
 N0661 = 95-0061

 Document Number: WG21/N0661
 X3J16/95-0061
 Date: 30 May 1995
 Project: Programming Language C++
 Reply to: Dan Saks
 dsaks@wittenberg.edu

 X3J16 Meeting No. 17
 WG21 Meeting No. 12
 5 - 10 March 1995

Radisson Hotel
Austin, TX 78701 USA

1 Opening activities

 Lenkov convened the meeting as chair at 09:00 (CST) on Monday, 6 March
 1995. Lajoie was the vice-chair, and Saks was the secretary.

 Motorola (represented by Wood) hosted the meeting.

1.1 Opening comments

1.2 Introductions

 Saks circulated an attendance list each day, which is attached as Appen-
 dix A of these minutes. Lajoie circulated a copy of the membership list
 (SD-2 = 95-0001R0) for members to make corrections.

1.3 Membership, voting rights, and procedures for the meeting

 Lenkov reminded the attendees that this is a co-located meeting of WG21
 and X3J16. (The joint membership is denoted WG21+X3J16 in these min-
 utes.)

 Lenkov explained the voting rules:

 -- In straw votes, all WG21 technical experts may vote, even those who
 haven't attended previous WG21 meetings. An X3J16 attendee may vote
 only if he/she is the voting representative of a member organization
 that has met X3's attendance requirements (N0609 = 95-0009). (The
 voting representative is the principal member, or an alternate if
 the principal is not present.) A WG21 technical expert who is also
 an X3J16 voting member still casts only one vote in a straw vote.

 -- In WG21 formal votes, only the head of each national delegation may
 vote.

 -- In X3J16 formal votes, only one representative from each X3J16
 member organization may vote, and only then if the organization
 meets X3's attendance requirements.

 1
ˇ
 N0661 = 95-0061

1.4 Distribution of documents not distributed before the meeting

1.5 Approval of the minutes from the previous meeting

 Saks submitted the minutes from the previous meeting (N0597 = 94-0210)

 for approval.

 Motion by Saks/Dawes:

 Move we approve N0597 = 94-0210 as the minutes of the previous
 meeting.

 Motion passed X3J16: lots yes, 0 no.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

1.6 Agenda review and approval

 Lenkov submitted the proposed agenda (N0610 = 95-0010) for approval with
 this addition:

 4.2 Call for Volunteers to Help the Project Editor

 Motion by Saks/Bruck:

 Move we accept N0610 = 95-0010 as amended as the agenda for this
 meeting.

 Motion passed X3J16: lots yes, 0 no, 0 abstain.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

1.7 Report on the WG21 Sunday meeting

 Harbison summarized the highlights of Sunday's WG21 meeting. Six
 delegations attended: Canada, Germany, Japan, Sweden, the UK, and the
 US. He explained that WG21 discussed the comments on the CD registra-
 tion ballots that came from national bodies (NBs) that normally don't
 attend. The WG21 members who were present generally agreed that:
 -- Although some NBs suggested forming a separate ad hoc WG to clarify
 fundamental language concepts, the Core WG(s) are already handling
 the issues properly.
 -- WG21 should not split the C++ library from the C++ language as a
 separate work item.
 -- WG21 should not restructure the library (all parts should remain
 normative), although the library might need more explicit support
 for freestanding environments.

 Harbison conveyed Stroustrup's suggestion to disband the Extensions WG
 at end of this meeting and distribute the lingering extensions work to
 the Core WG(s). He also explained that the editing schedule following
 this meeting is very tight. Any resolutions drafted at this meeting
 must provide detailed wording for changes to the draft.

 2
ˇ
 N0661 = 95-0061

 Harbison said the CD will be available for public review via ftp. It
 will be available to WG21+X3J16 even before it's available to the pub-
 lic.

 Plauger explained the administrative tasks that the WG21 convener
 (Harbison) must complete before the end of the meeting. He must:
 -- write a "Disposition of Comments on CD Registration Ballot" to
 circulate within SC22, and
 -- get permission from WG21 to submit the draft for CD ballot.

 Lenkov appealed for volunteers to offer to help the project editor
 (Koenig) edit the draft.

1.8 Liaison reports

 ==== WG14 (ISO C) ====

 Plum explained that WG14 met in Plano, TX USA in December 1994. He said
 the Technical Report (including proposals drafted by the former Numer-
 ical C Extensions Group) is complete and will be available from ANSI
 shortly. The C standard is now open for revision; the revised language
 (to be) is known unofficially as "C9x". Plum said the only non-contro-
 versial proposal for change is to add // comments.

