(int x) // error: return type is void
{ /x ... x/}
constexpr int prev(int x)
{ return --x; } // error: use of decrement
constexpr int g(int x, int n) { // error: body not just “return expr”
int r = 1;
while (--n > 0) r *= x;
return r;

}

— end example]

§7.1.5 146

©ISO/IEC N3090=10-0080

The definition of a constexpr constructor shall satisfy the following constraints:

— each of its parameter types shall be a literal type or a reference to literal type

— its function-body shall not be a function-try-block
— the compound-statement of its function-body shall be empty
— every non-static data member and base class sub-object shall be initialized (12.6.2)

— every constructor involved in initializing non-static data members and base class sub-objects invoked
by a mem-initializer shall be a constexpr constructor.

— every constructor argument and full-expression in a mem-initializer shall be a potential constant
expression

— every implicit conversion used in converting a constructor argument to the corresponding parameter
type and converting a full-expression to the corresponding member type shall be one of those allowed
in a constant expression.

A trivial copy/move constructor is also a constexpr constructor.
[Example:

struct Length {
explicit constexpr Length(int i = 0) : val(i) { }
private:
int val;

};

— end example]

If the instantiated template specialization of a constexpr function template would fail to satisfy the require-
ments for a constexpr function or constexpr constructor, the constexpr specifier is ignored.

A call to a constexpr function produces the same result as a call to an equivalent non-constexpr function in
all respects except that a call to a constexpr function can appear in a constant expression.

A constexpr specifier for a non-static member function that is not a constructor declares that member
function to be const (9.3.1). [Note: the constexpr specifier has no other effect on the function type. — end
note| The class of which that function is a member shall be a literal type (3.9). [Ezample:

class debug_flag {

public:
explicit debug_flag(bool);
constexpr bool is_on(); // error: debug_flag not
// literal type
private:
bool flag;
};

constexpr int bar(int x, int y) // OK
{ return x + y + x*y; }

/) .
int bar(int x, int y) // error: redefinition of bar
{ return x * 2 + 3 * y; }
— end example]
A constexpr specifier used in an object declaration declares the object as const. Such an object shall be

initialized. If it is initialized by a constructor call, the constructor shall be a constexpr constructor and every

§7.1.5 147

©ISO/IEC N3090=10-0080

argument to the constructor shall be a constant expression. Otherwise, every full-expression that appears
in its initializer shall be a constant expression. Each implicit conversion used in converting the initializer
expressions and each constructor call used for the initialization shall be one of those allowed in a constant
expression (5.19). [Ezample:

struct pixel {

int x, y;
};
constexpr pixel ur = { 1294, 1024 };// OK
constexpr pixel origin; // error: initializer missing

— end example|

7.1.6 Type specifiers [dcl.type]

The type-specifiers are

type-specifier:
trailing-type-specifier
class-specifier
enum-specifier

trailing-type-specifier:
simple-type-specifier
elaborated-type-specifier
typename-specifier
cv-qualifier

type-specifier-seq:

2 < SEHEF—1 e 7 s€4opt
type-specifier attribute-specifierspi
type-specifier type-specifier-seq

trailing-type-specifier-seq:

: i op
trailing-type-specifier attribute-specifierop:
trailing-type-specifier trailing-type-specifier-seq

As a general rule, at most one type-specifier is allowed in the complete decl-specifier-seq of a declaration or
in a type-specifier-seq or trailing-type-specifier-seq. The only exceptions to this rule are the following:

— const can be combined with any type specifier except itself.

— volatile can be combined with any type specifier except itself.

— signed or unsigned can be combined with char, long, short, or int.
— short or long can be combined with int.

— long can be combined with double.

— long can be combined with long.

At least one type-specifier that is not a cv-qualifier is required in a declaration unless it declares a constructor,
destructor or conversion function.?® A type-specifier-seq shall not define a class or enumeration unless it
appears in the type-id of an alias-declaration (7.1.3).

93) There is no special provision for a decl-specifier-seq that lacks a type-specifier or that has a type-specifier that only specifies
cv-qualifiers. The “implicit int” rule of C is no longer supported.

§7.1.6 148

©ISO/IEC N3090=10-0080

4 [Note: class-specifiers and enum-specifiers are discussed in Clause 9 and 7.2, respectively. The remaining
type-specifiers are discussed in the rest of this section. — end note]|

7.1.6.1 The cv-qualifiers [dcl.type.cv]

1 There are two cv-qualifiers, const and volatile. If a cv-qualifier appears in a decl-specifier-seq, the init-
declarator-list of the declaration shall not be empty. [Note: 3.9.3 and 8.3.5 describe how cv-qualifiers affect
object and function types. — end note] Redundant cv-qualifications are ignored. [Note: for example, these
could be introduced by typedefs. — end note]

2 onstant-expressions{519) [Note: Declaring a variable const can affect its linkage (7.1.1) and its
usability in constant expressions (5.19). As as described in 8.5, the definition of an object or subobject of
const-qualified type must specify an initializer or be subject to default-initialization. — end note |

C.

3 A pointer or reference to a cv-qualified type need not actually point or refer to a cv-qualified object, but it
is treated as if it does; a const-qualified access path cannot be used to modify an object even if the object
referenced is a non-const object and can be modified through some other access path. [Note: cv-qualifiers
are supported by the type system so that they cannot be subverted without casting (5.2.11). — end note]|

4 Except that any class member declared mutable (7.1.1) can be modified, any attempt to modify a const
object during its lifetime (3.8) results in undefined behavior. [Ezample:

const int ci = 3; // cv-qualified (initialized as required)

ci = 4; // ill-formed: attempt to modify const

int i = 2; // not cv-qualified

const intx cip; // pointer to const int

cip = &i; // OK: cv-qualified access path to unqualified
xcip = 4; // ill-formed: attempt to modify through ptr to const
int* ip;

ip = const_cast<int*>(cip); // cast needed to convert const int* to intx*
*ip = 4; // defined: *ip points to i, a non-const object
const int* ciq = new const int (3); // initialized as required

int* iq = comst_cast<int*>(ciq); // cast required

*xiq = 4; // undefined: modifies a const object

5 For another example

struct X {
mutable int i;
int j;

};

struct Y {

X x;

YO;

};

const Y y;

y.X.1i+4; // well-formed: mutable member can be modified
V.X.j++; // ill-formed: const-qualified member modified
Y* p = const_cast<¥*>(&y); // cast away const-ness of y

§7.1.6.1 149

©ISO/IEC N3090=10-0080

p—>x.i = 99; // well-formed: mutable member can be modified
p—>x.j = 99; // undefined: modifies a const member

— end example|

If an attempt is made to refer to an object defined with a volatile-qualified type through the use of antvatue
a glvalue with a non-volatile-qualified type, the program behavior is undefined.

[Note: volatile is a hint to the implementation to avoid aggressive optimization involving the object
because the value of the object might be changed by means undetectable by an implementation. See 1.9 for
detailed semantics. In general, the semantics of volatile are intended to be the same in C++ as they are
in C. — end note]

7.1.6.2 Simple type specifiers [dcl.type.simple]

The simple type specifiers are

simple-type-specifier:
:topt Mested-name-specifierop: type-name
t:opt Mested-name-specifier template simple-template-id
char
charl6_t
char32_t
wchar_t
bool
short
int
long
signed
unsigned
float
double
void
auto

decltype-specifier
type-name:
class-name
enum-name
typedef-name
decltype-specifier:
decltype (expression)

The auto specifier is a placeholder for a type to be deduced (7.1.6.4). The other simple-type-specifiers specify
either a previously-declared user-defined type or one of the fundamental types (3.9.1). Table 9 summarizes
the valid combinations of simple-type-specifiers and the types they specify.

Table 9 — simple-type-specifiers and the types they specify

] Specifier(s) Type ‘
type-name the type named
simple-template-id the type as defined in 14.3
char “char”
unsigned char “unsigned char”
signed char “signed char”

§7.1.6.2 150

©ISO/IEC N3090=10-0080

Table 9 — simple-type-specifiers and the types they specify (con-

tinued)
] Specifier(s) Type ‘
charl6_t “charl6_t”
char32 t “char32 t”
bool “bool”
unsigned “unsigned int”
unsigned int “unsigned int”
signed “int”
signed int “int”
int “int”
unsigned short int “unsigned short int”
unsigned short “unsigned short int”
unsigned long int “unsigned long int”
unsigned long “unsigned long int”
unsigned long long int “unsigned long long int”
unsigned long long “unsigned long long int”
signed long int “long int”
signed long “long int”
signed long long int “long long int”
signed long long “long long int”
long long int “long long int”
long long “long long int”
long int “long int”
long “long int”
signed short int “short int”
signed short “short int”
short int “short int”
short “short int”
wchar t “wchar t”
float “float”
double “double”
long double “long double”
void “void”
auto placeholder for a type to be deduced
decltype(expression) the type as defined below

3 When multiple simple-type-specifiers are allowed, they can be freely intermixed with other decl-specifiers in
any order. [Note: It is implementation-defined whether objects of char type and certain bit-fields (9.6) are
represented as signed or unsigned quantities. The signed specifier forces char objects and bit-fields to be
signed; it is redundant in other contexts. — end note|

4 The type denoted by decltype(e) is defined as follows:

— if e is an unparenthesized id-expression or a class member access (5.2.5), decltype(e) is the type
of the entity named by e. If there is no such entity, or if e names a set of overloaded functions, the
program is ill-formed;

— otherwise, if e is a function call (5.2.2) or an invocation of an overloaded operator (parentheses around
e are ignored), decltype(e) is the return type of the statically chosen function;

§7.1.6.2 151

©ISO/IEC N3090=10-0080

— otherwise, if e is an lvalue, decltype(e) is T&, where T is the type of e;

— otherwise, decltype(e) is the type of e.
The operand of the decltype specifier is an unevaluated operand (Clause 5).
[Example:

const int&& foo();

int i;

struct A { double x; };

const A* a = new A(Q);

decltype(foo()) x1 = i; // type is const int&&
decltype(i) x2; // type is int
decltype(a->x) x3; // type is double
decltype((a->x)) x4 = x3; // type is const double&

— end example]

7.1.6.3 Elaborated type specifiers [dcl.type.elab]

elaborated-type-specifier:
class-key attribute-specifieroy ::opt nested-name-specifierop: identifier
class-key : : opt nested-name-specifieroy: template,,: simple-template-id
enum ::,p, nested-name-specifierop: tdentifier

An attribute-specifier shall not apear in an elaborated-type-specifier unless the latter is the sole constituent
of a declaration. If an elaborated-type-specifier is the sole constituent of a declaration, the declaration is
ill-formed unless it is an explicit specialization (14.8.3), an explicit instantiation (14.8.2) or it has one of the
following forms:

class-key attribute-specifier,,, identifier attrs

friend class-key ::opt tdentifier ;

friend class-key ::opt simple-template-id ;

friend class-key ::op: mnested-name-specifier identifier ;
friend class-key ::opt nested-name-specifier templateo,: simple-template-id ;

In the first case, the attribute-specifier, if any, appertains to the class being declared; the attributes in the
attribute-specifier are thereafter considered attributes of the class whenever it is named.

3.4.4 describes how name lookup proceeds for the identifier in an elaborated-type-specifier. If the identifier
resolves to a class-name or enum-name, the elaborated-type-specifier introduces it into the declaration the
same way a simple-type-specifier introduces its type-name. If the identifier resolves to a typedef-name, the
elaborated-type-specifier is ill-formed. [Note: this implies that, within a class template with a template
type-parameter T, the declaration

friend class T;

is ill-formed. However, the similar declaration friend T; is allowed (11.4). — end note]

The class-key or enum keyword present in the elaborated-type-specifier shall agree in kind with the dec-
laration to which the name in the elaborated-type-specifier refers. This rule also applies to the form of
elaborated-type-specifier that declares a class-name or friend class since it can be construed as referring to
the definition of the class. Thus, in any elaborated-type-specifier, the enum keyword shall be used to refer to
an enumeration (7.2), the union class-key shall be used to refer to a union (Clause 9), and either the class
or struct class-key shall be used to refer to a class (Clause 9) declared using the class or struct class-key.
[Ezample:

§7.1.6.3 152

©ISO/IEC N3090=10-0080

enum class E { a, b };
enum E x = E::a; // OK

— end example|

7.1.6.4 auto specifier [dcl.spec.auto]

The auto type-specifier signifies that the type of a variable er+eferenee being declared shall be deduced from
its initializer or that a function declarator shall include a trailing-return-type.

