
Document: PL22.16/09-0200 = WG21 N3010
Author: William M. Miller

Edison Design Group
Date: 2009-11-09
Revision: 1

Rvalue References as “Funny” Lvalues

I. Background
Rvalue references were introduced into C++0x to provide a mechanism for capturing an rvalue
temporary (which could previously be done in C++ using traditional lvalue references to const) and
allowing modification of its value (which could not). When used in the contexts of reference binding,
overload resolution, and template argument deduction, it was desired that a function returning an rvalue
reference should behave like a traditional function returning an rvalue. The most straightforward way
of achieving that goal was to classify such rvalue reference return values as rvalues, and that approach
is embodied in the current draft.

Unfortunately, however, rvalues have certain characteristics that are incompatible with the intended
uses for rvalue references. In particular:

• Rvalues are anonymous and can be copied at will, with the copy assumed to be equivalent to the
original. Rvalue references, however, designate a specific object in memory (even if it is a
temporary), and that identity must be maintained.

• The type of an rvalue is fully known – that is, its type must be complete, and its static type is
the same as its dynamic type. By contrast, an rvalue reference must support polymorphic
behavior and should be able to have an incomplete type.

• The type of a non-class rvalue is never cv-qualified. An rvalue reference, however, can be
bound to a const or volatile object, and that qualification must be preserved.

In addition, rvalue references (like traditional lvalue references) can be bound to functions. Treating an
rvalue reference return value as an rvalue, however, introduces the novel concept of a function rvalue
into the language. There was previously no such idea – a function lvalue used in an rvalue context
becomes a pointer-to-function rvalue, not a function rvalue – so the current draft Standard does not
describe how such rvalues are to be treated. In particular, function calls and conversions to function
pointers are specified in terms of function lvalues, so most plausible uses of rvalue references to
functions are undefined in the current wording.

One possible approach to resolving these problems would be to maintain the current approach of
treating an rvalue reference return value as an rvalue but to add various caveats to the specification of
rvalues so that those coming from rvalue references would have special characteristics. This could be
called the “funny rvalue” approach. However, further examination of the current wording of the draft
Standard indicates that the problems listed above are probably only the tip of the iceberg: many of the
specifications that should apply to the objects to which rvalue references refer, such as object lifetime,
aliasing rules, etc., are phrased in terms of lvalues, so the list of rvalue caveats could get quite long.

This suggests an alternative approach: that rvalue reference return values should actually be seen as
lvalues, with a few exceptions to allow them to be treated as rvalues in the cases where that is intended,

PL22.16/09-200 = WG21 N3010: “Funny” Lvalues 2009-11-09

i.e., in reference binding, overload resolution, and template argument deduction. This idea, dubbed the
“funny lvalue” approach, is the subject of this paper.

(The problems described above are discussed in more detail in the following issues in the Core
Language Issues List: 664, 690, 846, and 863.)

II. Overview of Changes
The detailed wording changes given in the next section implement the following conceptual
modifications to the existing specification:

• There are two kinds of lvalues: traditional lvalues as described in the current WP and lvalues
that reflect the binding of rvalue references to objects. The latter are called “rref lvalues” in the
revised wording, while traditional lvalues become “non-rref lvalues.” Many references to
lvalues in the current wording are unchanged and intentionally apply to both kinds.

• Rref lvalues are created by three kinds of expressions:

◦ Function calls (explicit or implicit) that return rvalue references to objects

◦ Casts to rvalue references to objects

◦ Member selection and pointer-to-data-member dereference expressions where the object
expression is an rref lvalue

As a result, function lvalues are always non-rref lvalues and there are no function rvalues.

• In general, operators whose operands or results are currently lvalues are changed to require
and/or produce non-rref lvalues.

• Reference binding and overload resolution are changed to treat rref lvalues the same as rvalues.

III. Detailed wording changes
The principal sections in which the concepts are introduced (3.10, 5) are presented first, followed by
the various ancillary changes. The changes are shown relative to the current working paper, N3000.
Additional edits will be required to some pending resolutions to various core language issues, but these
are not yet incorporated into this document. The terms “rref lvalue” and “non-rref lvalue” are subject
to change; various suggestions for alternatives have been made, but none so far have commended
themselves as clearly superior.