1.9 New business

 Lenkov said he sent out a letter ballot to X3J16 requesting authoriza-
 tion for X3 to bill members for mailing service. The ballots came back
 with 39 yes and 1 no. He said the ballot needed 46 yes votes (2/3 of
 the membership) to pass. In the hope of approving the ballot, he asked
 those members who had not replied to the ballot to reply in writing at
 this meeting.

 X3J16 members discussed the ramifications of the vote. Lenkov explained
 the approving the fee doesn't you must pay it -- you pay the fee only if
 you want to receive paper copies of the mailings.

1.10 Drafting Committee

 Lenkov explained the role of the drafting committee: to prepare a writ-
 ten statement of the formal motions so that voting members (particularly
 those whose native language is not English) have an opportunity to read
 and understand what they are voting on.

 Lenkov said that Saks (as secretary) is always on the drafting commit-
 tee. For this meeting, Corfield, Hartinger, and Unruh will also par-
 ticipate. Also, each ad hoc working group (WG) chair is responsible to
 bring that WG's motions to, and participate in, the drafting committee.
 Lenkov added that each chair may delegate the job to another WG member,
 but the chair remains responsible.

 Gafter also volunteered for the drafting committee.

 3
ˇ
 N0661 = 95-0061

The committee recessed to WGs at 10:20 on Monday.

2 WG sessions

3 WG sessions

The committee reconvened at 08:35 on Wednesday.

4 Project Editor's report

 Lenkov opened the committee of the whole.

 Koenig reported that the current Working Paper (WP) (N0629 = 95-0029)
 incorporates all the resolutions passed in November, 1994 (at Valley
 Forge, PA), modulo mistakes and oversights. He explained that small
 parts of the library clauses are missing from the draft due to type-
 setting glitches. He said he corrected the errors in his online copy
 and he wrote an audit program to catch similar problems in the future.
 He asked committee to approve draft despite the minor glitches.

 Koenig explained that he exercised his executive authority by making a
 substantive change to the description of bad_typeid (5.2.7) and its
 interaction with subscripting. In effect, the draft now says that:
 -- If p is a pointer to a polymorphic type and p has value 0, then
 typeid(*p) throws bad_typeid even though the result of evaluating *p
 by itself would be undefined.
 -- Similarly, typeid(p[i]) does not evaluate i.

 Koenig acknowledged editing help from Adamczyk, Lajoie, Stroustrup,
 Plum, and Vilot. Vilot did all the editing in the library clauses.
 Koenig added that Appendix C still contains some items that should be
 moved to normative clauses; he has already moved them in his online copy
 of the WP.

 Koenig announced that members of the public who wish to be notified
 about the US public review (when information is available) should send a
 note to c++std-notify@research.att.com. The content of the note is
 unimportant.

 In response to a request for a list of the known errors in the WP as
 distributed in the mailing, Koenig explained that he doesn't have the
 tools to produce the list quickly. He offered to provide anyone with an
 updated Postscript file of the WP incorporating all the corrections.

 Straw Vote: Who approves of N0629 = 95-0029 as the current WP? lots yes,
 0 no, 1 abstain.

 4
ˇ
 N0661 = 95-0061

4.2 Call for Volunteers

 Harbison explained that WG21+X3J16 should review the WP twice:
 1. A "big" review during the week of 27-31 March, and
 2. A "final" review during the week of 10-14 April
 Harbison said Koenig will submit the document to SC22 on 14 April.

 Adamczyk, Becker, Gibbons, Holaday, Lajoie, Myers, Scian, and Stroustrup
 volunteered to review the WP.

 Koenig asked that review comments should be as specific as possible. He
 preferred that reviewers submit a diff patch of the troff version of the
 WP along with any comments. If that's not possible, comments should
 specify the replacement text and the clauses to which it applies. Bruck
 suggested that Koenig post a note to the -edit reflector explaining the
 form he would like for the patches.

5 General Session I

5.1 Core Language WG

 ==== Core (Adamczyk) ====

 Adamczyk presented a proposal to relax restrictions on function over-
 loading (N0631 = 95-0031). Specifically, the WG proposed eliminating
 the restriction that a program can't overload functions that differ only

 in that one has a parameter of type T and the other has a corresponding
 parameter of type T &. For example,

 void f(int);
 void f(int &); // error according to WP; propose to allow

 He explained that the restriction was intended to prevent declarations
 of functions that are indistinguishable and therefore always cause an
 ambiguity when called. However, this restriction doesn't cover all
 cases, and it causes grief when using templates and overloaded sets
 formed by using namespaces. Compilers will still catch any ambiguities
 at the call points. (The formal wording for the proposal appears as
 motion 2 later in these minutes.)

 Straw Vote: Who favors this proposal? lots yes, 0 no, 0 abstain.