The auto type-specifier may appear with a function declarator with a trailing-return-type (8.3.5) in any context
where such a declarator is valid.

Otherwise, the type of the ebjeet variable is deduced from its initializer. The name of the ebjeet variable
being declared shall not appear in the initializer expression. This use of auto is allowed when declaring
objeets variables in a block (6.3), in namespace scope (3.3.6), and in a for-init-statement (6.5.3). Fhe auto
shall appear as one of the decl-specifiers in the decl-specifier-seq and the decl-specifier-seq shall be followed by
one or more init-declarators, each of which shall have a non-empty initializer.

[Example:
auto x = 5; // OK: x has type int
const auto *v = &x, u = 6; // OK: v has type const int*, u has type const int
static auto y = 0.0; // OK: y has type double
auto int r; // error: auto is not a storage-class-specifier

— end example]

The auto type-specifier can also be used in declaring an—ebjeet a variable in the condition of a selection
statement (6.4) or an iteration statement (6.5), in the type-specifier-seq in the new-type-id or type-id of a
new-expression (5.3.4), in a for-range-declaration, and in declaring a static data member with a brace-or-
equal-initializer that appears within the member-specification of a class definition (9.4.2).

A program that uses auto in a context not explicitly allowed in this section is ill-formed.

Once the type of a declarator-id has been determined according to 8.3, the type of the declared variable using
the declarator-id is determined from the type of its initializer using the rules for template argument deduction.
Let T be the type that has been determined for a variable identifier d. Obtain P from T by replacing the
occurrences of auto with either a new invented type template parameter U or, if the initializer is a braced-
ingt-list (8.5.4), with std::initializer_list<U>. The type deduced for the variable d is then the deduced
type A determined using the rules of template argument deduction from a function call (14.9.2.1), where P is
a function template parameter type and the initializer for d is the corresponding argument. If the deduction
fails, the declaration is ill-formed. [Ezample:

auto x1 = { 1, 2 }; // decltype(x1) is std::initializer_list<int>
auto x2 = { 1, 2.0 }; // error: cannot deduce element type
— end example]

If the list of declarators contains more than one declarator, the type of each declared variable is determined
as described above. If the type deduced for the template parameter U is not the same in each deduction, the
program is ill-formed.

[Example:

const auto &i = expr;

§7.1.6.4 153

©ISO/IEC N3090=10-0080

The type of i is the deduced type of the parameter u in the call £ (expr) of the following invented function
template:

template <class U> void f(const U& u);

— end example]

7.2 Enumeration declarations [dcl.enum)]

An enumeration is a distinct type (3.9.1) with named constants. Its name becomes an enum-name, within
its scope.
enum-name:
identifier
enum-specifier:
enum-head { enumerator-listop: }
enum-head { enumerator-list , }

enum-head:

enum-key (1,Ler’bul/e—speciﬁer{,,ﬁ, identifierop: allribule-specifier,, enum-base,pt

7 tHEFopt
enum- key attr ibute-specifier.,: mested-name-specifier identifier

allribule-specifier e enum-baseopr aliribute-specificr,

opaque-enum-declaration:

enum-key attribute-specifierops identifier attribute—speetfiersy— enum-base,pt

enum-key:
enum

enum class

enum struct
enum-base:

: type-specifier-seq
enumerator-list:

enumerator-definition

enumerator-list , enumerator-definition
enumerator-definition:

enumerator

enumerator = constant-expression

enumerator:
identifier

The first optional attribute-specifier in the enum-head and the opaque-enum-declaration appertains to the
enumeration; the attributes in that attmbute speczﬁer are thereafter considered attributes of the enumeration
whenever it is named - : :

The enumeration type declared with an enum-key of only enum is an unscoped enumeration, and its enumer-
ators are unscoped enumerators. The enum-keys enum class and enum struct are semantically equivalent;
an enumeration type declared with one of these is a scoped enumeration, and its enumerators are scoped
enumerators. The optional identifier shall not be omitted in the declaration of a scoped enumeration. The
type-specifier-seq of an enum-base shall name an integral type; any cv-qualification is ignored. An opaque-
enum-declaration declaring an unscoped enumeration shall not omit the enum-base. The identifiers in an
enumerator-list are declared as constants, and can appear wherever constants are required. An enumerator-
definition with = gives the associated enumerator the value indicated by the constant-expression. The
constant-expression shall be an integral constant expression (5.19). If the first enumerator has no initializer,

§7.2 154

©ISO/IEC N3090=10-0080

the value of the corresponding constant is zero. An enumerator-definition without an initializer gives the
enumerator the value obtained by increasing the value of the previous enumerator by one.

[Ezample:

enum { a, b, c=0 };
enum { d, e, f=e+2 };

defines a, ¢, and d to be zero, b and e to be 1, and f to be 3. — end example]

An opagque-enum-declaration is either a redeclaration of an enumeration in the current scope or a declaration
of a new enumeration. [Note: an enumeration declared by an opaque-enum-declaration has fixed underlying
type and is a complete type. The list of enumerators can be provided in a later redeclaration with an enum-
specifier. — end note] A scoped enumeration shall not be later redeclared as unscoped or with a different
underlying type. An unscoped enumeration shall not be later redeclared as scoped and each redeclaration
shall include an enum-base specifying the same underlying type as in the original declaration.

If the enum-key is followed by a nested-name-specifier, the enum-specifier shall refer to an enumeration that
was previously declared directly in the class or namespace to which the nested-name-specifier refers (i.e.,
neither inherited nor introduced by a using-declaration), and the enum-specifier shall appear in a namespace
enclosing the previous declaration.

Each enumeration defines a type that is different from all other types. Each enumeration also has an
underlying type. The underlying type can be explicitly specified using enum-base; if not explicitly specified,
the underlying type of a scoped enumeration type is int. In these cases, the underlying type is said to be
fized. Following the closing brace of an enum-specifier, each enumerator has the type of its enumeration.
If the underlying type is fixed, the type of each enumerator prior to the closing brace is the underlying
type; if the initializing value of an enumerator cannot be represented by the underlying type, the program
is ill-formed. If the underlying type is not fixed, the type of each enumerator is the type of its initializing
value:

— If an initializer is specified for an enumerator, the initializing value has the same type as the expression.

— If no initializer is specified for the first enumerator, the initializing value has an unspecified integral
type.

— Otherwise the type of the initializing value is the same as the type of the initializing value of the
preceding enumerator unless the incremented value is not representable in that type, in which case the
type is an unspecified integral type sufficient to contain the incremented value. If no such type exists,
the program is ill-formed.

For an enumeration whose underlying type is not fixed, the underlying type is an integral type that can
represent all the enumerator values defined in the enumeration. If no integral type can represent all the
enumerator values, the enumeration is ill-formed. It is implementation-defined which integral type is used
as the underlying type except that the underlying type shall not be larger than int unless the value of an
enumerator cannot fit in an int or unsigned int. If the enumerator-list is empty, the underlying type is
as if the enumeration had a single enumerator with value 0.

For an enumeration whose underlying type is fixed, the values of the enumeration are the values of the
underlying type. Otherwise, for an enumeration where e,,;, is the smallest enumerator and e;,,, is the
largest, the values of the enumeration are the values in the range b,,;n t0 byae, defined as follows: Let K
be 1 for a two’s complement representation and 0 for a one’s complement or sign-magnitude representation.
bmaz 1S the smallest value greater than or equal to maz(|emin| — K, |€maz|) and equal to 2M _ 1. where
M is a non-negative integer. by, 18 zero if e, is non-negative and — (b4, + K) otherwise. The size of
the smallest bit-field large enough to hold all the values of the enumeration type is max(M, 1) if b,y is
zero and M + 1 otherwise. It is possible to define an enumeration that has values not defined by any of its

§7.2 155

10

11

©ISO/IEC N3090=10-0080

enumerators. If the enumerator-list is empty, the values of the enumeration are as if the enumeration had a
single enumerator with value 0.

Two enumeration types are layout-compatible if they have the same underlying type.

The value of an enumerator or an object of an unscoped enumeration type is converted to an integer by
integral promotion (4.5). [Ezample:

enum color { red, yellow, green=20, blue };
color col = red;

color* cp = &col;

if (*cp == blue) Y

makes color a type describing various colors, and then declares col as an object of that type, and cp as a
pointer to an object of that type. The possible values of an object of type color are red, yellow, green,
blue; these values can be converted to the integral values 0, 1, 20, and 21. Since enumerations are distinct
types, objects of type color can be assigned only values of type color.

color c = 1; // error: type mismatch,
// no conversion from int to color

int i = yellow; // OK: yellow converted to integral value 1
// integral promotion

Note that this implicit enum to int conversion is not provided for a scoped enumeration:

enum class Col { red, yellow, green };

int x = Col::red; // error: no Col to int conversion
Col y = Col::red;
if (y) {} // error: mo Col to bool conversion

— end example]

An expression of arithmetic or enumeration type can be converted to an enumeration type explicitly. The
value is unchanged if it is in the range of enumeration values of the enumeration type; otherwise the resulting
enumeration value is unspecified.

Each enum-name and each unscoped enumerator is declared in the scope that immediately contains the
enum-specifier. Fach scoped enumerator is declared in the scope of the enumeration. These names obey the
scope rules defined for all names in (3.3) and (3.4).[Ezample:

enum direction { left=’1’, right=’r’ };

void g0 {
direction d; // OK
d = left; // OK
d = direction::right; // OK
}

enum class altitude { high="h’, low=’1’ };

void h() {
altitude a; // OK
a = high; // error: high not in scope
a = altitude::low; // OK

}

§7.2 156

©ISO/IEC N3090=10-0080

— end example] An enumerator declared in class scope can be referred to using the class member access
operators (::, . (dot) and -> (arrow)), see 5.2.5. [Example:

struct X {
enum direction { left=’1’, right=’r’ };
int f(int i) { return i==left 7 0 : i==right 7?7 1 : 2; }

};
void g(X* p) {
direction d; // error: direction not in scope
int i;
i = p—>f(left); // error: left not in scope
i = p->f(X::right); // OK
i = p>f(p->left); // OK

— end example]

7.3 Namespaces [basic.namespace]

A namespace is an optionally-named declarative region. The name of a namespace can be used to access
entities declared in that namespace; that is, the members of the namespace. Unlike other declarative regions,
the definition of a namespace can be split over several parts of one or more translation units.

The outermost declarative region of a translation unit is a namespace; see 3.3.6.

7.3.1 Namespace definition [namespace.def]

The grammar for a namespace-definition is

namespace-name:
original-namespace-name
namespace-alias

original-namespace-name:
identifier

namespace-definition:
named-namespace-definition
unnamed-namespace-definition

named-namespace-definition:
original-namespace-definition
extension-namespace-definition
original-namespace-definition:
inline,,: namespace identifier { namespace-body }

extension-namespace-definition:
inline,,; namespace original-namespace-name { namespace-body }

unnamed-namespace-definition:
inline,,; namespace { mamespace-body }

namespace-body:
declaration-seqop:

The identifier in an original-namespace-definition shall not have been previously defined in the declarative
region in which the original-namespace-definition appears. The identifier in an original-namespace-definition

§7.3.1 157

©ISO/IEC N3090=10-0080

is the name of the namespace. Subsequently in that declarative region, it is treated as an original-namespace-
name.

The original-namespace-name in an extension-namespace-definition shall have previously been defined in an
original-namespace-definition in the same declarative region.

Every namespace-definition shall appear in the global scope or in a namespace scope (3.3.6).

