
N2986=09-0176: Equality Comparison for Unordered Collections Page 1 of 15

Doc No: N2986=09-0176

Date: 2009-10-20

Authors: John Lakos
 Bloomberg LP
 jlakos@bloomberg.net

 Pablo Halpern

 Intel

 phalpern@halpernwightsoftware.com

Equality Comparison for Unordered Containers (Rev 1)

Contents

Changes since last paper, n2944 .. 1

Background .. 2

Status Quo: Inconsistent and Incomplete .. 2

Document Conventions ... 3

Discussion .. 3

Why do we need operator== for unordered containers? .. 3

How should we define operator== for unordered containers? .. 4

Wouldn’t operator== for unordered containers be slow? ... 5

Summary and Scope of Changes .. 6

Proposed Wording .. 6

Acknowledgements ... 12

References .. 12

Appendix: Reference Implementations .. 12

Changes since last paper, n2944

 Updated all wording and section numbers to reflect the latest working paper n2960.

 Added missing member-qualifiers to many operations in the requirements tables.

 Mandated some documented requirements by using the term ‘shall’.

 Add missing const-qualification to references in operator==/!= declarations.

 Removed discussion of algorithms with one range given by a single iterator. Deferred to a new
LWG issue.

 As a matter of style, replaced “!= false” wordings with “== true”.

 Revised wording for the is_permutation algorithm to clarify that first2’ is an iterator
marking the start of a range, rather than the range itself.

 Fixed numerous typos and fonts.

mailto:jlakos@bloomberg.net
mailto:phalpern@halpernwightsoftware.com

N2986=09-0176: Equality Comparison for Unordered Collections Page 2 of 15

Background

Apart from the unordered containers, all of the container types in the current WP appear to be
consistent with what N2479 refers to as having value semantics. In particular, each container type
defines default construction, copy construction, copy assignment and the two (homogeneous, free)
equality comparison operators, operator== and operator!= , with the truth of operator==
being a postcondition of both copy construction and assignment (23.2.1 [container.requirements.general],

Paragraph 5, Table 91 – Container requirements). By contrast, unordered containers are currently explicitly
exempt (23.2.5 [unord.req], Paragraph 2, Table 97 – Container requirements that are not required for unordered

associative containers, and Paragraph 10) from having to implement the equality comparison operators,
yet in all other respects are consistent with having value semantics as defined by N2479.

This manifest inconsistency has been discussed in the past (circa 2004) and documented in N1837
(search for 6.2). The fundamental problem was that the equality function described in the container
requirements (23.2.1 [container.requirements.general], Paragraph 5, Table 91 – Container
Requirements) – i.e., that == is an equivalence relation and

 a.size() == b.size() && equal(a.begin(), a.end(), b.begin())

and that the behavior is linear – “makes no sense for hash tables” because the order of iteration is not
considered a salient attribute (i.e., one that contributes to value) of the container (see N2479) and
separately because the (pathological) worst-case behavior of equality comparison is necessarily
quadratic. The alternatives considered include: close as NAD; put in a caveat saying we don't quite
satisfy the container requirements; put in the operator== defined in terms of std::equal; or put
in Howard's (more useful) operator==. The second was chosen by a straw vote of 0-6-0-3.

Status Quo: Inconsistent and Incomplete

The unordered containers are, as defined today, inconsistent in that they are inherently value-
semantic types that implement all of the value-semantic operations except for the equality comparison
operations (== and !=). Moreover, the attempt to document the omission (23.2.5 [unord.req],

Paragraph 2, Table 97 – Container requirements that are not required for unordered associative containers, and
Paragraph 10) introduced additional inconsistencies, which (along with numerous other inaccuracies
and inconsistencies) must be repaired, regardless. These unordered containers are also incomplete in
that, unlike the ordered containers, they do not make explicit what abstract (“mathematical”) type
they are approximating or what abstract (“externalizable”) values they are attempting to represent.
Furthermore, these unordered containers omit an important, explicitly documented (23.2.1

[container.requirements.general], Paragraph 5, Table 91 – Container requirements) postcondition of all STL
containers (and arguably all C++ value-semantic) types – i.e., that, after copy construction or copy
assignment, the source and destination objects must compare equal i.e. they represent the same
value. By defining equality comparison for unordered containers, we complete the set of value-
semantic operations on them and, in so doing, force all of these value-semantic operations to be both
self-consistent and also mutually consistent with their counterparts on the corresponding ordered
containers.

