Doc No: N2834=09-0024

Date: 2009-02-09

Author: Pablo Halpern
Cilk Arts, Inc.

phalpern@halpernwightsoftware.com

Several Proposals to Simplify pair

Contents

BaCKGTOUNGoviiiiiiiiiii e 1
Document CONVENTIONScciiiiiiiiiiiiiiii e 2
Proposal 0: DO NOthNg.........ccciiiiiiiiiiiiiiic e 2
Proposal 1: Allow separate construction of first and second ... 2
Proposal 2: Move variadic Construction into mapccceceevieiiieeiininiiccce 3
Proposal 3: Move Allocator-extended construction into scoped_allocator_adaptor..................... 4
Proposal 4: arg tuple CONSLIUCIOTS ...c.coviuiiiiiiiiiiiiiciiicc e 5
REFETEIICES ...t 6
Background

In the C++98 standard, the pair class template had only three constructors, excluding the
compiler-generated copy-constructor. It was a very simple class template that could be easily
understood. A number of language and library features were introduced since then.
Constructors were added to take advantage of new language features as well as to implement
new features in the map, multimap, unordered map and unordered multimap
containers, for which pair plays a central role. Basically, these new constructors were added
to support:

e Conversion-construction of the first and second members
e Move-construction of the pair as a whole, and of its individual members
e emplace functions in the map containers

e Passing an allocator to the first and second members for support of scoped
allocators.

Unfortunately, most of these new features were orthogonal, nearly causing a doubling of the
number of constructors to support each one. At one point, pair had 14 constructors
(excluding the compiler-generated copy constructor)! That number has since been reduced to

N2834: Several Proposals to Simplify pair Page 1 of 6

9 by identifying redundant constructors. This paper proposes a number of approaches that
could be used to reduce the number of constructors, if not back to the 1998 set, at least to a
manageable number.

Document Conventions

All section names and numbers are relative to the October 2008 working draft, N2798.
Existing and proposed working paper text is indented and shown in dark blue. Small edits to the working
paper are shown with red-strikeoutsfor deleted-text-and green underlining for inserted text within the indented

blue original text. Large proposed insertions into the working paper are shown in the same dark blue indented
format (no green underline).

Comments and rationale mixed in with the proposed wording appears as shaded text.

Requests for LWG opinions and guidance appear with light (yellow) shading. It is expected
that changes resulting from such guidance will be minor and will not delay acceptance of this
proposal in the same meeting at which it is presented.

Proposal 0: Do nothing

Because of the conversion and move constructors, it is unlikely that we will reduce the set of
pair constructors below 5. The current number stands at 9, so it is not unreasonable to
consider leaving it at that.

Proposal 1: Allow separate construction of £irst and second

Discussion

Part of the problem with containers that use pair is the need to pass constructor arguments to
both the first and second data members. This need results in a number of constructors that
mirror the individual constructors of the data members and have nothing to do with pair
itself. For example, the emplace functions on map containers requires constructing the
second part of the pair with a variadic constructor, even though a variadic constructor is not
natural for pair. This mechanism can be combined with other proposals (below) for a further
reduction in the number of constructors. This proposal by itself does not reduce the number of
constructors in pair, but it enables several other proposals, below.

Modity the introduction to pair in section 20.3.3 [pairs] as follows:

The library provides a template for heterogeneous pairs of values. The library also provides a matching
function template to simplify their construction and several templates that provide access to pair objects as if

N2834: Several Proposals to Simplify pair Page 2 of 6

they were tuple objects (see 20.5.2.4 and 20.5.2.5). In addition to the constructors provided, an object of a
pair instantiation may be constructed in uninitialized memory of the correct size and alignment to hold that
instantiation by separately constructing the £irst and second members of the pair.

Proposal 2: Move variadic Construction into map

Discussion

If Proposal 1 is adopted, emplace could separately construct first and second. We could
then eliminate two variadic constructors from pair but this would require adding back one
non-variadic constructor (for move-construction of first and second). This approach was
implemented by Bloomberg in the first embodiment of the scoped allocator model.

e Marginal benefit (but more possible in combination with other proposals)

¢ Does not allow variadic construction of local, static, or member pair variables.

