
Deducing the type of variable from its initializer expression
(revision 4)

Programming Language C++
Document no: N1984=06-0054

Jaakko Järvi
Texas A&M University

College Station, TX
jarvi@cs.tamu.edu

Bjarne Stroustrup
AT&T Research

and Texas A&M University
bs@research.att.com

Gabriel Dos Reis
Texas A&M University

College Station, TX
gdr@cs.tamu.edu

2006-04-06

1 Introduction
This document is a revision of the documents N1794=05-0054 and N1721=04-0161. The document N1721=04-0161
contained the suggested wording for new uses of keyword auto, which were unanimously approved by the evolution
group meeting in Redmond, October 2004. Based on the discussions and straw-polls in the Lillehammer meeting
in April 2005, wording for allowing the initialization (with auto) of more than one variables in a single statement
was added; N1721=04-0161 allowed only one variable initialization per statement. The current document revises
the wording of N1794=05-0054 based on technical comments from the core working group from the Lillehammer
meeting and repeated reviews in the Mont-Tremblant meeting. Essentially only the suggested wording has changed
from N1794=05-0054.

2 Proposed features
We suggest that the auto keyword would indicate that the type of a variable is to be deduced from its initializer
expression. For example:

auto x = 3.14; // x has type double

The auto keyword can occur as a simple type specifier (allow to be used with cv-qualifiers, *, and &) and the seman-
tics of auto should follow exactly the rules of template argument deduction. Examples (the notation x : T in the
comments is read as “x has type T”):

int foo();
auto x1 = foo(); // x1 : int
const auto& x2 = foo(); // x2 : const int&
auto& x3 = foo(); // x3 : int&: error, cannot bind a reference to a temporary

float& bar();
auto y1 = bar(); // y1 : float
const auto& y2 = bar(); // y2 : const float&

1

Doc. no: N1984=06-0054 2

auto& y3 = bar(); // y3 : float&

A* fii()
auto* z1 = fii(); // z1 : A*
auto z2 = fii(); // z2 : A*
auto* z3 = bar(); // error, bar does not return a pointer type

A major concern in discussions of auto-like features has been the potential difficulty in figuring out whether the
declared variable will be of a reference type or not. Particularly, is unintentional aliasing or slicing of objects likely?
For example

class B { ... virtual void f(); }
class D : public B { ... void f(); }
B* d = new D();
...
auto b = *d; // is this casting a reference to a base or slicing an object?
b.f(); // is polymorphic behavior preserved?

Basing auto on template argument deduction rules provides a natural way for a programmer to express his intention.
Controlling copying and referencing is essentially the same as with variables whose types are declared explicitly. For
example:

A foo();
A& bar();
...
A x1 = foo(); // x1 : A
auto x1 = foo(); // x1 : A

A& x2 = foo(); // error, we cannot bind a non−lvalue to a non−const reference
auto& x2 = foo(); // error

A y1 = bar(); // y1 : A
auto y1 = bar(); // y1 : A

A& y2 = bar(); // y2 : A&
auto& y2 = bar(); // y2 : A&

Thus, as in the rest of the language, value semantics is the default, and reference semantics is provided through
consistent use of &.

Multi-variable declarations

More than one variable can be declared in a single statement:

int i;
auto a = 1, *b = &i;

In the case of two or more variables, both deductions must lead to the same type. Note that the declared variables can
get different types, as is the case in the above example. The declarations are handled from left to right. The following
code is thus valid:

auto x = 1, *y = &x;

Obviously, the variable being declared cannot be used in its own initializer. For example, the following declaration is
erroneous:

auto j = &j;

Doc. no: N1984=06-0054 3

Direct initialization syntax

Direct initialization syntax is allowed and is equivalent to copy initialization, for the purpose of type deduction. For
example:

auto x = 1; // x : int
auto x(1); // x : int

The semantics of a direct-initialization expression of the form T v(x) with T a type expression containing an occur-
rence of of auto, v as a variable name, and x an expression, and type deduction proceeds as in the corresponding copy
initialization expression T v = x. Examples:

const auto& y(x) -> const auto& y = x;

It follows that the direct initialization syntax is allowed with new expressions as well:

new auto(1);

The expression auto(1) has type int, and thus new auto(1) has type int*. Combining a new expression using
auto with an auto variable declaration gives:

auto* x = new auto(1);

Here, new auto(1) has type int*, which will be the type of x too.