Because a namespace-definition contains declarations in its namespace-body and a namespace-definition is
itself a declaration, it follows that namespace-definitions can be nested. [Example:

namespace Outer {

int i;
namespace Inner {
void £() { i++; } // Outer::i
int i;
void g() { i++; } // Inner::i
}

}

— end example|

The enclosing namespaces of a declaration are those namespaces in which the declaration lexically appears,
except for a redeclaration of a namespace member outside its original namespace (e.g., a definition as
specified in 7.3.1.2). Such a redeclaration has the same enclosing namespaces as the original declaration.
[Example:

namespace Q {
namespace V {
void £(0); // enclosing namespaces are the global namespace, Q, and Q: :V
class C { void m(Q); };
}

void V::£() { // enclosing namespaces are the global namespace, Q, and Q: :V
extern void h(); // ... so this declares Q::V::h
}
void V::C::m() { // enclosing namespaces are the global namespace, Q, and Q: :V
}
}

— end example|

If the optional initial inline keyword appears in a namespace-definition for a particular namespace, that
namespace is declared to be an inline namespace. The inline keyword may be used on an extension-
namespace-definition only if it was previously used on the original-namespace-definition for that namespace.

Members of an inline namespace can be used in most respects as though they were members of the enclosing
namespace. Specifically, the inline namespace and its enclosing namespace are both added to the set of
associated namespaces used in argument-dependent lookup (3.4.2) whenever one of them is, and a using-
directive (7.3.4) that names the inline namespace is implicitly inserted into the enclosing namespace as for
an unnamed namespace (7.3.1.1). Furthermore, each member of the inline namespace can subsequently be
explicitly instantiated (14.8.2) or explicitly specialized (14.8.3) as though it were a member of the enclosing
namespace. Finally, looking up a name in the enclosing namespace via explicit qualification (3.4.3.2) will
include members of the inline namespace brought in by the using-directive even if there are declarations of
that name in the enclosing namespace.

These properties are transitive: if a namespace N contains an inline namespace M, which in turn contains
an inline namespace 0, then the members of 0 can be used as though they were members of M or N. The

§7.3.1 158

2

©ISO/IEC N3090=10-0080

inline namespace set of N is the transitive closure of all inline namespaces in N. The enclosing namespace set

of 0 is the set of namespaces consisting of the innermost non—lnhne namespace enclosing an inline namespace

0, together with any intervening inline namespaces;is

7.3.1.1 Unnamed namespaces [namespace.unnamed)|

An unnamed-namespace-definition behaves as if it were replaced by
inline,,; namespace unique { /* empty body */ }
using namespace unique ;
namespace unique { namespace-body }

where inline appears if and only if it appears in the unnamed-namespace-definition, all occurrences of
unique in a translation unit are replaced by the same identifier, and this identifier differs from all other
identifiers in the entire program.” [Ezample:

namespace { int i; } // unique ::i

void £() { i++; } // unique ::i++

namespace A {
namespace {

int i; // A:: unique ::i
int j; // A:: unique ::j
}
void g() { i++; } // A unique ::i++
}
using namespace A;
void h() {
i+t // error: unique ::i or A:: unique ::i
Ariitt; // A unique ::1i
jt+; // A:: unique ::j
}

— end example]

The use of the static keyword is deprecated when declaring ebjeets variables in a namespace scope (see
annex D); the unnamed-namespace provides a superior alternative.

7.3.1.2 Namespace member definitions [namespace.memdef]

Members (including explicit specializations of templates (14.8.3)) of a namespace can be defined within that
namespace. | Example:

namespace X {
void £ { /x ... x/ }
}

— end example]

Members > : dt-specialize 3 ates -3+ of a named namespace can also be defined
outside that namespace by expllclt quahﬁcatlon (3 4. 3 2) of the name being defined, provided that the entity
being defined was already declared in the namespace and the definition appears after the point of declaration
in a namespace that encloses the declaration’s namespace. [Ezample:

94) Although entities in an unnamed namespace might have external linkage, they are effectively qualified by a name unique
to their translation unit and therefore can never be seen from any other translation unit.

§7.3.1.2 159

©ISO/IEC N3090=10-0080

namespace Q {
namespace V {
void £();
}
void V::f() { /x ...x/} // OK
void Vi:g() { /x ...x/} // error: g() is not yet a member of V
namespace V {
void g(Q);
}
}

namespace R {
void Q::V::g() { fx ...x/} // error: R doesn’t enclose Q
}

— end example|

3 Every name first declared in a namespace is a member of that namespace. If a friend declaration in a non-
local class first declares a class or function®® the friend class or function is a member of the innermost enclosing
namespace. The name of the friend is not found by unqualified lookup (3.4.1) or by qualified lookup (3.4.3)
until a matching declaration is provided in that namespace scope (either before or after the class definition
granting friendship). If a friend function is called, its name may be found by the name lookup that considers
functions from namespaces and classes associated with the types of the function arguments (3.4.2). If the
name in a friend declaration is neither qualified nor a template-id and the declaration is a function or
an elaborated-type-specifier, the lookup to determine whether the entity has been previously declared shall
not consider any scopes outside the innermost enclosing namespace. [Note: the other forms of friend
declarations cannot declare a new member of the innermost enclosing namespace and thus follow the usual
lookup rules. — end note] [Example:

// Assume £ and g have not yet been defined.
void h(int);

template <class T> void £2(T);
namespace A {

class X {
friend void £(X); // A £(X) is a friend
class Y {
friend void g(); // A::g is a friend
friend void h(int); // A::h is a friend
// ::h not considered
friend void £2<>(int); // ::£2<>(int) is a friend
I
};
// A, Aiig and A::h are not visible here
X x;
void g(O) { £(x); } // definition of A::g
void £(X) { /* ... =x/} // definition of A::f
void h(int) { /*x ... =*/ } // definition of A::h
//A::f, A::g and A::h are visible here and known to be friends

}

using A::x;

95) this implies that the name of the class or function is unqualified.

§7.3.1.2 160

©ISO/IEC N3090=10-0080

void h() {
A::f(x);
A Xiif(x); // error: £ is not a member of A::X
A::X::Y::g(); // error: g is not a member of A::X::Y
}

— end example|

7.3.2 Namespace alias [namespace.alias]

A namespace-alias-definition declares an alternate name for a namespace according to the following grammar:

namespace-alias:

identifier
namespace-alias-definition:

namespace identifier = qualified-namespace-specifier ;
qualified-namespace-specifier:

tiopt mested-name-specifierop namespace-name

The identifier in a namespace-alias-definition is a synonym for the name of the namespace denoted by the

qualified-namespace-specifier and becomes a namespace-alias. [Note: when looking up a namespace-name
in a namespace-alias-definition, only namespace names are considered, see 3.4.6. — end note]

In a declarative region, a namespace-alias-definition can be used to redefine a namespace-alias declared in
that declarative region to refer only to the namespace to which it already refers. [Ezample: the following
declarations are well-formed:

namespace Company_with_very_long_name { /* ... x/ }

namespace CWVLN = Company_with_very_long_name;

namespace CWVLN = Company_with_very_long_name; // OK: duplicate
namespace CWVLN = CWVLN;

— end example]

A namespace-name or namespace-alias shall not be declared as the name of any other entity in the same
declarative region. A namespace-name defined at global scope shall not be declared as the name of any
other entity in any global scope of the program. No diagnostic is required for a violation of this rule by
declarations in different translation units.

7.3.3 The using declaration [namespace.udecl]

A using-declaration introduces a name into the declarative region in which the using-declaration appears.

using-declaration:

using typename,p: ::opt nested-name-specifier unqualified-id ;

using :: unqualified-id ;
The member name specified in a using-declaration is declared in the declarative region in which the using-
declaration appears. [Note: only the specified name is so declared; specifying an enumeration name in a
using-declaration does not declare its enumerators in the using-declaration’s declarative region. — end note|
If a using-declaration names a constructor (3.4.3.1), it implicitly declares a set of constructors in the class in
which the using-declaration appears (12.9); otherwise the name specified in a using-declaration is a synonym
for the name of some entity declared elsewhere.

Every using-declaration is a declaration and a member-declaration and so can be used in a class definition.
[Example:

§7.33 161

©ISO/IEC N3090=10-0080

struct B {
void f(char);
void g(char);
enum E { e };
union { int x; };

}
struct D : B {
using B::f;
void f(int) { £(C°c’); } // calls B: : £ (char)
void g(int) { g(C’c’); 2 // recursively calls D: :g(int)

};

— end example]

In a using-declaration used as a member-declaration, the nested-name-specifier shall name a base class of the
class being defined. If such a using-declaration names a constructor, the nested-name-specifier shall name a
direct base class of the class being defined; otherwise it introduces the set of declarations found by member
name lookup (10.2, 3.4.3.1). [Ezample:

class C {
int gQ);

};

class D2 : public B {
using B::f; // OK: B is a base of D2
using B::e; // OK: e is an enumerator of base B
using B::x; // OK: x is a union member of base B
using C::g; // error: Cisn’t a base of D2

};

— end example|

[Note: Since destructors do not have names, a using-declaration cannot refer to a destructor for a base class.
Since specializations of member templates for conversion functions are not found by name lookup, they are
not considered when a using-declaration specifies a conversion function (14.6.2). — end note] If an assign-
ment operator brought from a base class into a derived class scope has the signature of a eepy-assighment
copy/move assignment operator for the derived class (12.8), the using-declaration does not by itself sup-
press the implicit declaration of the derived class eepy—assignment operator; the eopy-assichment COI)V {moxe
assignment operator from the base class is hidden or overridden by the implicitly-declared eeps e
copy/move assignment operator of the derived class, as described below.

A using-declaration shall not name a template-id. [Ezample:

struct A {
template <class T> void £(T);
template <class T> struct X { };

};
struct B : A {
using A::f<double>; // ill-formed
using A::X<int>; // ill-formed
};

— end example]

A using-declaration shall not name a namespace.

§73.3 162

©ISO/IEC N3090=10-0080

7 A using-declaration shall not name a scoped enumerator.

8 A using-declaration for a class member shall be a member-declaration. | Example:

struct X {
int i;
static int s;
};
void £() {
using X::i; // error: X::1i is a class member
// and this is not a member declaration.
using X::s; // error: X::s is a class member
// and this is not a member declaration.
}

— end example]

9 Members declared by a using-declaration can be referred to by explicit qualification just like other member
names (3.4.3.2). In a using-declaration, a prefix :: refers to the global namespace. [Ezample:

void £();

namespace A {

void g();
}
namespace X {
using ::f; // global £
using A::g; //Asg
}
void h()
{
X::£0; // calls ::f
X::g0); // calls A::g
}

— end example |

10 A using-declaration is a declaration and can therefore be used repeatedly where (and only where) multiple
declarations are allowed. [Ezample:

namespace A {
int i;

}

namespace Al {
using A::i;

using A::i; // OK: double declaration
}
void £() {

using A::i;

using A::i; // error: double declaration
}

§7.3.3 163

11

12

13

©ISO/IEC

struct B {

};

int i;

struct X : B {

};

using B::i;
using B::i;

— end example|

// error: double member declaration

N3090=10-0080

The entity declared by a using-declaration shall be known in the context using it according to its definition
at the point of the using-declaration. Definitions added to the namespace after the using-declaration are not

considered when a use of the name is made. [Exzample:

namespace A {

}

void f(int);

using A::f;

namespace A {

}

void f(char);

void foo() {

}

f(’a’);

void bar() {

}

using A::f;

f(’a’);

— end example]

// £ is a synonym for A::f;
// that is, for A::f(int).

// calls £(int),

// even though f (char) ezists.