 Adamczyk presented the WG's proposal to allow default arguments on
 overloaded operator functions. He explained the status quo:
 -- The WP is unclear whether operator new allows default arguments
 -- Some compilers allow default arguments on operator()
 The WG recommended:
 -- Any operator function may have default arguments
 -- Operator functions may have any number of arguments

 For example, the proposal would allow:

 5
ˇ
 N0661 = 95-0061

 struct A {
 int operator()(int, float, int = 5);
 A operator++(int = 0);
 A operator=(const A&, bool = false);
 };

 Adamczyk explained that operator expressions can still call only those
 functions that can be called with one or two arguments. Other "weird"
 operator functions can only be called through an explicit call.

 Adamczyk said there's a more conservative fall-back position that
 WG21+X3J16 might prefer, namely, to allow defaults only on operator new
 and operator().

 Clamage asked if this proposal allows declarations for an operator with
 additional non-default arguments. Unruh asked if the requirement that
 at least one operand must have a class type will remain in effect.
 Adamczyk said yes to both Clamage and Unruh.

 Pennello said his compiler (MetaWare) already behaves according to this
 proposal. Vilot thought this proposal was too much change this late in
 the standards process; he preferred the fall-back position. Saks and
 Shopiro were concerned that

 class X {
 operator+(X, X); // missing friend
 ...

 won't be caught at the declaration. Shopiro said it might not even get
 diagnosed at the call(s) if conversions allow the calls to match another
 binary function.

 Straw Vote: Who favors this proposal? 20 yes, 25 no, 9 abstain.

 Adamczyk explained the "fall-back" proposal again:
 -- Clarify that operator new and operator() may have default arguments
 -- Clarify that operators can't have extra arguments
 (See motion 3.)

 Straw Vote: Who favors this "fall-back" proposal? lots yes, 1 no, 10
 abstain.

 Adamczyk explained that the new bool type introduces potential ambigu-
 ities in overload resolution. For example, given:

 void f(void *);
 void f(bool);
 int *p;
 ...
 f(p); // Newly ambiguous

 6
ˇ
 N0661 = 95-0061

 The problem is not bool itself, but that the conversion from T * to bool
 is a standard conversion, so it applies in many places. Adamczyk said
 there's a similar problem with:

 class D : public B { ... };
 void f(B *);
 void f(bool);
 D *p;
 ...
 f(p); // Newly ambiguous

 The WG considered two possible solutions:
 1. "Put the genie back in the bottle." Allow the conversion from T *
 to bool only where it was allowed previously. That is, don't con-
 sider conversion to bool as a general conversion, but just enumerate
 those places, such as if conditions, where conversion to bool may
 occur.
 2. Change the cost of this conversion in overload resolution. Specifi-
 cally, make conversion of anything to bool worse than any other
 standard conversion.

 The WG recommended (2). Adamczyk said this is intuitive because it's
 the standard conversion that throws away the most information.

 Koenig asked who'd ever overload f(bool) and f(T *). Schwarz said
 iostream does, for example, in operator<<.

 Bruck suggested changing "anything" in (2) to "pointer or pointer to
 member". Adamczyk asked the WG members if they'd accept Bruck's sug-
 gestion. No one objected. Adamczyk changed the wording of proposal
 accordingly (see motion 4).

 Straw Vote: Who favors this proposal as amended? lots yes, 2 no, 8
 abstain.

 Adamczyk proposed a "quasi-editorial" change to clause 12.2.3.2 on
 ranking standard conversion sequences. He said this change is probably
 what we meant to say, but didn't get the words right. See motion 5 for
 the details of the proposed change.

 Straw Vote: Who favors this proposal? lots yes, 0 no, 3 abstain.

 Adamczyk suggested removing clause 4.12 (regarding the standard conver-
 sion from a derived class type to its base class type). He said this
 section was added as an editorial change without committee vote. He
 explained that it was intended to support casts, but now that casts are
 defined in terms of initialization, this clause might not be necessary
 anymore. Adamczyk said he suggested removing the derived-to-base con-
 version to his Core WG, but the WG disagreed.

 Adamczyk explained that if we removed the conversion, then the last line
 of this example becomes ill-formed:

 7
ˇ
 N0661 = 95-0061

 struct B { };
 struct D : B { };
 struct Z {
 operator D();
 } z;

 const D& dr1 = z; // OK
 const B& br1 = z; // OK
 D vd = z; // OK
 B vb = z; // OK with standard conversion; not OK without

 If the standard conversion exists, the last line calls the constructor.
 If the constructor is not callable, the program is ill-formed.