N2986=09-0176: Equality Comparison for Unordered Collections Page 3 of 15

Document Conventions

All section names and numbers are relative to the September 2009 working draft, N2960.

Existing working paper text is indented and shown in dark blue. Edits to the working paper are shown with

red strikeouts for deleted text and green underlining for inserted text within the indented blue original text.

Comments and rationale mixed in with the proposed wording appears as shaded text.

Requests for LWG opinions and guidance appear with light (yellow) shading. It is expected that
changes resulting from such guidance will be minor and will not delay acceptance of this proposal in
the same meeting at which it is presented.

Discussion

Based on private discussions with various members of the LWG (as well as those documented in

N1837), the impediments to defining homogeneous operator== and operator!= for unordered
containers invariably involve one or more of the following concerns:

1. It is not clear we need them (let’s not implement something that won’t be used).

2. We don’t know exactly how to define them (hence, we might get them wrong and have to live
with another less-than-well-thought-out feature).

3. Any reasonable definition would come with a prohibitively expensive runtime cost (therefore
any use would be subtly dangerous).

We will now address each of these concerns in turn.

Why do we need operator== for unordered containers?

Regarding the first concern (lack of utility), there are at least four separate reasons why we need
equality comparison for unordered containers. The first and dominant reason is utility: The concept of
value for unordered containers is meaningful and useful in practical applications. It is arguably more
common to want to know if two sets have the same elements independent of order than it is to know
if two sets have the same elements in the same order. For example, if we give a group of children bags
of candy that allegedly compare equal, what’s important is that, ultimately, the items in the bags
respectively compare equal, not the order in which these items are initially discovered.

As a second example, consider implementing a (Hyper) Graph of N nodes in terms of STL containers. In
standard matrix notation of a graph, a directed edge from Node i to j is present if there is a non-zero
value in the (i, j)th element of the matrix. Two graphs have the same value if they have they have the
same standard matrix representation. There are many ways we might consider using STL to model such
an object. For example, we could use a multimap<int,int> of size E (number of edges) to encode
each edge. The problem with such an approach is that it fails to implement the notion of value
described in the specification, as the relative order of the edges emanating from a single node would
be treated as a salient attribute of the object type and thus contribute to value. A better alternative
would be to use an unordered_multimap<int,int>. Now the relative order of edges

N2986=09-0176: Equality Comparison for Unordered Collections Page 4 of 15

emanating from a node will not be considered when comparing the two graphs (as required by the
specification). Another correct approach would be to create a
vector<unordered_multiset<int> > of size N to represent the (non-unique) set of adjacent
edges at each O(1) randomly-accessible node. Yet another approach might be to create a
vector<multiset<int> > of size N where the adjacent edges are kept ordered. In this case,
the semantics for value happen to be correct because each member of each group of the equivalent
keys in the (ordered) multiset represents the same value so the order in which they were added is
not observable.

As a third and final example, consider implementing a TelephoneBook type whose value is defined
solely by the data it contains and not by the order in which that data was added. Our initial choice
might be a map<string,int>. This choice is fine assuming that the names are unique, but
suppose there are occasionally duplicate names with distinct phone numbers (e.g., different people, or
perhaps the same person with multiple numbers). In that case, we might consider using a
multimap<string,int>, but now the order in which duplicate keys are added would necessarily
affect value. If the order of entries with duplicate key values should not affect the overall value of a
TelephoneBook object, then the data structure of choice is
unordered_multimap<string,int>.