3.10 Lvalues and rvalues (paragraphs 1-6)

Every expression is either an lvalue or an rvalue.

An lvalue refers to an object or function. Some rvalue expressions — those of (possibly cv-qualified)
class or array type — also refer to objects.51

[Note: some built-in operators and function calls yield lvalues. [Example: if E is an expression of

page 2 of 10

http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_toc.html#664
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_toc.html#863
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_toc.html#846
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_toc.html#690

PL22.16/09-0200 = WG21 N3010: “Funny” Lvalues 2009-11-09

pointer type, then *E is an lvalue expression referring to the object or function to which E points. As
another example, the function

int& f();
yields an lvalue, so the call f() is an lvalue expression. —end example] —end note]

There are two kinds of lvalues. Some expressions, such as calls to functions that return an rvalue
reference to an object type, yield rref lvalues. All other lvalues are non-rref lvalues. Unless
otherwise specified, statements in this International Standard that mention lvalues apply to both
kinds.

[Note: some built-in operators expect lvalue operands. [Example: built-in assignment operators all
expect their left-hand operands to be non-rref lvalues. —end example] Other built-in operators yield
rvalues, and some expect them. [Example: the unary and binary + operators expect rvalue arguments
and yield rvalue results. —end example] The discussion of each built-in operator in Clause 5 indicates
whether it expects lvalue operands and/or whether it yields an lvalue, and, if so, which kind of lvalue.
—end note]

The result of calling a function that does not return an lvalue a reference is an rvalue. User defined
operators are functions, and whether such operators expect or yield lvalues is determined by their
parameter and return types.

An expression which that holds a temporary object resulting from a cast to a type other than an lvalue
a reference type is an rvalue (this includes the explicit creation of an object using functional notation
(5.2.3)).

...

5 Expressions (paragraphs 5-6)

If an expression initially has the type “lvalue reference to T” (8.3.2, 8.5.3), the type is adjusted to T
prior to any further analysis, the expression designates the object or function denoted by the lvalue
reference, and the expression is an lvalue.

If an expression initially has the type “rvalue reference to T” (8.3.2, 8.5.3), the type is adjusted to “T”
prior to any further analysis, and the expression designates the object or function denoted by the rvalue
reference. If the expression is the result of calling a function, whether implicitly or explicitly, it is an
rvalue; An lvalue expression is an rref lvalue if it is:

• the result of calling a function, whether implicitly or explicitly, whose return type is an
rvalue reference to an object type,

• a cast to an rvalue reference to an object type,

• a member selection expression designating a non-static data member in which the object
expression is an rref lvalue, or

• a .* pointer-to-member expression in which the first operand is an rref lvalue and the

page 3 of 10

PL22.16/09-200 = WG21 N3010: “Funny” Lvalues 2009-11-09

second operand is a pointer to data member;

otherwise, it is an a non-rref lvalue. [Note: In general, the e ect of this rule is that named rvalueff
references are treated as non-rref lvalues and unnamed rvalue references are treated as rvalues rref
lvalues. —end note]

[Example:

 struct A {
 int m;
 };
 A&& operator+(A, A);
 A&& f();

 A a;
 A&& ar = a static_cast<A&&>(a);
The expressions f(), f().m, static_cast<A&&>(a), and a + a are rvalues rref lvalues of
type A. The expression ar is an a non-rref lvalue of type A. —end example]

1.3.4 dynamic type: no change (applies to both kinds of lvalues)

1.9 Program execution ¶12: no change

Accessing an object designated by a volatile lvalue (3.10), ...are all side effects...

3.2 One definition rule ¶4: no change

• an lvalue-to-rvalue conversion is applied to an lvalue referring to an object of type T...

• ...

• an lvalue of type T is assigned to...

3.8 Object lifetime: no change (rules are the same for both kinds of lvalues)

4 Standard conversions ¶3:

An expression e can be implicitly converted to a type T... The result is an lvalue if T is an
lvalue a reference type (8.3.2) and an rvalue otherwise...