 [Note:
 After the meeting, Welch pointed out, and Adamczyk agreed, that the
 example above should have used () initialization instead of =
 initialization:

 const D& dr1(z); // OK
 const B& br1(z); // OK
 D vd(z); // OK
 B vb(z); // OK with standard conversion; not OK without

 The "=" form doesn't really have the problem under discussion.
 End Note.]

 Shopiro said he thought the last line in the example would be surprising
 to users because it creates an object and then "slices" it. He said
 he'd rather make users "slice" objects explicitly. Therefore, we should
 eliminate the conversion.

 Straw Vote: Who wants to remove the derived-to-base conversion (clause
 4.12) from the WP? 18 yes, 18 no, 13 abstain.

 Adamczyk presented some problems regarding class name injection (N0444 =
 94-0057):

 Problem 1: It's inconsistent. The WP employs name injection, but only
 in some contexts:

 x.T::a
 p->T::a
 x.operator T
 p->operator T
 x.operator T::U
 p->operator T::U

 A::operator T
 A::operator T::U
 A() : T(x)
 Template classes

 8
ˇ
 N0661 = 95-0061

 Problem 2: We won't know how to resolve a lot of core issues until we
 know if we have name injection. Name injection makes the answers
 easy.

 Problem 3: Without name injection, names can be "hijacked", as in:

 struct A {
 struct B {

 };
 };

 struct B : public A {
 B* next; // Oops, wrong B
 B(const B&); // Oops, not a copy constructor
 };

 Without name injection, B inside struct B (above) refers to A::B.

 Adamcyzk recommended adopting uniform name injection as proposed in
 N0663R1 = 95-0063R1 (which includes N0444 = 94-0057, section 6, first
 option). The resulting simplification deletes about a half-dozen
 special cases from the WP.

 Straw Vote: Who favors this proposal? lots yes, 0 no, 5 abstain.

 Gafter explained another name lookup issue (from N0663R1 = 95-0063R1
 section 2) using this example:

 struct T {
 enum E { e = 3 };
 static int x[e];
 };

 int T::x[e]; // Is e found?

 He recommended that the answer is "yes"; names (such as e) following the
 qualified-id (T::x) are looked up in the scope of the class (T).

 Straw Vote: Who favors this proposal? lots yes, 0 no, 7 abstain.

 Gafter explained another name lookup issue (from N0663R1 = 95-0063R1
 section 3) using this example:

 class X { };
 int X;
 class Y : X { }; // which X?

 He recommended adding words to Clause 10 of the WP to say the base-class
 specifier is evaluated as a type.

 Straw Vote: Who favors this proposal? lots yes, 0 no, 4 abstain.

 9

ˇ
 N0661 = 95-0061

 Gafter presented yet another name lookup issue, this one regarding ambi-
 guities in operator delete occurring in multiple inheritance lattices
 (N0663R1 = 95-0063R1, section 8). He presented words to resolve the
 problem (from the same paper). Scian noted that the proposed words
 account for

 operator delete(void *)

 but not for

 operator delete(void *, size_t).

 Gafter said the omission was not intentional and he would fix the words
 accordingly.

 Straw Vote: Who favors this proposal? lots yes, 0 no, 7 abstain.

 (Motion 6 incorporates the proposals approved in the previous five straw
 votes.)

 ==== Core (Lajoie) ====

 Lajoie presented several proposal regarding C++'s memory model (from
 issues in N0568 = 94-0181).

 Lajoie began by presenting wording to clarify fundamental concepts of
 the memory model, as suggested in items 1.1 through 1.5 of N0568 =
 94-0181. This wording included definitions for the terms "object repre-
 sentation" and "value representation". See Motion 7 (which refers to
 N0670 = 95-0070) for details.

 Regarding the proposed representation of signed and unsigned integer
 types, Koenig said there's a problem with the representation of ones-
 complement zero. Plum replied that the proposal describes the same
 behavior as in C. Lajoie explained that these words come from 3.1.2.5
 of ANSI C, plus terms used in reply to defect reports against that
 section.

 Straw Vote: Who favors this proposal? lots yes, 0 no, 8 abstain.

 Lajoie presented the WG's recommendation regarding object lifetime
 issues (from N0655 = 95-0055). The first issue is "What can be done
 with a pointer to an object that has been destroyed?" The WG recom-
 mended

 A pointer to an object of type T that has been destroyed still
 points at valid memory.

 For example:

 10
ˇ
 N0661 = 95-0061

 T* pt = new T();
 pt->~T();
 &pt; // ok: pt points to valid memory
 void* q = pt; // ok: pt points to valid memory

 pt->f(); // undefined: f is a non-static member function

 Shopiro asked if referring to *pb is ok. Lajoie said it's an open
 issue.