(Adoption of Proposal 1 is assumed) In section 20.3.3 [pairs], remove two constructors from
pair and add one back:

template<class U, class V>
requires Constructible<Tl, U&&> && Constructible<T2, V&&>

pair (U&& x, V&& V) ;

4
Fomnrnl o+ alaaco T7 ol oo WANECY IS
k,cl.llt/_LL/lk,C TCTOO O A \s Iy @ e e) . nJ_\j».)
rocmal vy Oar ot v~k 2 La i 11¢ € CC Oameat paa~d 1] m2 Nrera ¢ C
J_C\-iLAJ_J_ =3 UTTo C T OCTC TTIoOITTT LIy O S e UTTo C T OCTC TTIoOITTT Es 7 nJ_\j»_)U(U(
a1 (TTC ¢ Nrera ©C N
t/LAJ_J_\\/U(U(7 nJ_\j;JU(U((A.J_\j;_)[,
+] + ~ aco T7 ol S aa N rera ~ a1 ot~ N7 o
cCHP Tt TS5 7 TS S s - L9957 TS Sy O —2rr =
PN S I EE NP AP NP S S T~ =N | e+ 17 o+ T 17 T1¢C C
U TESS B S I Sy S 1 G >/ S o s g e e o COXr <t Tty 1y 7 X
C C Coanat pria~+ 217 Tla + N1 o LMD N1 o DNyreca CC
[eavs /4 3 I G i 7 gt /o o [s G . e e o O <TZ7 1y 7 It gSww
a3 r (11 ot ey comet N1 1 A~c o 11¢ ¢ Nrera ¢ C ENE v W
J:/(.A.J_J_ AR = = L B Sy W (.A.J_‘ﬂ <7 COTTho T LT T OCT ™ = XX 7 ﬂJ_‘ﬂOLXU((.A.J_‘ﬂu)/ 7

Add language to container requirements in section 23.1.1 [container.rquirements.general], at

the end of paragraph 3:

Ordered and unordered associative containers described in this section which compose a value type asa
pair<const Key, T> constructeach pair element by separately calling construct on the first (Key)

and second (T) parts.

N2834: Several Proposals to Simplify pair Page 3 of 6

Proposal 3: Move Allocator-extended construction into
The pair constructors that take an allocator argument exist to support scoped allocators. If

scoped_allocator_adaptor

Discussion

This would save

plates.

4 constructors in pair, at the cost of 8 new construct overloads in each adaptor.

Proposal 1 is adopted, we could consider moving those constructors into specialized

construct methods within the scoped allocator adaptor tem

Combining this proposal with Proposal 2 would reduce the number of concept map templates

to 6 for each adaptor.

Disadvantages

Does not allow allocator-extended construction of local, static, or member pair

variables.

Does not scale well to other scoped-allocator-like ideas or other pair-like templates.

(This wording assumes passage of N2829. Minor tweaks could make it valid if N2829 doesn’t

pass. Assume adoption of Proposal 1.)
In Section 20.3.3 [pairs], remove the allocator-extended constructors from pair:

Proposed Wording

» N1 =

oot

alaaan]]

mr]l ot
cCroTractT

+

T OT

T OCTocOT

TTho o

AN

T

~
T

aat
T C

Wa+hn17]

Nt e~ 2N
Orrocrotc ooty crt

Il

o
=

Yool v
ESASAS v =

T

o

~

Wa+hn17] ot

Nt e~ 2N
o crotCc ooty Crt

Il

C_C

T OT

r

T

T OCTocTcOT

o C kY

il

T OTC™

oo ot
O oT

v S &

aot

a3 (11

Sy

7

ST

P oot cOoT

» N1

Ml o ol oo T7 ol oo 7 al ool] oot
CTrss

+

T— O

T OCToTcOoOT

TThO O

’
Tal 2

T

TThO O

o Ta C

T

oot TTC
OTTho T

o
E=== ATy

~

+h N 1] ot

PRI

OroctcrrotCtTtTioT

not g

Ial

o
=

PRI
goTr =L

~

T

T

T OCToTcoOT

TV L CLL
+1h 117

nat+ I7C
TS T

o

T2

ot

NP SO

~

C_C

| S s 7 N | g S g e e

TS Ccr o

a2 TT
PoT T

nat
o T

o
TS

P

1

1

P

2

E
I AT = S e =

P

w

“r

pgp e g iy

ST

<7

-

=TT

o

A1]

a1 +
pp e g

=

ol ooa

1

oo
TTho S

T

Tt

[S & 3 e g e e

+h 1]

TSRS
|

oo T

'.u_yp

OF<TT

19

(& gum

Tl =

Aot yeae

IS al

P
Sicr=3

p=

=

| o s 7 N | g S 1 g e e

TS Ccr o

o o +
c CY[M

W+ An17

ot

NP SO

~

C_C

| S s 7 N | g S g e e

TS Ccr o

1T

2

o

r
al ool]

E

AN

no

o+ = oy o
ISE=T]

1

1

P

2

E
I AT = S e =

’ ~Tr
» N1

oot

pp e g
oo
IOy

ST
+h N 1]

<7
ol oo

-
171

C

T
ol oo

mr]l ot

+

T— O

T OoCToTcoOT

TThO O

Uy T oo e v .