// £ is a synonym for A::f;
// that is, for A::f(int) and A::f(char).
// calls £ (char)

[Note: partial specializations of class templates are found by looking up the primary class template and then
considering all partial specializations of that template. If a using-declaration names a class template, partial
specializations introduced after the using-declaration are effectively visible because the primary template is

visible (14.6.5). — end note]

Since a wusing-declaration is a declaration, the restrictions on declarations of the same name in the same

declarative region (3.3) also apply to using-declarations. [Example:

namespace A {

int x;

}

namespace B {

int i;

struct g { };
struct x { };
void f(int);
void f(double);
void g(char);

§7.33

// OK: hides struct g

164

©ISO/IEC N3090=10-0080

}

void func() {
int i;
using B::i; // error: i declared twice
void f(char);
using B::f; // OK: each £ is a function
£(3.5); // calls B: : £ (double)
using B::g;
g’a’); // calls B: :g(char)
struct g gi; // g1 has class type B: :g
using B::x;
using A::x; // OK: hides struct B::x
x = 99; // assigns to A::x
struct x x1; // x1 has class type B: :x

}

— end example]

14 If a function declaration in namespace scope or block scope has the same name and the same parameter

15

types as a function introduced by a using-declaration, and the declarations do not declare the same function,
the program is ill-formed. [Note: two using-declarations may introduce functions with the same name and
the same parameter types. If, for a call to an unqualified function name, function overload resolution selects
the functions introduced by such using-declarations, the function call is ill-formed. [Ezample:

namespace B {
void f(int);
void f(double);

}

namespace C {
void f(int);
void f(double);
void f(char);

}
void h() {
using B::f; // B::£(int) and B::f(double)
using C::f; // C::f(int), C::f(double), and C::f(char)
fCh’); // calls C::f(char)
£(1); // error: ambiguous: B::f(int) or C::f(int)?
void f(int); // error: £(int) conflicts with C::f(int) and B::f(int)
}
— end example] — end note]

When a using-declaration brings names from a base class into a derived class scope, member functions and
member function templates in the derived class override and /or hide member functions and member function
templates with the same name, parameter-type-list (8.3.5), cv-qualification, and ref-qualifier (if any) in a
base class (rather than conflicting). [Note: For using-declarations that name a constructor, see 12.9. — end
note] [Example:

struct B {
virtual void f(int);
virtual void f(char);
void g(int);
void h(int);

§7.3.3 165

16

17

©ISO/IEC N3090=10-0080

};
struct D : B {
using B::f;
void f(int); // OK:D::f(int) overrides B::f(int);
using B::g;
void g(char); // OK
using B::h;
void h(int); // OK: D::h(int) hides B::h(int)
};
void k(D* p)
{
p—>f(1); // calls D: :f (int)
p—>f(’a’); // calls B: : £ (char)
p—>g(1); // calls B: :g(int)
p—>g(’a’); // calls D: :g(char)
}

— end example |

For the purpose of overload resolution, the functions which are introduced by a wusing-declaration into a
derived class will be treated as though they were members of the derived class. In particular, the implicit
this parameter shall be treated as if it were a pointer to the derived class rather than to the base class.
This has no effect on the type of the function, and in all other respects the function remains a member of
the base class.

The access rules for inheriting constructors are specified in 12.9; otherwise all instances of the name mentioned
in a using-declaration shall be accessible. In particular, if a derived class uses a using-declaration to access
a member of a base class, the member name shall be accessible. If the name is that of an overloaded
member function, then all functions named shall be accessible. The base class members mentioned by a
using-declaration shall be visible in the scope of at least one of the direct base classes of the class where the
using-declaration is specified. [Note: because a using-declaration designates a base class member (and not
a member subobject or a member function of a base class subobject), a using-declaration cannot be used to
resolve inherited member ambiguities. For example,

struct A { int x(O); };
struct B : A { };
struct C : A {

using A::x;

int x(int);

};

struct D : B, C {
using C::x;
int x(double);

3
int £(D* d) {
return d->x(); // ambiguous: B::x or C::x
}
— end note]

§7.3.3 166

18

19

20

©ISO/IEC N3090=10-0080

The alias created by the using-declaration has the usual accessibility for a member-declaration. [Note: A
using-declaration that names a constructor does not create aliases; see 12.9 for the pertinent accessibility
rules. — end note] [Example:

class A {
private:
void f(char);
public:
void f(int);
protected:
void g(Q);
};
class B : public A {
using A::f; // error: A::f(char) is inaccessible
public:
using A::g; // B::g is a public synonym for A::g
};

— end example]

[Note: use of access-declarations (11.3) is deprecated; member using-declarations provide a better alterna-
tive. — end note]|

If a using-declaration uses the keyword typename and specifies a dependent name (14.7.2), the name intro-
duced by the using-declaration is treated as a typedef-name (7.1.3).

7.3.4 Using directive [namespace.udir]

using-directive:
attribute-speciﬁeropt using namespace ::op¢ nested-name-speciﬁerom namespace-name ;
A using-directive shall not appear in class scope, but may appear in namespace scope or in block scope.
[Note: when looking up a namespace-name in a using-directive, only namespace names are considered,
see 3.4.6. — end note] The optional attribute-specifier appertains to the using-directive.

A using-directive specifies that the names in the nominated namespace can be used in the scope in which the
using-directive appears after the using-directive. During unqualified name lookup (3.4.1), the names appear
as if they were declared in the nearest enclosing namespace which contains both the using-directive and the
nominated namespace. [Note: in this context, “contains” means “contains directly or indirectly”. — end
note]

A using-directive does not add any members to the declarative region in which it appears. [Example:
namespace A {
int i;
namespace B {
namespace C {

int i;
}
using namespace A::B::C;
void f1() {
i = 5; // OK, C::1i visible in B and hides A: :1i
}

}

namespace D {
using namespace B;
using namespace C;

§7.3.4 167

©ISO/IEC N3090=10-0080

void £2() {
i = 5; // ambiguous, B::C::1 or A::i?
}
}
void £3() {
i = 5; // uses A::i
}
}
void £40) {
i=5; // ill-formed; neither i is visible
}

— end example |

The For unqualified lookup (3.4.1), the using-directive is transitive: if a scope contains a using-directive that
nominates a second namespace that itself contains wusing-directives, the effect is as if the using-directives
from the second namespace also appeared in the first. [Note: For qualified lookup, see 3.4.3.2. end note]
[Ezample:

namespace M {
int i;
}
namespace N {
int i;
using namespace M;

}
void £(O) {

using namespace N;

i=7; // error: both M::i and N::i are visible
}

For another example,

namespace A {
int i;
}
namespace B {
int i;
int j;
namespace C {
namespace D {
using namespace A;

int j;

int k;

int a = i; //B::i hides A::i
}
using namespace D;
int k = 89; // mo problem yet
int 1 = k; // ambiguous: C::k or D::k
int m = i; // Bi:i hides A::i
int n = j; //D::j hides B::j

}
}

§7.3.4 168

©ISO/IEC N3090=10-0080

— end example]

5 If a namespace is extended by an extension-namespace-definition after a using-directive for that namespace
is given, the additional members of the extended namespace and the members of namespaces nominated by
using-directives in the extension-namespace-definition can be used after the extension-namespace-definition.

6 If name lookup finds a declaration for a name in two different namespaces, and the declarations do not
declare the same entity and do not declare functions, the use of the name is ill-formed. [Note: in particular,
the name of an-ebjeet a variable, function or enumerator does not hide the name of a class or enumeration
declared in a different namespace. For example,

namespace A {
class X { };
extern "C" int g();
extern "C++" int h();
}
namespace B {
void X(int);
extern "C" int g();
extern "C++" int h(int);
}
using namespace A;
using namespace B;

void £() {
X(1); // error: name X found in two namespaces
gO); // okay: name g refers to the same entity
h(); // okay: overload resolution selects A: :h
}
— end note

7 During overload resolution, all functions from the transitive search are considered for argument matching.
The set of declarations found by the transitive search is unordered. [Note: in particular, the order in which
namespaces were considered and the relationships among the namespaces implied by the using-directives do
not cause preference to be given to any of the declarations found by the search. — end note] An ambiguity
exists if the best match finds two functions with the same signature, even if one is in a namespace reachable
through using-directives in the namespace of the other.”® [Example:

namespace D {
int di;
void f(char);
}

using namespace D;
int di; // OK: no conflict with D: :d1
namespace E {

int e;

void f(int);
}

namespace D { // namespace extension

96) During name lookup in a class hierarchy, some ambiguities may be resolved by considering whether one member hides
the other along some paths (10.2). There is no such disambiguation when considering the set of names found as a result of
following using-directives.

§7.3.4 169

©ISO/IEC N3090=10-0080

int d2;
using namespace E;
void f(int);

}
void £() {
di++; // error: ambiguous ::dl or D::d1?
Ddl++; // OK
D::dl++; // OK
d2++; // OK:D::d2
et+; // OK: E::e
£(1); // error: ambiguous: D::f(int) or E::f(int)?
£(’a’); // OK:D::f(char)
}

— end example|

7.4 The asm declaration [dcl.asm)]

An asm declaration has the form
asm-definition:
asm (string-literal) ;
The asm declaration is conditionally-supported; its meaning is implementation-defined. [Note: Typically it
is used to pass information through the implementation to an assembler. — end note]

7.5 Linkage specifications [dcl.link]

All function types, function names with external linkage, and variable names with external linkage have a
language linkage. [Note: Some of the properties associated with an entity with language linkage are specific
to each implementation and are not described here. For example, a particular language linkage may be
associated with a particular form of representing names of objects and functions with external linkage, or
with a particular calling convention, etc. — end note| The default language linkage of all function types,
function names, and variable names is C++ language linkage. Two function types with different language
linkages are distinct types even if they are otherwise identical.

Linkage (3.5) between C++ and non-C++ code fragments can be achieved using a linkage-specification:
linkage-specification:
extern string-literal { declaration-seqop:
extern string-literal declaration

The string-literal indicates the required language linkage. This International Standard specifies the semantics
for the string-literals "C" and "C++". Use of a string-literal other than "C" or "C++" is conditionally-
supported, with implementation-defined semantics. [Note: Therefore, a linkage-specification with a string-
literal that is unknown to the implementation requires a diagnostic. — end note| [Note: It is recommended
that the spelling of the string-literal be taken from the document defining that language. For example, Ada
(not ADA) and Fortran or FORTRAN, depending on the vintage. — end note]

Every implementation shall provide for linkage to functions written in the C programming language, "C",
and linkage to C++ functions, "C++". [Ezample:

complex sqrt(complex); // C++ linkage by default
extern "C" {

double sqrt(double); // C linkage
}

§7.5 170

©ISO/IEC

— end example]

N3090=10-0080

Linkage specifications nest. When linkage specifications nest, the innermost one determines the language

linkage.

A linkage specification does not establish a scope. A linkage-specification shall occur only in

namespace scope (3.3). In a linkage-specification, the specified language linkage applies to the function
types of all function declarators, function names with external linkage, and variable names with external
linkage declared within the linkage-specification. | Example:

extern "C" void f1(void(*pf) (int));

extern "C" typedef void FUNC();

FUNC £2;

extern "C" FUNC £3;

void (*pf2) (FUNC*);

extern "C" {
static void f4();

}

extern "C" void f5() {

extern void f4();

}

extern void f4();

}

void £6() {
extern void f4();

// the name £1 and its function type have C language
// linkage; pf is a pointer to a C function

// the name £2 has C++ language linkage and the
// function’s type has C language linkage

// the name of function £3 and the function’s type
// have C language linkage

// the name of the variable p£2 has C++ linkage and
// the type of pf2 is pointer to C++ function that
// takes one parameter of type pointer to C function

// the name of the function f} has
// internal linkage (not C language
// linkage) and the function’s type
// has C language linkage.

// OK: Name linkage (internal)
// and function type linkage (C
// language linkage) gotten from
// previous declaration.

// OK: Name linkage (internal)
// and function type linkage (C
// language linkage) gotten from
// previous declaration.

// OK: Name linkage (internal)
// and function type linkage (C
// language linkage) gotten from
// previous declaration.

— end ezample] A C language linkage is ignored for the names of class members and the member function
type of class member functions. [Example:

extern "C" typedef void FUNC_c(Q);
class C {

§7.5

void mf1(FUNC_cx*);

FUNC_c mf2;

// the name of the function mf1 and the member
// function’s type have C+ language linkage; the
// parameter has type pointer to C function
// the name of the function mf2 and the member
// function’s type have C+ language linkage

171

©ISO/IEC N3090=10-0080

static FUNC_c* q; // the name of the data member q has C++ language
// linkage and the data member’s type is pointer to
// C function

3
extern "C" {
class X {
void mf(); // the name of the function mf and the member
// function’s type have C+ language linkage
void mf2(void(*) ()); // the name of the function mf2 has C++ language
// linkage; the parameter has type pointer to
// C function
3

}

— end example|

5 If two declarations declare functions with the same name and parameter-type-list (8.3.5) to be members of
the same namespace or declare objects with the same name to be members of the same namespace and the
declarations give the names different language linkages, the program is ill-formed; no diagnostic is required
if the declarations appear in different translation units. Except for functions with C++ linkage, a function
declaration without a linkage specification shall not precede the first linkage specification for that function.
A function can be declared without a linkage specification after an explicit linkage specification has been
seen; the linkage explicitly specified in the earlier declaration is not affected by such a function declaration.