The second reason why we need equality comparison defined for unordered containers is consistency:
There is simply no valid reason (see below) why unordered containers should be the only container
types in the STL that do not support all of the essential value-semantic operations. Gratuitous
inconsistency needlessly complicates understanding and creates barriers to effective use.

The third reason is to establish a common vocabulary: We want to provide a single uniform definition
of value upon which everyone can rely. Without such a definition, developers will “roll their own” and
these interpretations will invariably differ (e.g., perhaps some will conclude, based solely on
implementation efficiency, that the order of equivalent keys should be considered part of the value).

The fourth reason is testability. Implementing this important, explicitly stated, postcondition of both
copy construction and copy assignment allows developers who use such containers to unit-test their
software using the standard “y == f(x)” test paradigm – i.e., generate an initial (unordered container)
value, x, apply an application subroutine, f, to x, separately generate an expected (unordered
container) value, y, and finally use the provided (unordered container) equality-comparison operator,
==, to assert that y has the same value as f(x).

How should we define operator== for unordered containers?

Regarding the second concern (suboptimal specification), our extensive understanding of (and
experience with) value-semantic types (as described in N2479) gives us a large body of knowledge
including essential properties of value semantics that helps guide us in providing a useful, efficient, and
consistent definition of value for unordered containers based on salient attributes – i.e., those aspects
of an object’s state that contribute to its overall value. The salient attributes of an unordered

N2986=09-0176: Equality Comparison for Unordered Collections Page 5 of 15

container are simply the values of the elements in the container, regardless of iteration order. Thus,
too unordered containers have the same value if one is a permutation of the other.

In general, computing permutations is a quadratic operation. However, given two unordered
containers that use the same hash and key-equivalence functions, the elements will be partitioned into
key-equivalence groups that make comparison much more efficient. Thus, we define the result of
operator== for unordered containers as follows: two unordered containers, a and b, have the same

value if (1) a.size() == b.size(), and (2) for each contiguous group (ai1, ai2) of equivalent keys
— as defined by a.key_eq(k1, k2)and returned by a.equal_range(k1) — in a, there exists
a (necessarily unique) corresponding contiguous group (bi1, bi2) of equivalent keys — as defined by
b.key_eq(k1, k2) and returned by b.equal_range(k1) — in b such that (i)
distance(ai1, ai2) == distance(bi1, bi2) and there exists a reordering (bi1’, bi2’) of the

elements in (bi1, bi2) such that equal(ai1, ai2, bi1’) == true. Reference implementations
consistent with both the above definition and the formal wording can be found in the appendix at the
end of this document.

Wouldn’t operator== for unordered containers be slow?

Regarding the third concern (prohibitive runtime cost), the useful and intuitive definition of equality
comparison for unordered containers proposed here has a runtime cost that is linear in the average
case and quadratic only in the pathological worst case. For the unordered containers that permit

equivalent keys, the complexity of operator== is proportional to Ei
2 in the average case and N2 in

the worse case, where N is a.size(), and Ei is the size of the ith equivalent-key group in a. Note that
if the number of duplicate keys (or even the maximum number of duplicates in any contiguous group
of equivalent keys) is known to be bounded by a constant, then the overall (worst-case) cost of

equality comparison is O(a.size()).

More generally, it should be understood that the expected behavior of nearly all of the operations on
unordered containers (including copy construction and assignment, element insertion, and lookup)
have an expected runtime behavior that is fast, but is a factor of N slower in the worst case; equality
comparison is no different, and therefore deserves no special consideration in that regard. For
unordered containers that support equivalent keys, allowing the container to be populated with largely
duplicated keys, although likely to result in poor runtime performance, is not so much a fault of the
data structure itself, but rather of its use by unenlightened clients (who would be well-advised to
consider other strategies).