4.1 Lvalue-to-rvalue conversion: no change (applies to both kinds of lvalues)

5.1.1 General ¶1, 3, 6, 7:

...A string literal is an a non-rref lvalue; ...

...The result is the entity denoted by the identifier, qualified-id, operator-function-id or literal-
operator-id. The result is an a non-rref lvalue if the entity is a function or variable and an
rvalue otherwise...

page 4 of 10

PL22.16/09-0200 = WG21 N3010: “Funny” Lvalues 2009-11-09

...The result is an a non-rref lvalue if the entity is a function, variable, or data member and an
rvalue otherwise... The result is an a non-rref lvalue if the member is a static member function
or a data member and an rvalue otherwise.

...The result is an a non-rref lvalue if the member is a function or a variable and an rvalue
otherwise.

5.1.2 Lambda expressions ¶18:

decltype((x)) y2 = y1; // y2 has type float const& because this lambda
 // is not mutable and x is an a non-rref lvalue

5.2.1 Subscripting ¶1:

...The result is an a non-rref lvalue of type “T.” ...

5.2.2 Function call ¶10:

A function call is an lvalue if and only if the result type is an lvalue reference rref lvalue if the
result type is an rvalue reference, a non-rref lvalue if the result type is an lvalue reference,
and an rvalue otherwise.

5.2.5 Class member access ¶3-4:

Footnote 64: Note that if E1 has the type “pointer to class X,” then (*(E1)) is an a non-rref
lvalue.

If E2 is declared to have type “reference to T,” then E1.E2 is an a non-rref lvalue; the type of
E1.E2 is T. Otherwise, one of the following rules applies.

• If E2 is a static data member and the type of E2 is T, then E1.E2 is an a non-rref
lvalue; the expression designates the named member of the class. The type of E1.E2 is
T.

• ...If E1 is an lvalue, then E1.E2 is an lvalue of the same kind (rref or non-rref);
otherwise, it is an rvalue...

• If E2 is a (possibly overloaded) member function...

• If it refers to a static member function and the type of E2 is “function of
parameter-type-list returning T”, then E1.E2 is an a non-rref lvalue

5.2.6 Increment and decrement ¶1:

...The operand shall be a modifiable non-rref lvalue...

5.2.7 Dynamic cast ¶2, 5:

...If T is an lvalue reference type, v shall be an a non-rref lvalue of a complete class type, and
the result is an a non-rref lvalue of the type referred to by T. If T is an rvalue reference type, v

page 5 of 10

PL22.16/09-200 = WG21 N3010: “Funny” Lvalues 2009-11-09

shall be an expression having a complete class type, and the result is an rvalue rref lvalue of the
type referred to by T.

...The result is an a non-rref lvalue if T is an lvalue reference, or an rvalue rref lvalue if T is an
rvalue reference.

5.2.8 Type identification ¶1-2:

The result of a typeid expression is an a non-rref lvalue...

When typeid is applied to an lvalue expression... [No change: applies to both kinds of
lvalue.]

5.2.9 Static cast ¶1-2:

...If T is an lvalue reference type, the result is an a non-rref lvalue; if T is an rvalue reference
type, the result is an rref lvalue; otherwise, the result is an rvalue...

An A non-rref lvalue of type “cv1 B,” where B is a class type, can be cast to type “reference to
cv2 D,” where D is a class derived (Clause 10) from B, if a valid standard conversion from
“pointer to D” to “pointer to B” exists (4.10), cv2 is the same cv-qualification as, or greater cv-
qualification than, cv1, and B is neither a virtual base class of D nor a base class of a virtual base
class of D. The result has type “cv2 D.” An rvalue or rref lvalue of type “cv1 B” may be cast to
type “rvalue reference to cv2 D” with the same constraints as for an a non-rref lvalue of type
“cv1 B.” ...

5.2.10 Reinterpret cast ¶1, 11:

...If T is an lvalue reference type, the result is an a non-rref lvalue; if T is an rvalue reference
type, the result is an rvalue rref lvalue; otherwise, the result is an rvalue and the lvalue-to-
rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are
performed on the the expression v.

...The result is an a non-rref lvalue for lvalue references or an rvalue rref lvalue for rvalue
references.