 Lajoie gave another example:

 class C {
 void f();
 void destroy();
 };

 void C::destroy ()
 {
 this->~C();
 f(); // undefined: f is a non-static member function
 void *q = this; // ok
 }

 Lajoie presented the following proposed rule for pointer manipulations:

 When converting a T* to a void*, the void* is guaranteed to point at
 the start of the storage holding an object of type T.

 Also:

 An object of type T that is a base subobject is not guaranteed to
 have the same size, layout and polymorphic behavior as a complete
 object of type T.

 For example:

 class A { };
 class B : public virtual A { };
 class C : public virtual A { };
 class D : public B, public C { };

 The size and layout for the D's base subobject C might be different from
 the size and layout of a complete C object.

 Lajoie presented another proposal regarding object lifetimes:

 If the pointer in a placement new expression [using the library's
 placement new] has type T1* and the new expression creates an object
 of type T2, referring to the original object using the T1* pointer
 has the same effect as using the pointer after the object has been
 destroyed.

 11
ˇ
 N0661 = 95-0061

 For example:

 class B {
 void mutate();
 virtual ~B();
 };

 class D1 : public B { };
 class D2 : public B { };

 void mutate(B** pb2, void *p) {

 (*pb2)->~B();
 new (p) D2;
 }

 void* p = malloc(...);
 B* pb1 = new (p) D1;
 mutate(&pb1, p);
 pb1->f(); // undefined
 &pb1; // ok: valid storage

 Another example:

 void B::mutate() {
 this->~B();
 new (this) D2;
 f(); // undefined
 void *q = this; // OK, valid memory
 }

 void* p = malloc(...);
 B* pb = new (p) D1;
 pb->mutate();
 pb->f(); // undefined

 Lajoie presented yet another proposal regarding object lifetimes:

 A new expression creates an object of type T which has the size and
 the layout of a complete object of type T.

 If the pointer in a new-placement expression has type T* and the
 pointer points to a complete object of (dynamic) type T and the new
 expression creates an object of type T, referring to the object T
 after the new expression has completed is well-defined.

 Straw Vote: Who favors everything proposed since the last straw vote?
 lots yes, 0 no, 5 abstain.

 Lajoie presented another recommendation from the Core WG:

 An object need not be destroyed before its memory is reused or
 released.

 12
ˇ
 N0661 = 95-0061

 For example:

 {
 T t;
 new (&t) T;
 } // OK: destructor for T not called

 Another example:

 {
 T t;
 new (&t) X; // OK if t has enough storage to hold an X
 &t; // OK
 t.f(); // undefined: refers to a member of a T
 } // undefined: destroyed twice

 Yet another example:

 {
 T t;
 new (&t) T; // if this throws an exception, then...
 } // ... undefined behavior on block exit

 And one more example:

 {
 T t;
 new (&t) X; // OK if t has enough storage to hold an X
 new (&t) T;
 } // OK

 Straw Vote: Who favors this proposal? lots yes, 1 no, 6 abstain.

 (Motion 8 incorporates the proposals approved in the previous two straw
 votes.)

 Lajoie presented the WG recommendation on initialization issues (from
 N0651 = 95-0051). Regarding initialization of objects with static
 storage duration, they proposed to specify that default initialization
 to zero:
 -- initializes all scalar members of an object of class type to zero
 converted to the appropriate type (applied recursively for the
 scalar members of base and nested class members).
 -- initializes pointers to members with the null member pointer value
 of that type.
 Dynamic initialization occurs after default initialization to zero.

 For example:

 13
ˇ
 N0661 = 95-0061

 class A {
 int i;
 float f;
 public:
 A() : i(88) { }
 };

 class C {
 int j;
 A a;
 };

 A a1; // a1.f = 0.0
 C c; // c.j = 0, c.a.i = 0 and c.a.f = 0.0

 In this example above, c.j and c.a.i are initialized to 0, and a1.f and
 c.a.f are initialized to 0.0.

 Lajoie presented the WG's recommendations on the meaning of an initial-
 izer of the form T(). She said the WG agreed that saying it has the
 same semantics as default initialization for a static object of type T
 is too expensive. The WG's compromise proposal is:
 -- if T is a class type with a user-declared constructor then call it
 -- otherwise, initialize the object as if it had static storage
 duration.

 Gibbons wondered that, if initialization to zero is a good thing, why
 not do it always. Shopiro replied that initialization to zero can be
 expensive, and users might want to avoid it. This proposal gives users
 a way to turn off initialization to zero by writing an explicit default
 constructor.

 Lajoie explained that the WP is already clear about initialization of
 scalars and classes with explicitly-declared constructors, but it's not
 clear about classes with implicitly-declared constructor. Anderson said
 this proposal also covers arrays, which are not already covered by other
 rules in the WP.