6 At most one function with a particular name can have C language linkage. Two declarations for a function
with C language linkage with the same function name (ignoring the namespace names that qualify it)
that appear in different namespace scopes refer to the same function. Two declarations for an object with
C language linkage with the same name (ignoring the namespace names that qualify it) that appear in
different namespace scopes refer to the same object. [Note: because of the one definition rule (3.2), only
one definition for a function or object with C linkage may appear in the program; that is, such a function
or object must not be defined in more than one namespace scope. For example,

namespace A {
extern "C" int f();
extern "C" int g() { return 1; }
extern "C" int h();

}

namespace B {
extern "C" int £Q); // A::f and B::f refer
// to the same function
extern "C" int g() { return 1; } // ill-formed, the function g
// with C language linkage
// has two definitions
}

int A::f() { return 98; } //definition for the function £
// with C language linkage
extern "C" int h() { return 97; }
// definition for the function h
// with C language linkage
// A::h and ::h refer to the same function

— end note]

§7.5 172

©ISO/IEC

N3090=10-0080

A declaration directly contained in a linkage-specification is treated as if it contains the extern speci-
fier (7.1.1) for the purpose of determining the linkage of the declared name and whether it is a definition.

Such a declaration shall not specify a storage class. [Ezample:

extern "C" double f();

static double f(); // error
extern "C" int i; // declaration
extern "C" {

int i; // definition
}
extern "C" static void g(); // error

— end example]

[Note: because the language linkage is part of a function type, when a pointer to C function (for example)

is dereferenced, the function to which it refers is considered a C function. — end note]

Linkage from C++ to objects defined in other languages and to objects defined in C++ from other languages
is implementation-defined and language-dependent. Only where the object layout strategies of two language

implementations are similar enough can such linkage be achieved.

7.6 Attributes

7.6.1 Attribute syntax and semantics

[dcl.attr]

[dcl.attr.grammar|

Attributes specify additional information for various source constructs such as types, variables, names,
blocks, or translation units.

attribute-specifier:

[[attribute-list]]

attribute-list:

attribute,pt

attribute-list , attributeop:
attribute . ..

attribute-list , attribute ...

attribute:

attribute-token attribute-argument-clauseopt

attribute-token:

identifier
attribute-scoped-token

attribute-scoped-token:

attribute-namespace : : identifier

attribute-namespace:

identifier

attribute-argument-clause:

(balanced-token-seq)

balanced-token-seq:

balanced-token
balanced-token-seq balanced-token

balanced-token:

§7.6.1

(balanced-token-seq)
[balanced-token-seq]
{ balanced-token-seq }

any token other than a parenthesis, a bracket, or a brace

173

©ISO/IEC N3090=10-0080

[Note: For each individual attribute, the form of the balanced-token-seq will be specified. — end note]

In an attribute-list, an ellipsis may appear only if that attribute’s specification permits it. An attribute
followed by an ellipsis is a pack expansion (14.6.3). An attribute-specifier that contains no attributes has
no effect. The order in which the attribute-tokens appear in an attribute-list is not significant. A If a
keyword (2.12) or an alternative token (2.6) that satisfies the syntactic requirements of an identifier (2.11)
is contained in an attribute-token , it is considered an identifier. No name lookup (3.4) is performed on any
of the identifiers contained in an attribute-token. The attribute-token determines additional requirements
on the attribute-argument-clause (if any). The use of an attribute-scoped-token is conditionally-supported,
with implementation-defined behavior. [Note: Each implementation should choose a distinctive name for

the attribute-namespace in an attribute-scoped-token. — end note |

Each attribute-specifier is said to appertain to some entity or statement, identified by the syntactic context
where it appears (clause 7, clause 8). If an attribute-specifier that appertains to some entity or statement
contains an attribute that dees—aet is not allowed to apply to that entity or statement, the program is
ill-formed. If an attribute-specifier appertains to a friend declaration (11.4), that declaration shall be a
definition. No attribute-specifier shall appertain to an explicit instantiation (14.8.2).

For an attribute-token not specified in this International Standard, the behavior is implementation-defined.

Two consecutive left square bracket tokens shall appear only when introducing an attribute-specifier. [Note: If

two consecutive left square brackets appear where an attribute-specifier is not allowed, the program is ill

formed even if the brackets match an alternative grammar production. — end note| [Ezample:

int p[10];
void f() {
int x = 42, y[5];
int(p[[x] { return x; }01); // error: malformed attribute on a nested
// declarator-id and not a function-style cast of
// an_element of p.
y[[1 { return 2; }O1 = 2; // error even though attributes are not allowed
// in this context.

end example |

7.6.2 Alignment attribute [dcl.align]
The attribute-token align specifies alignment (3.11). The attribute shall have one of the following forms:
align (type-id)
align (assignment-expression)

The attribute may be followed by an ellipsis. The attribute ean may be applied to a variable that is neither
a function parameter nor declared with the register storage class specifier and to a class data member that
is not a bit-field. The attribute may also be applied to the declaration of a class or enumeration type.

When the alignment attribute is of the form align(assignment-expression):
— the assignment-expression shall be an integral constant expression

— if the constant expression evaluates to a fundamental alignment, the alignment requirement of the
declared ebjeet entity shall be the specified fundamental alignment

— if the constant expression evaluates to an extended alignment and the implementation supports that
alignment in the context of the declaration, the alignment of the declared ebjeet entity shall be that
alignment

§7.6.2 174

©ISO/IEC N3090=10-0080

— if the constant expression evaluates to an extended alignment and the implementation does not support
that alignment in the context of the declaration, the program is ill-formed

— if the constant expression evaluates to zero, the alignment specifier shall have no effect
— otherwise, the program is ill-formed.

When the alignment attribute is of the form align(type-id), it shall have the same effect as align(alignof (type-
id)) (5.3.6).

When multiple alignment attributes are specified for an ebjeet entity, the alignment requirement shall be
set to the strictest specified alignment.

The combined effect of all alignment attributes in a declaration shall not specify an alignment that is less
strict than the alignment that would otherwise be required for the ebjeet entity being declared.

If the defining declaration of an ebjeet entity has an alignment attribute, any non-defining declaration of
that ebjeet entity shall either specify equivalent alignment or have no alignment attribute. Conversely, if any
declaration of an entity has an alignment attribute, every defining declaration of that entity shall specify an
equivalent alignment. No diagnostic is required if declarations of an ebjeet entity have different alignment
attributes in different translation units.

[Ezample:

// Translation unit #1:
struct S { int x; } s, p = &s;

// Translation unit #2:
struct [[align(16)]] S; // error: definition of 8 lacks alignment; no
extern S* p; // diagnostic required

end ezample]

[Example: An aligned buffer with an alignment requirement of A and holding N elements of type T other
than char, signed char, or unsigned char can be declared as:

T buffer [[align(T), align(A) 1] [N];

Specifying align(T) in the attribute-list ensures that the final requested alignment will not be weaker than
alignof (T), and therefore the program will not be ill-formed. — end example]

[Example:

void £ [[align(double) 11 (); // error: alignment applied to function
unsigned char c
[[align(double) 1] [sizeof(double)]; // array of characters, suitably aligned for a double
extern unsigned char c[sizeof(double)]; // no align necessary
extern unsigned char c
[[align(float) 1] [sizeof(double)]; // error: different alignment in declaration

— end example|

§7.6.2 175

©ISO/IEC N3090=10-0080

7.6.3 Noreturn attribute [dcl.attr.noreturn]

The attribute-token noreturn specifies that a function does not return. It shall appear at most once in each
attribute-list and no attribute-argument-clause shall be present. The attribute applies may be applied to
the declarator-id in a function declaration. The first declaration of a function shall specify the noreturn
attribute if any declaration of that function specifies the noreturn attribute. If a function is declared with
the noreturn attribute in one translation unit and the same function is declared without the noreturn
attribute in another translation unit, the program is ill-formed; no diagnostic required.

If a function f is called where £ was previously declared with the noreturn attribute and f eventually
returns, the behavior is undefined. [Note: The function may terminate by throwing an exception. — end
note| [Note: Implementations are encouraged to issue a warning if a function marked [[noreturn]] might
return. — end note

[Example:

void £ [[noreturn 11 O {
throw "error"; // OK
}

void q [[noreturn 1] (int i) { // behavior is undefined if called with an argument <= 0
if (i > 0)
throw "positive";

}

— end example|

7.6.4 Final attribute [dcl.attr.final]

The attribute-token final specifies derivation semantics for a class and overriding semantics for a virtual
function. It shall appear at most once in each attribute-list and no attribute-arqument-clause shall be present.
The attribute applies may be applied to class definitions and to virtual member functions being declared in
a class definition. H i i e - b i e

If a class B is marked final and a class D is derived from B the program is ill formed.

If a virtual member function f in some class B is marked final and in a class D derived from B a function
D::f overrides B: : f, the program is ill-formed.

[Example:

struct Bl {
virtual void £ [[final 1] Q);
};

struct D1 : Bl {
void £Q); // ill formed
}

struct [[final]] B2 {
s

struct D2 : B2 { // ill formed
X

§ 7.6.4 176

©ISO/IEC N3090=10-0080

— end example]

7.6.5 Class member name checking attributes [dcl.attr.override]

The attribute-token override asserts that a virtual member function overrides a function in a base class.
It shall appear at most once in each attribute-list and no attribute-argument-clause shall be present. The
attribute apphes may be applied to virtual member functions being declared in a class definition.

If a virtual member function f is marked override and does not override (10.3) a member function of a
base class the program is ill-formed.

The attribute-token hiding asserts that a class member name hides a name in a base class. It shall appear
at most once in each attribute-list and no attribute-argument-clause shall be present. The attribute applies
may be applied to class members being declared in a class definition.

If a class member is marked hiding and its name does not hide (3.3.10, 10.2) a class member name in a
base class the program is ill-formed.

The attribute-token base_check specifies that overriding and hiding of base members is strictly checked
within a class. It shall appear at most once in each attribute-list and no attribute-argument-clause shall be
present. The attribute applies may be applied to a class definition.

In a class definition marked base_check, if a virtual member function that is neither implicitly-declared
nor a destructor overrides (10.3) a member function of a base class and it is not marked override, the
program is ill-formed. Similarly, in such a class definition, if a class member name other than that of an
implicitly-declared special member function hides (3.3.10, 10.2) a class member name in a base class and it
is not marked hiding, the program is ill-formed. [Note: a using-declaration makes the potentially hidden
name visible, avoiding the need for the hiding attribute. — end note

[Example:

class B {
virtual void some_func();

virtual void f(int);
virtual void h(int);
void j(int);
void k(Q);
typedef B self;

};

class D [[base_check]] : public B {

void sone_func [[overridel]l (); // error: misspelled name

void f [[override]] (int);

virtual void f [[override]] (long);
virtual void f [[override]] (int) const;
virtual int f [[override]] (int);

virtual void g(long);
void h(int);
virtual void h(double);

virtual void h [[hiding]] (char *);

using B::j;
int j(double);

§7.6.5

// OK: £ implicitly virtual, overrides B: :f

// error: non-matching argument type

// error: non-matching cv-qualification
// error: non-matching return type

// OK: new virtual function introduced

// error: h implicitly virtual, but overriding without marker

// error: hides B: :h without marker

// OK

// OK: not hiding due to “using”

177

©ISO/IEC N3090=10-0080

void j(int); // OK, despite ‘obscuring’ B::j(int)

virtual int j [[hiding]l] (void); // error: not hiding due to “using”

int k; // error: hides B: :k without marker

int m [[hiding]] (int); // error: no hiding despite marker

typedef D self; // error: hides B: :self without marker
};

— end example]

7.6.6 Carries dependency attribute [dcl.attr.depend]

The attribute-token carries_dependency specifies dependency propagation into and out of functions. It
shall appear at most once in each attribute-list and no attribute-argument-clause shall be present. The
attribute applies may be applied to the declarator-id of a parameter-declaration in a function declaration
or lambda, in which case it specifies that the initialization of the parameter carries a dependency to (1.10)
each lvalue-to-rvalue conversion (4.1) of that object. The attribute alse—applies may also be applied to
the declarator-id of a function declaration, in which case it specifies that the return value, if any, carries a
dependency to the evaluation of the function call expression.