3 Proposed wording
Section 7.1.1 Storage class specifiers [dcl.stc]

Paragraph 1 should start:

The storage class specifiers are

storage−class−specifier :
auto
register
static
extern
mutable

Paragraph 2 should be:

The auto and register specifiers shall be applied only to names of objects declared in a block (6.3)
or to function parameters (8.4). They specify It specifies that the named object has automatic storage
duration (3.7.2). An object declared without a storage-class-specifier at block scope or declared as a
function parameter has automatic storage duration by default. [Note: hence, the auto specifier is almost
always redundant and not often used; one use of auto is to distinguish a declaration-statement from an
expression-statement (6.8) explicitly. —end note]

Paragraph 3 should be:

A register specifier has the same semantics as an auto specifier together with is a hint to the imple-
mentation that the object so declared will be heavily used. [Note: the hint can be ignored and in most
implementations it will be ignored if the address of the object is taken. —end note]

Doc. no: N1984=06-0054 4

Section 7.1.5 Type specifiers [dcl.type]

Paragraph 2 should read:
As a general rule, at most one type-specifier is allowed in the complete decl-specifier-seq of a declaration. The

only exceptions to this rule are the following:

• const or volatile can be combined with any other type-specifier. However, redundant cv-qualifiers are
prohibited except when introduced through the use of typedefs (7.1.3) or template type arguments (14.3), in
which case the redundant cv-qualifiers are ignored.

• signed or unsigned can be combined with char, long, short, or int.

• short or long can be combined with int.

• long can be combined with double.

• auto can be combined with any other type specifier, except with itself.

Section 7.1.5.2 Simple type specifiers [dcl.type.simple]

In paragraph 1, add the following to the list of simple type specifiers:
auto

To Table 7, add the line:

auto placeholder for a type to be deduced

Change paragraph 2 to read:

The auto specifier is a placeholder for a type to be deduced ([dcl.spec.auto] 7.1.5.4). The other
simple-type-specifiers specify either a previously-declared user-defined type or one of the fundamental
types (3.9.1). Table 7 summarizes the valid combinations of simple-type-specifiers and the types they
specify.

New Section 7.1.5.4 auto specifier [dcl.spec.auto]

This would be a new section, even though auto is a simple type specifier.
Paragraph 1 should be:

The auto type-specifier has two meanings depending on the context of its use. In a decl-specifier-
seq that contains at least one type-specifier (in addition to auto) that is not a cv-qualifier, the auto
type-specifier specifies that the object named in the declaration has automatic storage duration. The
decl-specifier-seq shall contain no storage-class-specifiers. This use of the auto specifier shall only
be applied to names of objects declared in a block (6.3) or to function parameters (8.4).

Paragraph 2 should be:

Otherwise (auto appearing with no type specifiers other than cv-qualifiers), the auto type-specifier
signifies that the type of an object being declared is to be deduced from its initializer. The name of
the object being declared shall not appear in its initializer expression.
This use of auto is allowed when declaring objects in a block [stmt.block] (6.3), in namespace
scope [basic.scope.namespace] (3.3.5), or in a for-init-statement [stmt.for] (6.5.3). The decl-specifier-
seq shall be followed by one or more init-declarators, each of which shall have a non-empty initializer
of either of the following two forms:

Doc. no: N1984=06-0054 5

= assignment−expression
(assignment−expression)

[Example:

auto x = 5; // ok, x has type int
const auto *v = &x, u = 6; // ok, v has type const int*, u has type const int
static auto y = 0.0; // ok, y has type double
static auto int z; // ill−formed, auto and static conflict
auto int r; // ok, r has type int

— end example]

Paragraph 3 should be:

The auto type-specifier can also be used in declaring an object in the condition of a selection state-
ment [stmt.select] (6.4) or of an iteration statement [stmt.iter] (6.5), in the type-specifier-seq in new-
type-id [expr.new] (5.3.4), and in declaring a static data member with a constant-initializer that
appears within the member-specification of a class definition [class.static.data] (9.4.2).