5.2.11 Const cast ¶1, 4:

...If T is an lvalue reference type, the result is an a non-rref lvalue; if T is an rvalue reference
type, the result is an rvalue rref lvalue; otherwise, the result is an rvalue and the lvalue-to-
rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are
performed on the the expression v.

An A non-rref lvalue of type T1 can be explicitly converted to an a non-rref lvalue of type T2
using the cast const_cast<T2&>... Similarly, for two object types T1 and T2, an expression
of type T1 can be explicitly converted to an rvalue rref lvalue of type T2 using the cast
const_cast<T2&&>...

page 6 of 10

PL22.16/09-0200 = WG21 N3010: “Funny” Lvalues 2009-11-09

5.3.1 Unary operators ¶1, 3:

The unary * operator performs indirection... the result is an a non-rref lvalue referring to...

The result of the unary & operator is a pointer to its operand. The operand shall be an a non-rref
lvalue or a qualified-id...

5.3.2 Increment and decrement ¶1:

The operand of prefix ++... shall be a modifiable non-rref lvalue... The result... is an a non-rref
lvalue...

5.4 Explicit type conversion (cast notation) ¶1:

...The result is an a non-rref lvalue if T is an lvalue reference type and an rref lvalue if T is an
rvalue reference type;, otherwise the result is an rvalue.

5.5 Pointer-to-member operators ¶6:

...The result of a .* expression is an lvalue only if its first operand is an lvalue and its second
operand is a pointer to data member; the resulting lvalue is of the same kind (rref or non-
rref) as the first operand. The result of an ->* expression is an a non-rref lvalue only if its
second operand is a pointer to data member; otherwise, the result is an rvalue...

5.16 Conditional operator ¶3-4:

Otherwise, if the second and third operand have different types, or if one is an rref lvalue and
the other is a non-rref lvalue, and either has (possibly cv-qualified) class type or if both are
lvalues of the same type except for cv-qualification, an attempt is made to convert each of those
operands to the type of the other.

• If E2 is an a non-rref lvalue: E1 can be converted to match E2 if E1 can be implicitly
converted (Clause 4) to the type “lvalue reference to T2”, subject to the constraint that in
the conversion the reference must bind directly (8.5.3) to E1.

• If E2 is an rvalue or rref lvalue, or if the conversion above cannot be done...

If the second and third operands are lvalues and have the same type, the result is of that type
and is an lvalue of the same kind (rref or non-rref) and it is a bit-field if the second or the
third operand is a bit-field, or if both are bit-fields.

5.17 Assignment and compound assignment operators ¶1:

...All require a modifiable non-rref lvalue as their left operand and return an a non-rref lvalue
referring to the left operand...

5.18 Comma operator ¶1:

...the result is an lvalue of the same kind (rref or non-rref) if its right operand is an lvalue and
an rvalue otherwise, and is a bit-field if its right operand is an lvalue and a bit-field.

page 7 of 10

PL22.16/09-200 = WG21 N3010: “Funny” Lvalues 2009-11-09

6.6.3 The return statement ¶2:

...[Note: A copy operation associated with a return statement may be elided or considered as an
rvalue rref lvalue for the purpose of overload resolution in selecting a constructor (12.8). —
end note]...

7.1.6.2 Simple type specifiers ¶4 bullet 3:

• otherwise, if e is an a non-rref lvalue, decltype(e) is T&, where T is the type of e;

8.5.3 References ¶5:

• If the reference is an lvalue reference and the initializer expression

• is an a non-rref lvalue (but is not a bit-field), and “cv1 T1” is reference-
compatible with “cv2 T2,” or

• has a class type (i.e., T2 is a class type), where T1 is not reference-related to T2,
and can be implicitly converted to an a non-rref lvalue of type “cv3 T3,” ...

• Otherwise, the reference shall be an lvalue reference to a non-volatile const type (i.e.,
cv1 shall be const), or the reference shall be an rvalue reference and the initializer
expression shall be an rvalue or an rref lvalue...