 Lajoie gave this example:

 class X {
 float f;
 public:
 virtual void f();
 };

 X x;

 Here, x.f is initialized to 0.0 and the X's implicitly-declared default
 constructor executes.

 14
ˇ
 N0661 = 95-0061

 Lajoie then discussed the initialization in new T(). The WG recommended
 it should have the same semantics as T() for both class and non-class
 types. Thus, new T() may have different semantics than new T.

 For example:

 new int(); // object initialized to 0

 typedef int I[3];
 int* p = new I(); // all array elements initialized to 0

 Lajoie then discussed the meaning of t() in a mem-initializer, as in:

 template <class T> struct X {
 T t;
 X<T>() : t() { }
 };

 She said the WG recommended that t() in a mem-initializer should have
 the same initialization semantics as T(). For example:

 struct A {
 int i;
 };
 struct B : A {
 B() : A() { } // A::i initialized to 0
 };

 The WG intends this to work for non-class types as well:

 struct Xi {
 int i;

 Xi() : i() {} // i() is well-formed and initializes i to 0
 };

 Winder asked about the behavior of a derived class with an explicit
 constructor where its base has only an implicit constructor. Gafter
 said it may zero some memory more than once. Welch said that initiali-
 zation code might set an test flags to avoid duplicate initialization.

 Straw Vote: Who favors this proposal? lots yes, 6 no, 6 abstain.

 Lajoie presented new words to describe the initialization of const
 objects:

 Unless explicitly declared extern, a const object does not have
 external linkage and shall be initialized. That is, for a const
 object of type T, if T is a type with a user-declared default con-
 structor, the T's default constructor is called; otherwise the const
 object of type T must be initialized with an explicit initializer.

 Straw Vote: Who favors this proposal? lots yes, 0 no, 6 abstain.

 15
ˇ
 N0661 = 95-0061

 Lajoie presented the WG's recommendation to allow brace elision for all
 aggregate initializations. Specifically,

 If the assignment-expression [in the aggregate initializer] can
 initialize a member (considering all type conversions), that member
 is initialized. Otherwise, if the member is itself an aggregate,
 then the initializer initializes the first member of the subaggre-
 gate member.

 She gave this example:

 struct A {
 int i;
 operator int();
 };
 struct B { A a1; A a2; };
 A a;
 B b1 = { 1, a }; // initialializes b1.a2 with a

 Straw Vote: Who favors this proposal? lots yes, 1 no, 6 abstain.

 Lajoie presented.the WG's recommendation to allow redundant braces
 around scalar initializers, as in:

 int j = i;
 int j = { i }; // allowed in C and allowed in C++

 The proposal stipulates that the expression initializing an object of
 scalar type can be optionally enclosed in braces only if the object is a
 complete object (i.e. not itself an aggregate member) of scalar type.

 Straw Vote: Who favors this proposal? lots yes, 0 no, 3 abstain.

 Lajoie presented yet another proposal regarding initialization:

 When an aggregate is initialized with an initializer clause, if some
 members are initialized with constant expressions and other members
 are initialized with dynamic initialization, an implementation may
 initialize the entire object during the dynamic phase of construc-

 tion.

 Straw Vote: Who favors this proposal? lots yes, 0 no, 4 abstain.

 Lajoie presented the WG's final proposal regarding initialization:

 If there are fewer initializers in the list than there are members
 in the aggregate, then the remaining aggregate members are
 initialized with zero.

 Straw Vote: Who favors this proposal? lots yes, 0 no, 3 abstain.

 16
ˇ
 N0661 = 95-0061

 (Motion 9 incorporates the proposals accepted in the previous six straw
 votes.)

 Lajoie presented the WG's recommendations regarding class copy
 operations (from issues listed in N0580R1 = 94-0193R1). She began with
 the WG's proposed definition for "copy assignment":

 A user-declared copy assignment operator, operator=, is a non-static
 member function of class X with exactly one parameter of type X, X&
 or const X&. If there is no user-declared copy assignment operator,
 one with exactly one parameter of type X& or const X& is implicitly
 declared.

 For example:

 class B { };
 class C : public B {
 public:
 C& operator=(const B&); // not a copy assignment
 };

 Straw Vote: Who favors this proposal? lots yes, 0 no, 4 abstain.

 Lajoie then recommended:

 The implicitly-declared copy assignment operator for class X calls
 the copy assignment operator for X's direct base classes and mem-
 bers. It is unspecified whether the subobjects representing virtual
 base classes are assigned more than once by an implicitly-declared
 copy assignment.

 Straw Vote: Who favors this proposal? lots yes, 1 no, 7 abstain.