In conclusion, we have established that there is a need for equality comparison between unordered
containers (of the same type), that a consistent and intuitive definition of such a (homogeneous)
equality-comparison operation exists, and that its expected runtime is highly efficient in all but
pathological cases – consistent with the vast majority of other operations on unordered containers. We
therefore provide formal language to introduce the notion of value for unordered containers and, at
the same time, clean up the numerous inaccuracies and inconsistencies we have found in section 23.2 [

container.requirements], section 23.4 [associative], and especially section 23.5 [unord]. (Note that this

N2986=09-0176: Equality Comparison for Unordered Collections Page 6 of 15

paper subsumes all of the defects and repairs noted in open issue #861.) Finally, an additional,

general-purpose algorithm, is_permutation (analogous to equal), taking 3 iterators (with and
without an optional binary predicate) is added to section 25.2 [alg.nonmodifying] in order to facilitate
both the documentation and implementation of equality-comparison operators for unordered
associative containers supporting non-unique keys.

Summary and Scope of Changes

In a nutshell, we propose to make the following changes to the WP:

 Add a new algorithm, is_permutation, that is analogous to equal.

 Define operator== and operator!= for unordered associative containers.

 Update container requirements tables.

 Repair defects in affected sections along the way as appropriate.

Proposed Wording

23.2.1 General Container Requirements [container.requirements.general]

Change Table 91 – Container Requirements as indicated:

X u; post: u.size()

== 0u.empty()

== true

constant

X() X.size() ==

0X().empty()

== true

constant

...

a == b convertible

to bool

== is an equivalence relation. a.size()==

b.size() distance(a.begin(),a.end())

== distance(b.begin(),b.end()) &&

equal(a.begin(),a.end(),b.begin())

T is

EqualityComparable

linear

...

a.size() size_type a.end()-

a.begin()distance(a.begin(),a.end())

 constant

a.max_size() size_type size() of the largest possible container constant

a.empty() convertible

to bool

a.size() == 0a.begin() == a.end() constant

These changes are to accommodate std::forward_list, which supports

homogeneous equality comparison operators operator== and operator!=, but does not

define a size() method (since it cannot be implemented in constant time). We considered

adding an extra row for unordered container operator== to this table, but could not find a

way to express the semantics in a way that was concise enough for the table format.

N2986=09-0176: Equality Comparison for Unordered Collections Page 7 of 15

 Change Table 93 – Allocator-Aware Container Requirements as indicated:

X()

X u;

 Requires: A is DefaultConstructible.

post: u.size() == 0u.empty() == true,

u.get_allocator() == A()

constant

X(m)

X u(m);

 Post: u.size() == 0u.empty() == true,

u.get_allocator() == m

constant

23.2.3 General Container Requirements [sequence.reqmts]

 Change Table 94 – Sequence container requirements (in addition to container) as indicated:

a. Change the text in the Assertion/note column in the row for "X(n, t) / X a(n, t)" as

follows:

[..] post: size() distance(a.begin(), a.end()) == n [..]

b. Change the Assertion/note column in the row for "X(i, j) / X a(i, j)" as follows:

[..] post: size() distance(a.begin(), a.end()) == distance(i, j)

[..]

c. Change the text in the Assertion/note column in the row for "a.clear()" as follows:

a.erase(a.begin(), a.end()) post: size() == 0a.empty() ==
true

23.2.4 Associative Containers [associative.reqmts]

Change Table 96 – Associative container requirements (in addition to container) as indicated:

Not every occurrence of size() was replaced, because all current associative containers have a size()

member. The following changes ensure consistency regarding the semantics of erase for all tables, and

add some missing objects.

a) Change the text in the Complexity column in the row for "a.insert(i, j)" as follows:

 N log(a.size() + N) (N is the distance from i to j)where N == distance(i, j)

b) Change the text in the Complexity column in the row for "a.erase(k)" as follows:

N2986=09-0176: Equality Comparison for Unordered Collections Page 8 of 15

log(a.size()) + a.count(k)

c) Change the text in the Complexity column in the row for "a.erase(q1, q2)" as follows:

log(a.size()) + N where N is the distance from q1 to q2 == distance(q1, q2).

d) Change the text in the Assertion/note column in the row for "a.clear()" as follows:

a.erase(a.begin(), a.end()) post: size() == 0a.empty() == true

e) Change the text in the Complexity column in the row for "a.clear()" as follows:

linear in a.size()

f) Change the text in the Complexity column in the row for "a.count(k)" as follows:

log(a.size()) + a.count(k)

23.2.5 Unordered Associative Containers [unord.reqmsg

]

In section 23.2.5 [unord.req], change paragraph 2 and table 97 as follows:

2 Unordered associative containers conform to the requirements for Containers (23.2), except that the

expressions a == b and a != b have different semantics than for the other container types and the

expressions in table 97 are not required to be valid, where a and b denote values of a type X, and X is an

unordered associative container class:

Table 97 – Container requirements that are not required for unordered associative containers

a == b

a != b

a < b

a > b

a <= b

a >= b

Change Paragraphs 5 and 6 as indicated:

5 Two values k1 and k2 of type Key are considered equalequivalent if the container’s equalitykey_equal

function object returns true when passed those values. If k1 and k2 are equalequivalent, the hash

function shall return the same value for both.

6 An unordered associative container supports unique keys if it may contain at most one element for each key.

Otherwise, it supports equivalent keys. unordered_set and unordered_map support unique keys.

unordered_multiset and unordered_multimap support equivalent keys. In containers that

N2986=09-0176: Equality Comparison for Unordered Collections Page 9 of 15

support equivalent keys, elements with equivalent keys are adjacent to each other in the iteration order of

the container. Thus, although the absolute order of elements in an unordered container is not specified, the

elements are grouped into equivalent-key groups, such that all elements of each group have equivalent keys.

Mutating operations on unordered containers shall preserve the relative order of elements within each

equivalent-key group, unless otherwise specified. For unordered_multiset and unordered_multimap, insert

and erase preserve the relative ordering of equivalent elements.

Change Table 98 – Unordered associative container requirements (in addition to container) as indicated:

The same rationale as for Table 96 applies here plus we also correct the complexity of insert and the
postcondition for max_load_factor.

a. Change the text in the Complexity column in the row for ―a.insert(i,j)‖ as follows:

Average case O(N), where N is distance(i,j). Worst case O(N * (a.size() + N)).

b. Change the text in the Assertion/note column in the row for "a.clear()" as follows:

[..] Post: a.size() == 0empty() == true

c. Change the text in the Assertion/note column in the row for "a.max_load_factor(z)" as

follows:

 Pre: z shall be positive. ChangesMay change the container’s maximum load factor using z as a

hint.

Change Paragraph 10 as indicated:

10 Unordered associative containers are not required to support the expressions a == b or a != b. [Note: This

is because the container requirements define operator equality in terms of equality of ranges. Since the

elements of an unordered associative container appear in an arbitrary order, range equality is not a useful

operation. —end note]

10 Two unordered containers, a and b compare equal if a.size() == b.size() and, for every

equivalent-key group [Ea1,Ea2) obtained from a.equal_range(Ea1), there exists an equivalent-key

group [Eb1,Eb2) obtained from b.equal_range(Ea1), such that distance(Ea1, Ea2) ==

distance(Eb1, Eb2) and is_permutation(Ea1, Ea2, Eb1) == true. For

unordered_set and unordered_map, the complexity of operator== (i.e., the number of calls to

the == operator of the value_type, to the predicate returned by key_equal() and to the hasher returned

by hash_function()) is proportional to N in the average case, and to N
2
 in the worst case, where N is

a.size(). For unordered_multiset and unordered_multimap, the complexity of

operator== is proportional to ∑Ei
2
 in the average case, and to N

2
 in the worst case, where N is

a.size(), and Ei is the size of the i
th
 equivalent-key group in a. However, if the respective elements of

each corresponding pair of equivalent-key groups, Eai and Ebi, are arranged in the same order (as is