The first declaration of a function shall specify the carries_dependency attribute for its declarator-id if any
declaration of the function specifies the carries_dependency attribute. Furthermore, the first declaration of
a function shall specify the carries_dependency attribute for a parameter if any declaration of that function
specifies the carries_dependency attribute for that parameter. If a function or one of its parameters is
declared with the carries_dependency attribute in its first declaration in one translation unit and the
same function or one of its parameters is declared without the carries_dependency attribute in its first
declaration in another translation unit, the program is ill-formed; no diagnostic required.

[Note: the carries_dependency attribute does not change the meaning of the program, but may result in
generation of more efficient code. — end note]

[Ezample:

/* Translation unit A. x/

struct foo { int* a; int*x b; };

std::atomic<struct foo *> foo_head[10];

int foo_array[10][10];

struct foox f [[carries_dependencyl] (int i) {
return foo_head[i] .load(memory_order_consume) ;

}

int g(int* x, int* y [[carries_dependencyl]) {
return kill_dependency(foo_array[*x] [*xy]);

}

/% Translation unit B. x/

struct foox f [[carries_dependency]] (int i);
int* g(int* x, int* y [[carries_dependencyl]);

int ¢ = 3;
void h(int i) {

§ 7.6.6 178

©ISO/IEC N3090=10-0080

struct foo* p;

p = f(i);
do_something_with(g(&c, p->a));
do_something_with(g(p->a, &c));

5 The carries_dependency attribute on function £ means that the return value carries a dependency out of
f, so that the implementation need not constrain ordering upon return from f. Implementations of £ and
its caller may choose to preserve dependencies instead of emitting hardware memory ordering instructions
(a.k.a. fences).

6 Function g’s second argument has a carries_dependency attribute, but its first argument does not. There-
fore, function h’s first call to g carries a dependency into g, but its second call does not. The implementation
might need to insert a fence prior to the second call to g.

— end example]

§ 7.6.6 179

©ISO/IEC N3090=10-0080

8 Declarators [dcl.decl]

A declarator declares a single ebjeet variable, function, or type, within a declaration. The init-declarator-
list appearing in a declaration is a comma-separated sequence of declarators, each of which can have an
initializer.
init-declarator-list:
init-declarator
init-declarator-list , init-declarator
init-declarator:
declarator initializer,p:

The #we three components of a simple-declaration are the attributes (7.6), the specifiers (decl-specifier-
seq; 7.1) and the declarators (zmt declarator-list). The specifiers indicate the type, storage class or other
propertles of the 5 fs entities being declared. The declarators specify the names of
these 2= : 5 ontm(‘s and (optionally) modify the type of the specifiers with operators
such as * (pointer to) and O (functlon returning). Initial values can also be specified in a declarator;
initializers are discussed in 8.5 and 12.6.

Each init-declarator in a declaration is analyzed separately as if it was in a declaration by itself.

Declarators have the syntax

declarator:
ptr-declarator
noptr-declarator parameters-and-qualifiers trailing-return-type

ptr-declarator:
noptr-declarator
ptr-operator ptr-declarator

noptr-declarator:
declarator-id attribute-specifieropt
noptr-declarator parameters-and-qualifiers
noptr-declarator [constant-expressiono.py: 1 attribute-specifierop:
(ptr-declarator)

parameters-and-qualifiers:
(parameter-declaration-clause) attribute-specifieryp; cv-qualifier-seqopt
ref-qualifierop: exception-specificationopt

97) A declaration with several declarators is usually equivalent to the corresponding sequence of declarations each with a
single declarator. That is

T D1, D2, ... Dn;
is usually equvalent to
T D1; TD2; ... T Dn;

where T is a decl-specifier-seq and each Di is an init-declarator. The exception occurs when a name introduced by one of
the declarators hides a type name used by the decl-specifiers, so that when the same decl-specifiers are used in a subsequent
declaration, they do not have the same meaning, as in

struct S ... ;

S S, T; // declare two instances of struct S
which is not equivalent to

struct S ...
S S;
S T; // error

180

©ISO/IEC N3090=10-0080

trailing-return-type:
=> attribute-speeifieroy— trailing-type-specifier-seq
=>—attribute—specifiersp— abstract-declaratorops
ptr-operator:
* attribute-specifierops cv-qualifier-seqopt
& attribute-specifierpi
&& attribute-specifierop:
tiopt mested-name-specifier * attribute-specifierops cv-qualifier-seqopt

cv-qualifier-seq:

cv-qualifier cv-qualifier-seqopt
cv-qualifier:

const

volatile
ref-qualifier:

&

&&
declarator-id:

. . opt id-expression
tiopt mested-name-specifierop: class-name

A class-name has special meaning in a declaration of the class of that name and when qualified by that
name using the scope resolution operator :: (5.1, 12.1, 12.4).

The optional attribute-specifier in a trailing-return-type appertains to the indicated return type. The type-id
in a trailing-return-type includes the longest possible sequence of abstract-declarators. | Note: This resolves
the ambiguous binding of array and function declarators. [Ezample:

auto £()->int(*)[4]; // function returning a pointer to array[4] of int
// not function returning array[4] of pointer to int

— end example] — end note]

8.1 Type names [dcl.name]

To specify type conversions explicitly, and as an argument of sizeof, alignof, new, or typeid, the name of
a type shall be specified. This can be done with a type-id, which is syntactically a declaration for an-ebjeet
a variable or function of that type that omits the name of the ebjeet-orfunetion entity.

type-id:
type-specifier-seq attribute-specifieroy— abstract-declaratorop:
abstract-declarator:

ptr-abstract-declarator
noptr-abstract-declarator.p: parameters-and-qualifiers trailing-return-type

ptr-abstract-declarator:
noptr-abstract-declarator
ptr-operator ptr-abstract-declaratoropt

noptr-abstract-declarator:
noptr-abstract-declarator.p: parameters-and-qualifiers
noptr-abstract-declaratorop: [constant-expression 1 attribute-specifieropt
(ptr-abstract-declarator)

It is possible to identify uniquely the location in the abstract-declarator where the identifier would appear
if the construction were a declarator in a declaration. The named type is then the same as the type of the
hypothetical identifier. [Ezample:

§8.1 181

©ISO/IEC N3090=10-0080

int //int i

int * // int *pi

int *[3] // int *p[3]

int (%) [3] // int (xp3i) [3]

int *(Q) // int *£(Q)

int (%) (double) // int (*pf) (double)

RRANAY W RRENAY

name respectively the types “int,” “pointer to int,” “array of 3 pointers to int,” “pointer to array of 3 int,”
“function of (no parameters) returning pointer to int,” and “pointer to a function of (double) returning
int.” — end example]

A type can also be named (often more easily) by using a typedef (7.1.3).

8.2 Ambiguity resolution [dcl.ambig.res]

The ambiguity arising from the similarity between a function-style cast and a declaration mentioned in 6.8
can also occur in the context of a declaration. In that context, the choice is between a function declaration
with a redundant set of parentheses around a parameter name and an object declaration with a function-style
cast as the initializer. Just as for the ambiguities mentioned in 6.8, the resolution is to consider any construct
that could possibly be a declaration a declaration. [Note: a declaration can be explicitly disambiguated by
a nonfunction-style cast, by an = to indicate initialization or by removing the redundant parentheses around
the parameter name. — end note| [Example:

struct S {
S(int);

};

void foo(double a) {
S w(int(a)); // function declaration
S x(int(Q)); // function declaration
S y((int)a); // object declaration
S z = int(a); // object declaration

}

— end example |

The ambiguity arising from the similarity between a function-style cast and a type-id can occur in different
contexts. The ambiguity appears as a choice between a function-style cast expression and a declaration of a
type. The resolution is that any construct that could possibly be a type-id in its syntactic context shall be
considered a type-id.

[Example:

#include <cstddef>

char *p;

void *operator new(std::size_t, int);

void foo() {
const int x = 63;
new (int(*p)) int; // new-placement expression
new (int(*[x])); // new type-id

}

For another example,

template <class T>
struct S {
T *p;

§ 8.2 182

©ISO/IEC N3090=10-0080

};
S<int ()> x; // type-id
S<int(1)> y; // expression (ill-formed)

For another example,

void foo() {

sizeof (int(1)); // expression

sizeof (int()); // type-id (ill-formed)
}

For another example,

void foo() {

(int(1)); // expression

(int () 1; // type-id (ill-formed)
}

— end example]

Another ambiguity arises in a parameter-declaration-clause of a function declaration, or in a type-id that
is the operand of a sizeof or typeid operator, when a type-name is nested in parentheses. In this case,
the choice is between the declaration of a parameter of type pointer to function and the declaration of a
parameter with redundant parentheses around the declarator-id. The resolution is to consider the type-name
as a simple-type-specifier rather than a declarator-id. | Ezample:

class C { };
void £(int(C)) { } // void f(int(*fp)(C ¢)) { }
// not: void f(int C);
int g(C);
void foo() {
£(1); // error: cannot convert 1 to function pointer
f(g); // OK

}

For another example,

class C { };
void h(int *(C[10]1)); // void h(int *(*_fp)(C _parm[10]));
// mot: void h(int *C[10]);

— end example]

8.3 Meaning of declarators [dcl.meaning)

A list of declarators appears after an optional (Clause 7) decl-specifier-seq (7.1). Each declarator contains
exactly one declarator-id; it names the identifier that is declared. An unqualified-id occurring in a declarator-
id shall be a simple identifier except for the declaration of some special functions (12.3, 12.4, 13.5) and for
the declaration of template specializations or partial specializations (14.8). A declarator-id shall not be
qualified except for the definition of a member function (9.3) or static data member (9.4) outside of its
class, the definition or explicit instantiation of a function or variable member of a namespace outside of its
namespace, or the definition of a-previeustydeelared an explicit specialization outside of its namespace, or the
declaration of a friend function that is a member of another class or namespace (11.4). When the declarator-
id is qualified, the declaration shall refer to a previously declared member of the class or namespace to which

§ 8.3 183

©ISO/IEC N3090=10-0080

the qualifier refers (or, in the case of a namespace, of an element of the inline namespace within-that-scope
set of that namespace (7.3.1));and or to a specialization thereof; the member shall not merely have been
introduced by a wusing-declaration in the scope of the class or namespace nominated by the nested-name-
specifier of the declarator-id. The nested-name-specifier of a qualified declarator-id shall not begin with a
decltype-specifier. | Note: if the qualifier is the global :: scope resolution operator, the declarator-id refers
to a name declared in the global namespace scope. — end note] The optional attribute-specifier following a
declarator-id appertains to the entity that is declared.

A static, thread_local, extern, register, mutable, friend, inline, virtual, or typedef specifier ap-
plies directly to each declarator-id in an init-declarator-list; the type specified for each declarator-id depends
on both the decl-specifier-seq and its declarator.

Thus, a declaration of a particular identifier has the form
TD
where T is of the form attribute-specifieryy, decl-specifier-seq ettribute-speeifierspr— and D is a declarator.

Following is a recursive procedure for determining the type specified for the contained declarator-id by such
a declaration.

First, the decl-specifier-seq determines a type. In a declaration

TD

the decl-specifier-seq T determines the type T. [Example: in the declaration

int unsigned i;

the type specifiers int unsigned determine the type “unsigned int” (7.1.6.2). — end example]

In a declaration attribute-specifieryy: T -attrs

D where D is an unadorned identifier the type
of this identifier is “T”. SRS i o deelar

In a declaration T D where D has the form
(D1)
the type of the contained declarator-id is the same as that of the contained declarator-id in the declaration
T D1

Parentheses do not alter the type of the embedded declarator-id, but they can alter the binding of complex
declarators.

8.3.1 Pointers [dcl.ptr]

In a declaration T D where D has the form
* attribute-specifieropt cv-qualifier-seqop: D1

and the type of the identifier in the declaration T D1 is “derived-declarator-type-list T,” then the type of the
identifier of D is “derived-declarator-type-list cv-qualifier-seq pointer to T.” The cv-qualifiers apply to the pointer
and not to the object pointed to. Similarly, the optional attribute-specifier (7.6.1) appertains to the pointer
and not to the object pointed to.