Paragraph 4 should be:

A program that uses auto in a context not explicitly allowed in this section is ill-formed.

Paragraph 5 should be:

Once the type of a declarator-id has been determined according to [dcl.meaning], the type of the
declared variable using the declarator-id is determined from the type of its initializer using the
rules for template argument deduction. Let T be the type that has been determined for a variable
identifier d. Obtain P from T by replacing the occurrence of autowith a new invented type template
parameter U. Let A be the type of the initializer expression for d. The type deduced for the variable d
is then the deduced type determined using the rules of template argument deduction from a function
call ([temp.deduct.call]), where P is a function template parameter type and A the corresponding
argument type. If the deduction fails, the declaration is ill-formed.
If the list of declarators contains more than one declarator, the type of each declared variable is
determined as described above. If the type deduced for the template parameter U is not the same in
each deduction, the program is ill-formed.
[Example:

const auto &i = expr;

The type of i is the deduced type of the parameter u in the call f(expr) of the following invented
function template:

template <class U> void f(const U& u);

— end example]

Doc. no: N1984=06-0054 6

Section 8.3.4 arrays [dcl.ptr]

Paragraph 1 should start:

In a declaration T D where D has the form

D1 [constant−expressionopt]

and the type of the identifier in the declaration T D1 is “derived-declarator-type-list T,” then the type of
the identifier of D is an array type; if the type of the identifier of D contains the auto type deduction
type-specifier, the program is ill-formed. T is called the array element type; ...

Currently, the change is thus to ban the use of auto with arrays. This is due to arrays decaying to pointers automat-
ically. For example:

int x[5];
auto y[5] = x;

Here, expression x would decay to a pointer, and would not match the type “auto y[5]”. Note that depending on the
work on initializers we may wish to revisit this part. For example, we may wish to enable

auto x[] = {a, b, c};

Also, we can debate whether the following should be allowed:

int x[5];
auto y[] = x; // would this be allowed and y : int * ?

Section 5.3.4 New [expr.new]

Add the following text after the paragraph 1

If the auto type-specifier appears in the type-specifier-seq of a new-type-id or type-id of a new-
expression, the type-specifier-seq shall contain no other type-specifiers except cv-qualifiers, and the
new-expression shall contain a new-initializer of the form (assignment-expression).
The allocated type is deduced from the new-initializer as follows: Let (e) be the new-initializer and
T be the new-type-id or type-id of the new expression, then the allocated type is the type deduced for
the variable x in the invented declaration ([dcl.spec.auto]):

T x = e;

[Example:
new auto(1); // allocated type is int
auto x = new auto(’a’); // allocated type is char, x is of type char*

— end example]

6.4. Selection statements [stmt.select]

Paragraph 2 should be:

The rules for conditions apply both to selection-statements and to the for and while statements (6.5).
The declarator shall not specify a function or an array. The type-specifier-seq shall not contain typedef
and shall not declare a new class or enumeration. If the auto type-specifier appears in the type-
specifier-seq, the type-specifier-seq shall contain no other type-specifiers except cv-qualifiers, and
the type of the identifier being declared is deduced from the assignment-expression as described
in ([dcl.spec.auto]).

Doc. no: N1984=06-0054 7

9.2. Class member

Paragraph 6 should be:

A member shall not be declared with auto, extern or register storage class. A member shall not be
declared auto, extern, or register.

4 Acknowledgments
We are grateful to Jeremy Siek, Douglas Gregor, Jeremiah Willcock, Gary Powell, Mat Marcus, Daveed Vandevoorde,
David Abrahams, Andreas Hommel, Peter Dimov, and Paul Mensonides for their valuable input in preparing this
proposal. Clearly, this proposal builds on input from members of the EWG as expressed in face-to-face meetings and
reflector messages. The wording has been significantly improved as the result of careful, and repeated, reading by the
members of the CWG.

	Introduction
	Proposed features
	Proposed wording
	Acknowledgments