TThO O

o Ta C

T

I1¢ ¢

o
E=== ATy

~

oot

a1 Tal 2

OroctcrrottTtTioT

not g

Ial

o
=

PRI
goTr =L

T

T
mD
T

T OCToTcoOT

YV CITL

rex o O C
Yo XX e « «

o
T—TOCy

Nt e~ 2N Wa+hn1] o r
A\ T i g i 5 7 o e e i o e i o

Il

C_C

Sy

r

T OoCToTcoOT

S reca)

N CC

r e oo ot N1 oac o T1¢C
CUTT o T

ot

a3 r (11

E¥EGST7

T T Yo XX s + +

<7

T OCw™

<7

TS

PoTrr (o roCacoT

In section 20.8.7 [allocator.adaptor], add the following construct members for each

scoped allocator adapator and scoped allocator adapator?2:

class T2>

template <class T1,

Page 4 of 6

N2834: Several Proposals to Simplify pair

requires ConstructibleWithAllocator<Tl,inner allocator type>
&& ConstructibleWithAllocator<T2,inner allocator type>
void construct (pair<T1l,T2>* p);
template <class T1l, class T2, class U, class V>
requires ConstructibleWithAllocator<Tl,inner allocator type,const U&>
&& ConstructibleWithAllocator<T2,inner allocator type,const V&>
void construct (pair<T1l,T2>* p, const pair<U,V>& x);
template <class T1l, class T2, class U, class V>
requires ConstructibleWithAllocator<Tl,inner allocator type,
RvalueOf<U>: :type>
&& ConstructibleWithAllocator<T2Z,inner allocator type,
RvalueOf<v>: :type>
void construct (pair<T1l,T2>* p, pair<U,V>&& x);
template <class T1l, class T2, class U, class... Args>
requires ConstructibleWithAllocator<Tl, inner allocator type,U&&>
&& ConstructibleWithAllocator<T2,inner allocator type,Argsé&é&...>
void construct (pair<T1l,T2>* p, U&& x, Argsé&&... args);

// stop recursion
template <class T1, class T2, Allocator Alloc2>
requires ConstructibleWithAllocator<Tl,Alloc2>
&& ConstructibleWithAllocator<T2,Alloc2>
void construct (pair<Tl,T2>* p, allocator arg t, const Alloc2&);
template <class T1l, class T2, class U, class V, Allocator Alloc2>
requires ConstructibleWithAllocator<Tl,Alloc2,const U&>
&& ConstructibleWithAllocator<T2,Alloc2,const V&>
void construct (pair<T1l,T2>* p, allocator arg t, const Alloc2s,
const pair<U,V>& x);
template <class T1l, class T2, class U, class V, Allocator Alloc2>
requires ConstructibleWithAllocator<Tl,Alloc2,
RvalueOf<U>: :type>
&& ConstructibleWithAllocator<T2,Alloc2,
RvalueOf<V>: :type>
void construct (pair<Tl,T2>* p, allocator arg t, const Alloc2g,
pair<U,V>&& x);
template <class T1l, class T2, class U, class... Args, Allocator Alloc2>
requires ConstructibleWithAllocator<Tl,Alloc2,U&&>
&& ConstructibleWithAllocator<T2,Alloc2,Argsé&&...>
void construct (pair<T1l,T2>* p, allocator arg t, const Alloc2g,
U&& x, Argsé&&... args);

Proposal 4: arg_tuple constructors

Discussion

This is an alternative to Proposal 1 for allowing arbitrary constructor arguments to be passed
to the first and second members of pair. It should be possible to create a concept for
constructing any type from a tuple-like object containing the type’s constructor arguments.
I'll call that type arg tuple. A pair constructor could be added that accepts two such
“packaged” constructor arguments and passes each one to the constructors of first and

N2834: Several Proposals to Simplify pair Page 5 of 6

second accordingly. The advantage of this system is that it is general-purpose (can be used
outside of pair) and allows local, global, and member variables of pair type to be
constructed with allocators or other constructor arguments.

e Inventive — late for this stage of the standard

e No current implementation — requires full concept support from the compiler.

This wording is incomplete. If there is interest, I can flesh it out.

Add anew arg tuple template that holds references to arguments:

template <class... Args>
class arg tuple : public tuple<Argsé&...> { ... }

Add a new constructor to pair:

template <class... Al, class... A2>
pair (arg tuple<Al...>, arg tuple<A2...>);

References

N2810: Defects and Proposed Resolutions for Allocator Concepts (http://www.open-
std.org/JTC1/SC22/WG21/docs/papers/2008/n2810.pdf)

IN2829: : Defects and Proposed Resolutions for Allocator Concepts (rev 1) (http://www.open-
std.org/JTC1/SC22/WG21/docs/papers/2009/n2829.pdf)

N2834: Several Proposals to Simplify pair Page 6 of 6

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2810.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/n2829.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/