[Example: the declarations

§8.3.1 184

©ISO/IEC N3090=10-0080

const int ci = 10, *pc = &ci, *const cpc = pc, **ppc;
int i, *p, *const cp = &i;

declare ci, a constant integer; pc, a pointer to a constant integer; cpc, a constant pointer to a constant
integer; ppc, a pointer to a pointer to a constant integer; i, an integer; p, a pointer to integer; and cp, a
constant pointer to integer. The value of ci, cpc, and cp cannot be changed after initialization. The value
of pc can be changed, and so can the object pointed to by cp. Examples of some correct operations are

i = ci;
*Ccp = ci;
pct+;

pc = cpc;
pc = ps
ppc = &pc;

Examples of ill-formed operations are

ci = 1; // error
ci++; // error
*pc = 2; // error
cp = &ci; // error
cpc++; // error
P = pc; // error
ppc = &p; // error

Each is unacceptable because it would either change the value of an object declared const or allow it to be
changed through a cv-unqualified pointer later, for example:

*ppc = &ci; // OK, but would make p point to ci ...
// ... because of previous error
*p = 5; // clobber ci

— end example]
See also 5.17 and 8.5.

[Note: there are no pointers to references; see 8.3.2. Since the address of a bit-field (9.6) cannot be taken,
a pointer can never point to a bit-field. — end note]

8.3.2 References [dcl.ref]

In a declaration T D where D has either of the forms
& atlribute-specifiery,: D1
&& attribute-specifier,,: D1

and the type of the identifier in the declaration T D1 is “derived-declarator-type-list T,” then the type of the
identifier of D is “derived-declarator-type-list reference to T.” The optional attribute-specifier appertains to the
reference type. Cv-qualified references are ill-formed except when the cv-qualifiers are introduced through
the use of a typedef (7.1.3) or of a template type argument (14.4), in which case the cv-qualifiers are ignored.
[Example:

typedef int& A;
const A aref = 3; //ill-formed; lvalue reference to non-const #eference initialized with rvalue

The type of aref is “Ivalue reference to int”, not “censt lvalue reference to const int”. — end ezample]
[Note: a reference can be thought of as a name of an object. — end note] A declarator that specifies the
type “reference to cv void” is ill-formed.

§ 8.3.2 185

©ISO/IEC N3090=10-0080

A reference type that is declared using & is called an lvalue reference, and a reference type that is declared
using && is called an rvalue reference. Lvalue references and rvalue references are distinct types. Except
where explicitly noted, they are semantically equivalent and commonly referred to as references.

[Ezample:
void f(double& a) { a += 3.14; }
double d = 0;
£(d);

declares a to be a reference parameter of f so the call £(d) will add 3.14 to d.

int v[20];

/..

int& g(int i) { return v[il; }

/)
g(3) =7;

declares the function g() to return a reference to an integer so g(3)=7 will assign 7 to the fourth element
of the array v. For another example,

struct link {
link* next;

};
link* first;

void h(link*& p) { //p is a reference to pointer
p—>next = first;

first = p;
p=0;
}
void k() {
link* q = new link;
h(q);
}

declares p to be a reference to a pointer to link so h(q) will leave q with the value zero. See also 8.5.3.
— end example|

It is unspecified whether or not a reference requires storage (3.7).

There shall be no references to references, no arrays of references, and no pointers to references. The
declaration of a reference shall contain an initializer (8.5.3) except when the declaration contains an explicit
extern specifier (7.1.1), is a class member (9.2) declaration within a class definition, or is the declaration
of a parameter or a return type (8.3.5); see 3.1. A reference shall be initialized to refer to a valid object
or function. [Note: in particular, a null reference cannot exist in a well-defined program, because the only
way to create such a reference would be to bind it to the “object” obtained by dereferencing a null pointer,
which causes undefined behavior. As described in 9.6, a reference cannot be bound directly to a bit-field.
— end note]

If a typedef (7.1.3), a type template-parameter (14.4.1), or a decltype-specifier (7.1.6.2) denotes a type TR
that is a reference to a type T, an attempt to create the type “lvalue reference to cv TR” creates the type
“lvalue reference to T”, while an attempt to create the type “rvalue reference to cv TR” creates the type TR.
[Ezample:

§ 8.3.2 186

©ISO/IEC N3090=10-0080

int i;
typedef int& LRI;
typedef int&& RRI;

LRI& rl = i; // rl has the type int&
const LRI& r2 = i; // 2 has the type int&
const LRI&& r3 = ij; // ©3 has the type int&
RRI& r4 = i; // t4 has the type int&
RRI&& r5 = i; // ©5 has the type int&&
decltype(r2)& r6 = i; // 6 has the type int&
decltype(r2)&& r7 = i; // 7 has the type int&

end example |

8.3.3 Pointers to members [dcl.mptr]

In a declaration T D where D has the form
tiopt mested-name-specifier x attribute-specifierop: cv-qualifier-seqop: D1

and the nested-name-specifier sames denotes a class, and the type of the identifier in the declaration T D1 is
“derived-declarator-type-list T”, then the type of the identifier of D is “derived-declarator-type-list cv-qualifier-seq
pointer to member of class nested-name-specifier of type T”. The optional attribute-specifier (7.6.1) appertains
to the pointer-to-member.

[Example:

struct X {
void f(int);
int a;

};

struct Y;

int X::* pmi = &X::a;

void (X::* pmf)(int) = &X::f;
double X::* pmd;

char Y::* pmc;

declares pmi, pmf, pmd and pmc to be a pointer to a member of X of type int, a pointer to a member of
X of type void(int), a pointer to a member of X of type double and a pointer to a member of Y of type
char respectively. The declaration of pmd is well-formed even though X has no members of type double.
Similarly, the declaration of pmc is well-formed even though Y is an incomplete type. pmi and pmf can be
used like this:

X obj;
obj.*pmi = 7; // assign 7 to an integer
// member of obj
(obj.*pmf) (7); // call a function member of obj

// with the argument 7

— end example]

A pointer to member shall not point to a static member of a class (9.4), a member with reference type, or
“cv void.”

§8.3.3 187

©ISO/IEC N3090=10-0080

[Note: see also 5.3 and 5.5. The type “pointer to member” is distinct from the type “pointer”, that is, a
pointer to member is declared only by the pointer to member declarator syntax, and never by the pointer
declarator syntax. There is no “reference-to-member” type in C++. — end note]

8.3.4 Arrays [dcl.array]

In a declaration T D where D has the form
D1 [constant-expression.p: 1 attribute-specifierop:

and the type of the identifier in the declaration T D1 is “derived-declarator-type-list T”, then the type of the
identifier of D is an array type; if the type of the identifier of D contains the auto type-specifier, the program
is ill-formed. T is called the array element type; this type shall not be a reference type, the (possibly cv-
qualified) type void, a function type or an abstract class type. If the constant-expression (5.19) is present,
it shall be an integral constant expression and its value shall be greater than zero. The constant expression
specifies the bound of (number of elements in) the array. If the value of the constant expression is N, the
array has N elements numbered 0 to N-1, and the type of the identifier of D is “derived-declarator-type-list
array of N T”. An object of array type contains a contiguously allocated non-empty set of N subobjects of
type T. If the constant expression is omitted, the type of the identifier of D is “derived-declarator-type-list array
of unknown bound of T”, an incomplete object type. The type “derived-declarator-type-list array of N T” is a
different type from the type “derived-declarator-type-list array of unknown bound of T”, see 3.9. Any type of
the form “cv-qualifier-seq array of N T” is adjusted to “array of N cv-qualifier-seq T”, and similarly for “array
of unknown bound of T”. The optional attribute-specifier appertains to the array. [Example:

typedef int A[5], AA[2][3];

typedef const A CA; // type is “array of 5 const int”
typedef const AA CAA; // type is “array of 2 array of 8 const int”
— end example] [Note: an “array of N cv-qualifier-seq T” has cv-qualified type; see 3.9.3. — end note]

An array can be constructed from one of the fundamental types (except void), from a pointer, from a pointer
to member, from a class, from an enumeration type, or from another array.

When several “array of” specifications are adjacent, a multidimensional array is created; the constant ex-
pressions that specify the bounds of the arrays can be omitted only for the first member of the sequence.
[Note: this elision is useful for function parameters of array types, and when the array is external and the
definition, which allocates storage, is given elsewhere. — end note| The first constant-expression can also
be omitted when the declarator is followed by an initializer (8.5). In this case the bound is calculated from
the number of initial elements (say, N) supplied (8.5.1), and the type of the identifier of D is “array of N T.”

[Ezample:
float fa[17], *afpl[17];

declares an array of float numbers and an array of pointers to float numbers. For another example,

static int x3d[3][5][7];

declares a static three-dimensional array of integers, with rank 3 x 5 x 7. In complete detail, x3d is an array
of three items; each item is an array of five arrays; each of the latter arrays is an array of seven integers. Any
of the expressions x3d, x3d[i], x3d[i] [j], x3d[i] [j] [k] can reasonably appear in an expression. — end
example]

[Note: conversions affecting Fvalues expressions of array type are described in 4.2. Objects of array types
cannot be modified, see 3.10. — end note]

§ 8.3.4 188

©ISO/IEC N3090=10-0080

6 | Note: Except where it has been declared for a class (13.5.5), the subscript operator [] is interpreted in
such a way that E1[E2] is identical to * ((E1)+(E2)). Because of the conversion rules that apply to +, if
El is an array and E2 an integer, then E1[E2] refers to the E2-th member of E1. Therefore, despite its
asymmetric appearance, subscripting is a commutative operation.

7 A consistent rule is followed for multidimensional arrays. If E is an n-dimensional array of rank i X j x ... x k,
then E appearing in an expression that is subject to the array-to-pointer conversion (4.2) is converted to a
pointer to an (n — 1)-dimensional array with rank j x ... x k. If the * operator, either explicitly or implicitly
as a result of subscripting, is applied to this pointer, the result is the pointed-to (n — 1)-dimensional array,
which itself is immediately converted into a pointer.

8 [Ezample: consider

int x[3][5];

Here x is a 3 x 5 array of integers. When x appears in an expression, it is converted to a pointer to (the
first of three) five-membered arrays of integers. In the expression x[i] which is equivalent to *(x+1i), x is
first converted to a pointer as described; then x+i is converted to the type of x, which involves multiplying
i by the length of the object to which the pointer points, namely five integer objects. The results are added
and indirection applied to yield an array (of five integers), which in turn is converted to a pointer to the
first of the integers. If there is another subscript the same argument applies again; this time the result is an

integer. — end example] — end note

9 [Note: it follows from all this that arrays in C++ are stored row-wise (last subscript varies fastest) and that
the first subscript in the declaration helps determine the amount of storage consumed by an array but plays
no other part in subscript calculations. — end note|

8.3.5 Functions [dcl.fct]

1 In a declaration T D where D has the form

D1 (parameter-declaration-clause) ot om— CU-qualifier-seqopt
ref-qualifierop. exception-specificationop: attribute-specifieryp:

and the type of the contained declarator-id in the declaration T D1 is “derived-declarator-type-list T”, the
type of the declarator-id in D is “derived-declarator-type-list function of (parameter-declaration-clause) cv-qualifier-
seqopt Tef-qualifieroy,: returning T”. The optional attribute-specifier appertains to the function type.

2 In a declaration T D where D has the form
D1 (parameter-declaration-clause) attribute—specifiersm— cv-qualifier-seqopt

ref-qualifierop: exception-specificationey: attribute-specifiery,: trailing-return-type

and the type of the contained declarator-id in the declaration T D1 is “derived-declarator-type-list T”, T shall
be the single type-specifier auto. The type of the declarator-id in D is “function of (parameter-declaration-
clause) cv-qualifier-seqop ref-qualifier ,p, returning type-id”. The optional attribute-specifier appertains to
the function type.

3 A type of either form is a function type.”®

parameter-declaration-clause:
parameter-declaration-listopt ...opt
parameter-declaration-list , ...

parameter-declaration-list:
parameter-declaration
parameter-declaration-list , parameter-declaration

98) As indicated by syntax, cv-qualifiers are a signficant component in function return types.