N2986=09-0176: Equality Comparison for Unordered Collections Page 10 of 15

commonly the case, e.g., if a and b are unmodified copies of the same container), then the average-case

complexity for unordered_multiset and unordered_multimap becomes proportional to N (but

worst-case complexity remains O(N
2
) – i.e., for a pathologically bad hash function). The behavior of

operators == and != are undefined for unordered containers unless (1) the Hash and Pred function

objects respectively have the same behavior for both containers, and (2) the equality comparison operator

for Key is a refinementX of the partition into equivalent-key groups produced by Pred.

Add a footnote X:

Equality comparison is a refinement of partitioning if no two objects that compare equal fall into
different partitions.

The meaning of value for both ordered and unordered containers is based on the definition of value for
the contained elements themselves, and not on that implied by key_equal as defined by the pred
functor supplied to the container as a template interface policy. We have therefore elected to make
explicit here the requirement (for overall container equality comparisons) that equality comparison be
defined for contained elements.

We have made three additional explicit (compile-time) pre-conditions on the valid use of equality
comparison for unordered containers, based on semantics, performance, and an absence of practical
need to support the restricted behavior. The first restriction is that both containers have the same
interpretation of equivalent keys. If they do not, then it is possible for two unique-key containers of the
same C++ type that currently have the same value to be acted upon in the same way (e.g., via an insert
of the same key value) and subsequently not have the same value, thus violating the fundamental
property of value-semantic types. Although it is theoretically possible to retain proper value semantics
and still allow unequal key comparators for non-unique unordered associative containers, the required
algorithm would necessarily be quadratic in the average case.

The second restriction is that the hashers must have the same behavior. Allowing the hashers to be
different would mean that we would give up an important optimization for both unique and non-
unique unordered containers: When the number of buckets in the two unordered containers is the
same, we can avoid having to hash each iterated element (or maintain its hash value along with its
value) if, on lookup, we can assume that value hashes to the same bucket, which can be significant
when the cost of hashing compared to that of equality comparison on elements is significant.

Finally, the requirement that equality comparison for keys be a refinement on key equivalence defined
for unordered associative containers is also motivated by efficient implementation: Without this
property, we cannot exploit the contiguous equivalent keys in non-unique associative containers, and
will again have to resort to an algorithm that is quadratic even in the average case. While this
restriction is necessary for the non-unique associative containers, relaxing it just for the unique ones
seems to have insufficient practical benefit that would justify documenting the distinction.

Removing this third restriction for unordered containers with unique keys only is easy to do at the cost
of a little more complexity in the description of the preconditions. Do people feel that such
functionality would be useful?

N2986=09-0176: Equality Comparison for Unordered Collections Page 11 of 15

23.5 Unordered associative containers [unord]

Add the following to the synopsis for <unordered_map>:

template <class Key, class T, class Hash, class Pred, class Alloc>

 bool operator==(const unordered_map<Key, T, Hash, Pred, Alloc>& a,

 const unordered_map<Key, T, Hash, Pred, Alloc>& b);

template <class Key, class T, class Hash, class Pred, class Alloc>

 bool operator!=(const unordered_map<Key, T, Hash, Pred, Alloc>& a,

 const unordered_map<Key, T, Hash, Pred, Alloc>& b);

template <class Key, class T, class Hash, class Pred, class Alloc>

 bool operator==(const unordered_multimap<Key, T, Hash, Pred, Alloc>& a,

 const unordered_multimap<Key, T, Hash, Pred, Alloc>& b);

template <class Key, class T, class Hash, class Pred, class Alloc>

 bool operator!=(const unordered_multimap<Key, T, Hash, Pred, Alloc>& a,

 const unordered_multimap<Key, T, Hash, Pred, Alloc>& b);

