
 Document number: N2892=09-0082

 Date: 2009-06-09

 Project: Programming Language C++

 Reference: N2857=09-0047

 Reply to: Alan Talbot

 cpp@alantalbot.com

Some Concerns About Axioms

Abstract

I have some concerns about axioms as they are currently defined. These concerns can be

expressed as two questions to which I can find no clear answers. In brief, my questions are: why

would I want to write an axiom, and if I did, how would I get it right? Without answers to these

questions, I feel that axioms as currently defined may lead to problems.

Question 1

If an axiom has no (guaranteed) effect on my code, why would I want to spend valuable time

writing one?

Axioms do not explicitly control or (portably) affect the compiler or any other part of the build

system. That is, I cannot use an axiom to reliably alter the behavior of my code. The relevant

sections of the WD follow:

14.10.1.4 Axioms [concept.axiom]

4 Where axioms state the equality of two expressions, implementations are permitted to
replace one expression with the other. �

7 Whether an implementation replaces any expression according to an axiom is
implementation-defined. With the exception of such substitutions, the presence of an

axiom shall have no effect on the observable behavior of the program. �

I think it is unlikely that programmers will be motivated to write axioms in the hope that the

compiler might apply useful optimizations. In many cases I can apply the axiomatic substitu-

tions myself and have a guaranteed, easily understood and visible effect. In situations where

that is not possible or practical, writing axioms is at best an indirect and non-portable way to

(possibly) optimize the code. Furthermore, axioms only affect constrained contexts, and most

code is not in templates.

Of course, the same argument (more or less) can be made about inline. That also has no (port-

able) guaranteed effect. But there are two significant differences. First of all, inlining is well

understood and the compiler has the information it needs to make very good decisions about

what should and should not be inlined. (In fact, the use of explicit inline specifiers is probably

not even necessary these days.) Second, the cost to the programmer is very small (one keyword

per function) and the likelihood (and the cost) of getting it wrong is very low. Inline is also avail-

able for all code, not just templates.

N2892=09-0082

2

Question 2

If I write an axiom, how do I know whether it is correct?

Although axioms are not guaranteed to be used, from section 14.10.1.4 we know that an axiom

could have a profound effect, so if I'm going to write one, I'd better get it right. There is no

guidance in the current definition of axioms that would help me do so. While this is true of

many other facets of the language, there is a major difference in the case of axioms: in all other

cases I can find out whether I have written something correctly by observing the results. I have

the compiler (at several levels), the linker, runtime errors, and finally the observable program

behavior to tell me if something is wrong.

With axioms, the only help I have is a check of syntactic correctness by the compiler; once the

syntax checks, I'm on my own. But syntax is the easiest part to get right. The only empirical way

to tell if the semantics of axioms are correct is by subtle and hard to measure optimizations,

which of course may not happen. Much more worrisome is that the substitutions could just as

easily be pessimizations if I get the axiom wrong.

For example, here is an excerpt from the WD:

23.2.6.2 Member container concepts [container.concepts.member]

auto concept MemberContainer<typename C> {
 ...
 size_type C::size() const {
 return distance(this->begin(), this->end());
 }
 ...
 axiom MemberContainerSize(C c) {
 (c.begin() == c.end()) == c.empty();
 (c.begin() != c.end()) == (c.size() > 0);
 }
}

Now what happens if I write something like this? (I've ignored the Container-MemberContainer

mapping for clarity.)

template<MemberContainer C> void process_front(const C& c)
{
 if (c.begin() != c.end())
 {
 ... // do something with c.front()
 }
}

void my_algorithm()
{
 forward_list<...> fl;
 ... // put something into fl
 while (fl.begin() != fl.end())
 {
 process_front(fl);
 fl.pop_front();
 }
}

N2892=09-0082

3

This seems to me to be pretty reasonable code. I have a process_front routine that does some-

thing with the first element of any container, and an algorithm that uses a forward_list in some

way and calls process_front from a loop. The idioms I use here are common STL container

idioms. So what is the problem?