§8.3.5 189

©ISO/IEC N3090=10-0080

parameter-declaration:
attribute-specifier,,: decl-specifier-seq &émb%e—%ﬂ"—lﬂw declarator
attribute-specifier,,, decl-specifier-seq -attrs declarator = assignment-
expression
attribute-specifier,,: decl-specifier-seq ﬂémb%e—%ﬂ"—lﬂw abstract-declaratorop:
attribute-specifierop: decl-specifier-seq abstract-declaratorop, =
assignment-expression

Fopt

The optional attribute-specifier in a parameter-declaration appertains to the parameter.

The parameter-declaration-clause determines the arguments that can be specified, and their processing, when
the function is called. [Note: the parameter-declaration-clause is used to convert the arguments specified
on the function call; see 5.2.2. —end note] If the parameter-declaration-clause is empty, the function
takes no arguments. The parameter list (void) is equivalent to the empty parameter list. Except for this
special case, void shall not be a parameter type (though types derived from void, such as void*, can).
If the parameter-declaration-clause terminates with an ellipsis or a function parameter pack (14.6.3), the
number of arguments shall be equal to or greater than the number of parameters that do not have a default
argument and are not function parameter packs. Where syntactically correct and where “...” is not part of

an abstract-declarator, “, ...” is synonymous with “...”. [Ezample: the declaration

int printf(const charx, ...);

declares a function that can be called with varying numbers and types of arguments.

printf("hello world");
printf("a=%d b=%d", a, b);

However, the first argument must be of a type that can be converted to a const char* — end example]
[Note: the standard header <cstdarg> contains a mechanism for accessing arguments passed using the
ellipsis (see 5.2.2 and 18.10). — end note]

A single name can be used for several different functions in a single scope; this is function overloading
(Clause 13). All declarations for a function shall agree exactly in both the return type and the parameter-
type-list. The type of a function is determined using the following rules. The type of each parameter
(including function parameter packs) is determined from its own decl-specifier-seq and declarator. After
determining the type of each parameter, any parameter of type “array of T” or “function returning T” is
adjusted to be “pointer to T” or “pointer to function returning T,” respectively. After producing the list
of parameter types, several transformations take place upon these types to determine the function type.
Any cv-qualifier modifying a parameter type is deleted. [Example: the type void(*) (const int) becomes
void(x) (int) — end example] Such cv-qualifiers affect only the definition of the parameter within the body
of the function; they do not affect the function type. If a storage-class-specifier modifies a parameter type,
the specifier is deleted. [Ezample: register char* becomes char* — end example] Such storage-class-
specifiers affect only the definition of the parameter within the body of the function; they do not affect the
function type. The resulting list of transformed parameter types and the presence or absence of the ellipsis
or a function parameter pack is the function’s parameter-type-list.

A cv-qualifier-seq shall only be part of the function type for a non-static member function, the function type
to which a pointer to member refers, or the top-level function type of a function typedef declaration. [Note:
a function type that has a cv-qualifier-seq is not a cv-qualified type; there are no cv-qualified function types.
— end note] The effect of a cv-qualifier-seq in a function declarator is not the same as adding cv-qualification
on top of the function type. In the latter case, the cv-qualifiers are ignored. [Ezample:

typedef void F();
struct S {

const F f; // OK: equivalent to: void £();
};

§8.3.5 190

10

11

©ISO/IEC N3090=10-0080

— end example] A ref-qualifier shall only be part of the function type for a non-static member function,
the function type to which a pointer to member refers, or the top-level function type of a function typedef
declaration. The return type, the parameter-type-list, the ref-qualifier, and the cv-qualifier-seq, but not the
default arguments (8.3.6) or the exception specification (15.4), are part of the function type. [Note: function
types are checked during the assignments and initializations of pointer-to-functions, reference-to-functions,
and pointer-to-member-functions. — end note]

[Example: the declaration

int fseek(FILE*, long, int);

declares a function taking three arguments of the specified types, and returning int (7.1.6). — end ezample|

If the type of a parameter includes a type of the form “pointer to array of unknown bound of T” or “reference
to array of unknown bound of T,” the program is ill-formed.”® Functions shall not have a return type of
type array or function, although they may have a return type of type pointer or reference to such things.
There shall be no arrays of functions, although there can be arrays of pointers to functions.

Types shall not be defined in return or parameter types. The type of a parameter or the return type for a
function definition shall not be an incomplete class type (possibly cv-qualified) unless the function definition
is nested within the member-specification for that class (including definitions in nested classes defined within
the class).

A typedef of function type may be used to declare a function but shall not be used to define a function (8.4).
[Ezample:

typedef void F(Q);

F fv; // OK: equivalent to void fv();
F fv {1} // ill-formed
void fv() { } // OK: definition of fv

—end example] A typedef of a function type whose declarator includes a cv-qualifier-seq shall be used
only to declare the function type for a non-static member function, to declare the function type to which a
pointer to member refers, or to declare the top-level function type of another function typedef declaration.
[Ezample:

typedef int FIC(int) const;

FIC f; // ill-formed: does not declare a member function
struct S {

FIC f; // OK
};

FIC S::*pm = &S::f; // OK

— end example |

An identifier can optionally be provided as a parameter name; if present in a function definition (8.4), it
names a parameter (sometimes called “formal argument”). [Note: in particular, parameter names are also
optional in function definitions and names used for a parameter in different declarations and the definition
of a function need not be the same. If a parameter name is present in a functron declaration that is not
a definition, it cannot be used outside of % . : : - -

H}&eﬁekei—khe%uﬂeﬁerkdeeklﬁl%er—(%‘y%—} its function declarator because that is the e\tent of its potentral

scope (3.3.4). — end note]

[Example: the declaration

99) This excludes parameters of type “ptr-arr-seq T2” where T2 is “pointer to array of unknown bound of T” and where ptr-
arr-seq means any sequence of “pointer to” and “array of” derived declarator types. This exclusion applies to the parameters
of the function, and if a parameter is a pointer to function or pointer to member function then to its parameters also, etc.

§8.3.5 191

12

©ISO/IEC N3090=10-0080

int i,
*pi,
£0,
*fpi(int),
(*pif) (const charx, const charx),
(*#fpif(int)) (int);

declares an integer i, a pointer pi to an integer, a function f taking no arguments and returning an integer,
a function fpi taking an integer argument and returning a pointer to an integer, a pointer pif to a function
which takes two pointers to constant characters and returns an integer, a function fpif taking an integer
argument and returning a pointer to a function that takes an integer argument and returns an integer. It
is especially useful to compare fpi and pif. The binding of *fpi(int) is *(fpi(int)), so the declaration
suggests, and the same construction in an expression requires, the calling of a function fpi, and then using
indirection through the (pointer) result to yield an integer. In the declarator (¥pif) (const char*, const
charx*), the extra parentheses are necessary to indicate that indirection through a pointer to a function yields
a function, which is then called. — end ezample] [Note: typedefs and trailing-return-types are sometimes
convenient when the return type of a function is complex. For example, the function fpif above could have
been declared

typedef int IFUNC(int);
IFUNC* fpif(int);
or

auto fpif(int)->int(*) (int)

A trailing-return-type is most useful for a type that would be more complicated to specify before the
declarator-id:

template <class T, class U> auto add(T t, U u) -> decltype(t + u);

rather than

template <class T, class U> decltype((*(T*)0) + (*(U*)0)) add(T t, U u);

— end note]

A declarator-id or abstract-declarator containing an ellipsis shall only be used in a parameter-declaration.
Such a parameter-declaration is a parameter pack (14.6.3). When it is part of a parameter-declaration-clause,
the parameter pack is a function parameter pack (14.6.3). [Note: Otherwise, the parameter-declaration is
part of a template-parameter-list and the parameter pack is a template parameter pack; see 14.2. —end
note] wneti : Al presents shall occm : paramel er-declarati ist- The
type T of the declarator-id of the function parameter pack shall contain a template parameter pack; each
template parameter pack in T is expanded by the function parameter pack. [Example:

template<typename... T> void £(T (* ...t)(int, int));

int add(int, int);
float subtract(int, int);

void g() {
f(add, subtract);
}

— end example]

§8.3.5 192

13

©ISO/IEC N3090=10-0080

There is a syntactic ambiguity when an ellipsis occurs at the end of a parameter-declaration-clause without
a preceding comma. In this case, the ellipsis is parsed as part of the abstract-declarator if the type of the
parameter names a template parameter pack that has not been expanded; otherwise, it is parsed as part of
the parameter-declaration-clause.'%°

8.3.6 Default arguments [dcl.fct.default]

If an expression is specified in a parameter declaration this expression is used as a default argument. Default
arguments will be used in calls where trailing arguments are missing.

[Example: the declaration

void point(int = 3, int = 4);

declares a function that can be called with zero, one, or two arguments of type int. It can be called in any
of these ways:

point(1,2); point(1l); point();

The last two calls are equivalent to point(1,4) and point(3,4), respectively. — end example]

A default argument expression shall be specified only in the parameter-declaration-clause of a function
declaration or in a template-parameter (14.2). It shall not be specified for a parameter pack. If it is
specified in a parameter-declaration-clause, it shall not occur within a declarator or abstract-declarator of a
parameter-declaration.'0!

For non-template functions, default arguments can be added in later declarations of a function in the
same scope. Declarations in different scopes have completely distinct sets of default arguments. That
is, declarations in inner scopes do not acquire default arguments from declarations in outer scopes, and
vice versa. In a given function declaration, alt each parameters subsequent to a parameter with a default
argument shall have a default arguments supplied in this or a previous declarations or shall be a function
parameter pack. A default argument shall not be redefined by a later declaration (not even to the same
value). [Ezample:

void g(int = 0, ...); // OK, ellipsis is not a parameter so it can follow
// a parameter with a default argument

void f(int, int);

void f(int, int = 7);

void h() {
£(3); // OK, calls £(3, 7)
void f(int = 1, int); // error: does not use default
// from surrounding scope
}
void m() {
void f(int, int); // has no defaults
£(4); // error: wrong number of arguments
void f(int, int = 5); // OK
£(4); // OK, calls £(4, 5);
void f(int, int = 5); // error: cannot redefine, even to

// same value

}

100) One can explicitly disambiguate the parse either by introducing a comma (so the ellipsis will be parsed as part of the
parameter-declaration-clause) or by introducing a name for the parameter (so the ellipsis will be parsed as part of the declarator-
id).

101) This means that default arguments cannot appear, for example, in declarations of pointers to functions, references to
functions, or typedef declarations.

§8.3.6 193

©ISO/IEC N3090=10-0080

void n() {
£(6); // OK, calls £(6, 7)
}

— end example] For a given inline function defined in different translation units, the accumulated sets of
default arguments at the end of the translation units shall be the same; see 3.2. If a friend declaration specifies
a default argument expression, that declaration shall be a definition and shall be the only declaration of the
function or function template in the translation unit.

5 A default argument expression is implicitly converted (Clause 4) to the parameter type. The default argu-
ment expression has the same semantic constraints as the initializer expression in a declaration of a variable
of the parameter type, using the copy-initialization semantics (8.5). The names in the expression are bound,
and the semantic constraints are checked, at the point where the default argument expression appears.
Name lookup and checking of semantic constraints for default arguments in function templates and in mem-
ber functions of class templates are performed as described in 14.8.1. [Ezample: in the following code, g
will be called with the value £ (2):

int a = 1;
int f(int);
int g(int x = £(a)); // default argument: £(::a)

void h() {
a = 2;
{
int a = 3;
gO; //g(£(::a))
}
}

— end example| [Note: in member function declarations, names in default argument expressions are looked
up as described in 3.4.1. Access checking applies to names in default argument expressions as described in
Clause 11. — end note|

6 Except for member functions of class templates, the default arguments in a member function definition that
appears outside of the class definition are added to the set of default arguments provided by the member
function declaration in the class definition. Default arguments for a member function of a class template
shall be specified on the initial declaration of the member function within the class template. [Example:

class C {
void f(int i = 3);
void g(int i, int j = 99);

};

void C::f(int i = 3) { // error: default argument already

} // specified in class scope

void C::g(int i = 88, int j) { // in this translation unit,

} // C::g can be called with no argument

— end example]

7 Local variables shall not be used in default argument expressions. [Ezample:
void £() {
int i;
extern void g(int x = i); //error

/..
}

§8.3.6 194

©ISO/IEC N3090=10-0080

— end example]
The keyword this shall not be used in a default argument of a member function. [Ezample:

clas