Add the following to the synopsis for <unordered_set>:

template <class Key, class T, class Hash, class Pred, class Alloc>

 bool operator==(const unordered_set<Key, T, Hash, Pred, Alloc>& a,

 const unordered_set<Key, T, Hash, Pred, Alloc>& b);

template <class Key, class T, class Hash, class Pred, class Alloc>

 bool operator!=(const unordered_set<Key, T, Hash, Pred, Alloc>& a,

 const unordered_set<Key, T, Hash, Pred, Alloc>& b);

template <class Key, class T, class Hash, class Pred, class Alloc>

 bool operator==(const unordered_multiset<Key, T, Hash, Pred, Alloc>& a,

 const unordered_multiset<Key, T, Hash, Pred, Alloc>& b);

template <class Key, class T, class Hash, class Pred, class Alloc>

 bool operator!=(const unordered_multiset<Key, T, Hash, Pred, Alloc>& a,

 const unordered_multiset<Key, T, Hash, Pred, Alloc>& b);

25 Algorithms Library [algorithms]

25.1 General [algorithms.general]

Add the following two declarations after those for equal but before those for search:

template<class ForwardIterator1, class ForwardIterator2>

 bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1,

 ForwardIterator2 first2);

template <class ForwardIterator1, class ForwardIterator2,

 class BinaryPredicate>

 bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1,

 ForwardIterator2 first2, BinaryPredicate pred);

25.2.12 Search [alg.search]

Insert a new section 25.2.12 [alg.is_permutation] after 25.2.11 [alg.equal] making Search section 25.2.13:

25.2.12 Is permutation [alg.is_permutation]

N2986=09-0176: Equality Comparison for Unordered Collections Page 12 of 15

template<class ForwardIterator1, class ForwardIterator2>

 bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1,

 ForwardIterator2 first2);

template<class ForwardIterator1, class ForwardIterator2,

 class BinaryPredicate>

 bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1,

 ForwardIterator2 first2, BinaryPredicate pred);

1 Returns: true if there exists a permutation of the elements of the range [first2, first2 + (last1

- first1)), beginning with ForwardIterator2 first2', such that equal(first1, last1,

first2’), equal(first1, last1, first2’, pred) == true. Otherwise, returns

false.

2 Complexity: Exactly distance(first1,last1) applications of the corresponding predicate if

equal(first1,last1,first2), equal(first1,last1,first2,pred) would return

true; otherwise at worst O((distance(first1,last1))
2
) applications of the corresponding

predicate.

Acknowledgements

Daniel Krugler and Alisdair Meredith provided many helpful comments and alternate wording
suggestions.

References

N2960: Working Draft, Standard for Programming Language C++ (http://www.open-
std.org/JTC1/SC22/WG21/docs/papers/2009/n2960.pdf)

N2479: Normative Language to Describe Value Copy Semantics (http://www.open-
std.org/JTC1/SC22/WG21/docs/papers/2007/n2479.pdf)

N1837: Library Extension Technical Report – Issues List (http://www.open-
std.org/JTC1/SC22/WG21/docs/papers/2005/n1837.pdf)

Appendix: Reference Implementations

The five code examples in this section illustrate defined behavior along with some useful optimizations.

Equality Comparison: unordered_set

template <class KEY>

bool operator==(const unordered_set<KEY>& a,

 const unordered_set<KEY>& b)

{

 typedef typename unordered_set<KEY>::const_iterator ConstIter;

 if (a.size() != b.size()) {

 return false;

 }

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/n2960.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2007/n2479.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2007/
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2007/
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1837.pdf

N2986=09-0176: Equality Comparison for Unordered Collections Page 13 of 15

 for (ConstIter itr1 = a.begin(); itr1 != a.end(); ++itr1) {

 ConstIter itr2 = b.find(*itr1);

 if (itr2 == b.end() || *itr1 != *itr2) {

 return false;

 }

 }

 return true;