• if T1 and T2 are class types and

• the initializer expression is an rvalue or an rref lvalue and “cv1 T1” is
reference-compatible with “cv2 T2”, or

• T1 is not reference-related to T2 and the initializer expression can be
implicitly converted to an rvalue or an rref lvalue of type “cv3 T3” (this
conversion is selected by enumerating the applicable conversion functions
(13.3.1.6) and choosing the best one through overload resolution (13.3)),

then the reference is bound to the initializer expression rvalue object in the first
case and to the object that is the result of the conversion in the second case...

• If the initializer expression is an rvalue or an rref lvalue, with T2 an array type,
and “cv1 T1” is reference-compatible with “cv2 T2,” the reference is bound to
the object represented by the rvalue (see 3.10) or designated by the lvalue.

12.2 Temporary objects ¶1:

Temporaries of class type are created in various contexts: binding an rvalue or rref lvalue to a
reference (8.5.3)...

12.8 Copying class objects ¶18:

When the criteria for elision of a copy operation are met and the object to be copied is

page 8 of 10

PL22.16/09-0200 = WG21 N3010: “Funny” Lvalues 2009-11-09

designated by an a non-rref lvalue, overload resolution to select the constructor for the copy is
first performed as if the object were designated by an rvalue rref lvalue. If overload resolution
fails, or if the type of the first parameter of the selected constructor is not an rvalue reference to
the object’s type (possibly cv-qualified), overload resolution is performed again, considering
the object as an a non-rref lvalue...

13.3 Overload resolution ¶2 bullet 7:

• invocation of a conversion function for conversion to an a non-rref lvalue or class
rvalue to which a reference (8.5.3) will be directly bound (13.3.1.6).

13.3.1 Candidate functions and argument lists ¶5:

...For non-static member functions declared without a ref-qualifier, an additional rule applies:

• even if the implicit object parameter is not const-qualified, an rvalue temporary or rref
lvalue can be bound to the parameter as long as in all other respects the temporary
argument can be converted to the type of the implicit object parameter. [Note: The fact
that such a temporary an argument is an rvalue or rref lvalue does not affect the
ranking of implicit conversion sequences (13.3.3.2). —end note]

13.3.1.4 Copy-initialization of class by user-defined conversion ¶1 bullet 2:

• ...Conversion functions that return “reference to X” return lvalues or rvalues, depending
on the type of reference, of type X and are therefore considered to yield X for this
process of selecting candidate functions.

13.3.1.5 Initialization by conversion function ¶1 bullet 1:

• ...Conversion functions that return “reference to cv2 X” return lvalues or rvalues,
depending on the type of reference, of type “cv2 X” and are therefore considered to yield
X for this process of selecting candidate functions.

13.3.1.6 Initialization by conversion function for direct reference binding ¶1:

Under the conditions specified in 8.5.3, a reference can be bound directly to an a non-rref
lvalue or class rvalue that is the result of applying a conversion function...

13.3.2 Viable functions ¶3:

...the implicit conversion sequence includes the operation of binding the reference, and the fact
that an lvalue reference to non-const cannot be bound to an rvalue or rref lvalue can affect the
viability of the function (see 13.3.3.1.4).

13.3.3.1.4 Reference binding ¶3:

A standard conversion sequence cannot be formed if it requires binding an lvalue reference to
non-const to an rvalue or an rref lvalue...

page 9 of 10

PL22.16/09-200 = WG21 N3010: “Funny” Lvalues 2009-11-09

13.3.3.2 Ranking implicit conversion sequences ¶3 bullet 1 sub-bullet 4:

• S1 and S2 are reference bindings (8.5.3) and neither refers to an implicit object
parameter of a non-static member function declared without a ref-qualifier, and S1 binds
an rvalue reference to an rvalue or rref lvalue and S2 binds an lvalue reference.

14.4.2 Template non-type arguments ¶5 bullet 3:

• ...The template-parameter is bound directly to the template-argument, which shall be an
a non-rref lvalue.

14.9.2.1 Deducing template arguments from a function call ¶3:

...If P is an rvalue reference to a cv-unqualified template parameter and the argument is an a
non-rref lvalue, the type “lvalue reference to A” is used in place of A for type deduction...

15.1 Throwing an exception ¶3:

...The temporary is an a non-rref lvalue and is used to initialize the variable named in the
matching handler (15.3)...

page 10 of 10