The MemberContainer concept is auto, and so a map will be generated for forward_list. But

forward_list was deliberately designed without the size() member so users wouldn't write code

that assumed that size was O(1)
1
. This means that a size() member will be provided by

MemberContainer using the default O(n) implementation in terms of distance(). Because of the

MemberContainerSize axiom, the compiler is then free to substitute begin() != end() with

size() > 0 in process_front. So what looks like an O(1) test for not-empty becomes an O(n)

size calculation.

In my opinion this problem is very hard to see. It's unlikely I would think of it just looking at this

code unless I stepped in with the debugger and found myself in distance(). Worse, it would

work fine on a compiler that either didn't do axiom substitution or chose to substitute in the

other direction. Even worse, the substitution probably won’t happen in debug mode, where

optimizations are typically turned off. I don't know whether a compiler could figure out that

this substitution was a bad idea, but such intelligence would likely be in the realm of unspeci-

fied behavior (since compiler vendors don’t like to guarantee specific optimizations).

The preceding example only produces a faulty optimization, not incorrect behavior. But

consider this axiom (also from the MemberContainer concept in 23.2.6.2):

axiom MemberFrontInsertion(C c, value_type x) {
 x == (c.push_front(x), c.front());
}

The implications of this substitution are sobering. A compiler could easily decide that x is much

more efficient than (c.push_front(x), c.front()), and this axiom says that they are

equivalent. The push_front, front expression is a reasonable thing for someone to write, and if

it gets quietly replaced by x, the behavior of the code that contains it will be superficially

similar, so the missing insertion will be very hard to find.

My point here is that writing axioms is subtle stuff indeed. Perhaps whoever wrote the

MemberContainerSize axiom above knew that a compiler would not, or could not, pessimize in

the way I've illustrated, but I don't think it's reasonable to ask that level of expertise of our

users. And as MemberFrontInsertion shows, there are axioms in the current WD that have been

identified as potentially incorrect (by people more expert than myself). If members of the

Committee can't get them right, or can't agree as to what is right, how can we expect average

users to do so?

1
 The whole point of forward_list is to provide a minimal forward-linked list that has no overhead over the naïve C

implementation, so a size calculation would have to be O(n).

N2892=09-0082

4

Conclusions

Without a convincing answer to both these questions, I believe we should either remove

axioms or change their definition. As currently defined, they are sort of a syntax-checked

comment, but unlike a comment they can have visible and potentially dramatic behavior. I

believe this behavior is far more of a liability than a benefit.

The promise of third-party tools that do useful things with axioms is interesting and compelling,

but such tools may or may not be available or useful to any particular programmer. Further-

more, these tools do not yet exist, so I question whether we can know today what information

they will need.

Tools that use axioms do not depend on the substitution behavior of compilers. If axioms are, in

effect, comments, then perhaps they should actually be comments. A standard syntax for

expressing axiomatic relationships in comments would allow third-party tools to operate with-

out causing the problems I discuss above, and it would be easy to include version information

to facilitate backward compatibility if there is a need to change the syntax in the future.

Another option would be to prohibit compilers from performing axiom substitutions. I believe

this functionality could be added later without breaking things once we have a better idea of

how axioms should work. Without the substitution language, the answer to the above ques-

tions is easy: 1 – you wouldn't unless you were using an analysis tool that made use of them,

and 2 – it doesn't matter to your code but you can check them with your analysis tool.

One concern that was raised about removing axioms went roughly as follows (I hope I have not

distorted the meaning here): since axioms are part of the formal specification of the language,

we cannot change them once they are in the library, nor can we add them later since that

would change existing code, therefore we had better get them right first time. I believe that this

is not quite correct. Since (correct) axioms by definition do not change code behavior, changing

them (or adding them later) cannot affect existing code so long as they were correct to begin

with and so long as the changes or additions are correct.

This leads me back to the same conclusion. As currently defined, axioms must be correct to

ensure they have no visible effect on code. We don't yet seem to be sure how to get them right,

and we don’t have any implementations to help us, so for now we should either remove them

or change the definition.

Acknowledgements

Thanks to Jens Maurer for providing lots of information and ideas, and for reviewing a draft.

Thanks to Doug Gregor for reviewing a draft and making helpful suggestions. Thanks to Alisdair

Meredith for pointing out the problem with MemberFrontInsertion.