}

Equality Comparison: unordered_map

template <class KEY, class VALUE>

bool operator==(const unordered_map<KEY, VALUE>& a,

 const unordered_map<KEY, VALUE>& b)

{

 typedef typename unordered_map<KEY, VALUE>::const_iterator ConstIter;

 if (a.size() != b.size()) {

 return false;

 }

 for (ConstIter itr1 = a.begin(); itr1 != a.end(); ++itr1) {

 ConstIter itr2 = b.find(itr1->first);

 if (itr2 == b.end() || *itr1 != *itr2) {

 return false;

 }

 }

 return true;

}

Equality Comparison: unordered_multiset

template <class KEY>

bool operator==(const unordered_multiset<KEY>& a,

 const unordered_multiset<KEY>& b)

{

 typedef typename unordered_multiset<KEY>::const_iterator ConstIter;

 if (a.size() != b.size()) {

 return false;

 }

 for (ConstIter itr1 = a.begin();

 itr1 != a.end();

 /* Increment within the loop */) {

 // First check the two equivalent-key groups have the same size.

 pair<ConstIter, ConstIter> aRange = a.equal_range(*itr1);

 pair<ConstIter, ConstIter> bRange = b.equal_range(*itr1);

 if (distance(aRange.first, aRange.second)

 != distance(bRange.first, bRange.second)) {

N2986=09-0176: Equality Comparison for Unordered Collections Page 14 of 15

 return false;

 }

 // Then check whether the two equivalent-key groups are permutations

 // of each other.

 if (!is_permutation(aRange.first,

 aRange.second,

 bRange.first)) {

 return false;

 }

 // Increment the iterator to the next equivalent-key group.

 itr1 = aRange.second;

 }

 return true;

}

Equality Comparison: unordered_multimap

template <class KEY, class VALUE>

bool operator==(const unordered_multimap<KEY, VALUE>& a,

 const unordered_multimap<KEY, VALUE>& b)

{

 typedef typename unordered_multimap<KEY, VALUE>::const_iterator ConstIter;

 if (a.size() != b.size()) {

 return false;

 }

 for (ConstIter itr1 = a.begin();

 itr1 != a.end();

 /* Increment within the loop */) {

 // First check the two equivalent-key groups have the same size.

 pair<ConstIter, ConstIter> aRange = a.equal_range(itr1->first);

 pair<ConstIter, ConstIter> bRange = b.equal_range(itr1->first);

 if (distance(aRange.first, aRange.second)

 != distance(bRange.first, bRange.second)) {

 return false;

 }

 // Then check whether the two equivalent-key groups are permutations

 // of each other.

 if (!is_permutation(aRange.first,

 aRange.second,

 bRange.first)) {

 return false;

 }

N2986=09-0176: Equality Comparison for Unordered Collections Page 15 of 15

 // Increment the iterator to the next equivalent-key group.

 itr1 = aRange.second;

 }

 return true;

}

Is_permutation

template <class ForwardIterator1, class ForwardIterator2>

bool

is_permutation(ForwardIterator1 first1, ForwardIterator1 last1,

 ForwardIterator2 first2)

{

 typedef typename

 iterator_traits<ForwardIterator2>::difference_type

 distance_type;

 // Efficiently compare identical prefixes: O(N) if sequences

 // have the same elements in the same order.

 for (; first1 != last1; ++first1, ++first2) {

 if (! (*first1 == *first2))

 break;

 }

 if (first1 == last1)

 return true;

 // Establish last2 assuming equal ranges by iterating over the

 // rest of the list.

 ForwardIterator2 last2 = first2;

 advance(last2, distance(first1, last1));

 for (ForwardIterator1 scan = first1; scan != last1; ++scan) {

 if (scan != find(first1, scan, *scan))

 continue; // We've seen this one before.

 distance_type matches = count(first2, last2, *scan);

 if (0 == matches || count(scan, last1, *scan) != matches)

 return false;

 }

 return true;

}