 Schwarz asked if there are situations that inhibit generating a copy
 assignment, such as when a base class has a private copy assignment.
 Gafter said such situation inhibit generating a definition, but not a
 declaration. The copy assignment is always declared.

 Lajoie also presented the following, which the WG considered as an
 editorial clarification:

 Because a copy assignment operator= is implicitly declared for a
 class if not declared by the user, a base class copy assignment
 operator= is always hidden by the copy assignment operator of a
 derived class.

 She gave this example:

 struct B {
 virtual int operator=(int);
 virtual B& operator=(B&);
 };

 17
ˇ
 N0661 = 95-0061

 struct D : public B {
 int operator=(int);
 D& operator=(B&);
 };
 D obj1, obj2;
 B* ptr = &obj1;
 void f() {
 ptr->operator=(99); // calls D::operator=(int)
 *ptr = 99; // ditto
 ptr->operator=(obj2); // calls D::operator=(B&)
 *ptr = obj2; // ditto
 }

 (Motion 10 incorporates the recommendations of previous two straw votes,
 plus the editorial clarification.)

 Lajoie said the WG also recommended adopting the copy optimization pro-
 posal from N0641 = 95-0041. She gave this example from the paper:

 string s1 = "hello";
 string s2 = s1;

 If s1 is not used again, the implementatin may treat s2 as an alias for
 s1. Similarly, if s2 is not used again, the implementation may
 eliminate the copy. In general, if the implementation can detect that
 either the original object or the copy won't be used again until it's
 destroyed, the implementation can instead create a reference to the
 original object. See motion 11.

 Straw Vote: Who favors this proposal? lots yes, 0 no, 4 abstain.

5.2 Library WG

 Vilot said the following people are responsible for collecting issues on
 the library clauses:

 Clause 17: McKenna chrism@cadence.com
 Clause 18: Henricson mats.henricson@eua.eric
 Clause 19: Vilot mjv@objects.mv.com
 Clause 20: Myers myersn@roguewave.com
 Clause 21: Wilhelm rkw@chi.andersen.com
 Clause 22: Schwarz jss@declarative.com
 Clause 23: Podmolik jlp@chi.andersen.com
 Clause 24: Dodgson dsd@tredysvr.tredydev.unisys.com
 Clause 25: Becker pete@borland.com
 Clause 26: Ward ward@roguewave.com
 Clause 27: Hinke hinke@roguewave.com

 He said problems in a particular library clause should be reported
 directly to the appropriate person.

 18
ˇ
 N0661 = 95-0061

 Vilot said the Library WG discussed one proposal for handling exceptions
 in the library (N0606 = 95-0006) and decided not to support it. (The
 vote in the WG was 0 yes, lots no.) The WG also discussed exception
 specifications in the library (N0620 = 95-0020) and it remains open.

 Vilot said the WG also considered a proposal to define the effect of
 exceptions thrown from destructors (N0623 = 95-0023) and approved it
 with the following revised wording:

 The effect of an exception propogating from the destructor, default
 constructor, or copy constructor of an object called by any standard
 library function is undefined. In standard containers and strings,
 the effect of the exception is not defined, but after such an
 exception, the effect of any operation on the container or string
 (including destruction) is undefined.

 Steinmuller asked Vilot to add copy assignment to the list of special
 members functions in the first sentence. Vilot agreed.

 Straw Vote: Who favors adding the above paragraph to subclause 17.3.3?
 lots yes, 1 no, 6 abstain.

 Vilot presented a proposal to integrate non-converting constructors into
 the library (N0604 = 95-0024, with minor changes). See motion 12.

 Straw Vote: Who favors this proposal? lots yes, 0 no, 0 abstain.

 Vilot proposed closing several open issues from Clause 18 [language
 support] as per N0649 = 95-0049, with minor changes. See motion 13.

 Straw Vote: Who favors this proposal? lots yes, 0 no, 4 abstain.

 Vilot said the WG deferred discussion on revising the language support
 exceptions (N0566R1 = 94-0179R1), and decided against changes in the
 organization of the headers (N0576 = 94-0178).

 Vilot recommended changes in the memory allocation facilities of the
 standard library (N0647 = 95-0047). This proposal:
 -- prohibits operator new from returning 0
 -- adds another operator new with an exception specification that
 throws nothing
 See motion 14 for details.

 Vilot gave these examples:

 T *p = new T; // never returns null
 T *q = new (nothrow) T; // never throws an exception

 Straw Vote: Who favors this proposal? lots yes, 1 no, 11 abstain.

 Vilot proposed numerous small changes to the STL clauses (N0614R1 =
 95-0014R1, with minor changes). See motion 15.

 19
ˇ
 N0661 = 95-0061

 Straw Vote: Who favors this proposal? lots yes, 0 no, 8 abstain.

 Vilot said the WG discussed implementing STL allocators using partial

 specialization (N0619 = 95-0019), but most WG members abstained from
 voting on it. The WG decided against eliminating certain global
 function templates from clause 20 [general utilities] (N0639 = 95-0039).

 Vilot presented a proposal to modify class auto_ptr and add counted_ptr
 as per N0589R1 = 94-0202R1 with the following changes:
 -- Note that the data member 'px' is mutable.
 -- Note that the copy constructor and assignment operator modify the
 argument 'r', even though it is declared as a reference to a const
 auto_ptr.

 Stroustrup asked to split the discussion on changing auto_ptr from the
 discussion of adding counted_ptr.

 Straw Vote: Who favors adding counted_ptr?
 WG21+X3J16: 8 yes, 18 no, 15 abstain.
 WG21 only: 2 yes, 3 no, 1 abstain.

 Straw Vote: Who favors the changes to auto_ptr?
 X3J16 only: 34 yes, 3 no.
 WG21 only: 5 yes, 1 no.

 See motion 16 for the final form of this proposal.

 Vilot proposed closing a few open issues from Clause 21 [strings] as per
 N0616R1 = 95-0016R1 with minor changes. See motion 17.

 Straw Vote: Who favors this proposal? lots yes, 0 no, 4 abstain.

 Vilot presented a proposal to modify basic_string to make it usable as
 an STL sequence (N0628R1 = 95-0028R1). He explained that the paper
 recommended removing the existing interface and adding a new one. The
 WG agreed with adding the new interface, but advised leaving the existng
 one intact. See motion 18.

 Straw Vote: Who favors the WG's proposal (adding a new interface and
 leaving the existing one intact)? lots yes, 4 no, 4 abstain.

 Vilot presented a pair of proposals for minor repairs to Clause 22
 [localization] as per N0601R1 = 94-0214R1 and N0625 = 95-0025 with a
 minor change. See motion 19.

 Straw Vote: Who favors this proposal? lots yes, 0 no, 9 abstain.

 Vilot proposed minor changes to Clause 23 [containers] to close a few
 open issues as per N0613R3 = 95-0013R3. See motion 20.

 Straw Vote: Who favors this proposal? lots yes, 0 no, 1 abstain.

 20
ˇ
 N0661 = 95-0061

 Vilot said the Library WG rejected a proposal to change container
 adapters (N0612 = 95-0012) by a vote of 6 yes, 15 no. They also
 rejected proposals to add hash tables to STL (N0652 = 94-0175 and N0605
 = 945-0218) without any technical discussion.

 Vilot presented a pair of proposals to modify Clause 24 [iterators] by
 relaxing requirements on the result of operator++(int) for iterators
 (N0621 = 95-0021) and fixing the streambuf iterator (N0622 = 95-0022).
 See motion 21.

 Straw Vote: Who favors this proposal? lots yes, 0 no, 1 abstain.

 Vilot presented a proposal to resolve a few open issues in Clause 26
 [numerics] as per N0637 = 95-0037. See motion 22.

 Straw Vote: Who favors this proposal? lots yes, 0 no, 6 abstain.

 Vilot presented a proposal to remove basic_convbuf from the library as
 per N0664 = 95-0064 with changes. See motion 23.

 Vilot explained that, with this change, you can no longer transfer a
 wchar_t in memory directly to or from a file. Schwarz said he thinks
 you can still do it, but only with extra work. Schwarz added that the
 advantage of this change is that it eliminates a complicated class along
 with the requirement that filebuf use that class. Plauger agreed with
 Schwarz -- eliminating basic_convbuf is a step in the right direction.

 Straw Vote: Who favors this proposal? lots yes, 1 no, 2 abstain.

 Vilot said the WG plans to investigate a way to specify basic_filebuf
 multibyte conversions in a way that allows more efficient implementation
 of overflow() and underflow().

 Vilot presented a proposal to close numerous open issues in Clause 27
 [input/output] as per N0634 = 95-0034. See motion 24.

 Straw Vote: Who favors this proposal? lots yes, 0 no, 3 abstain.

 Lenkov closed the committee of the whole.

The committees recessed at 17:50 on Wednesday and reconvened at 08:30 on
Thursday.

5.3 Extensions WG

 Stroustrup presented the proposals from the Extensions WG. He said only
 one of the following issues was controversial in the WG. The WG was
 nearly unanimous on the others.

 Stroustrup described a proposal to add placement delete as a way to
 prevent memory leaks from placement new expressions that throw an
 exception from a constructor (N0642 = 95-0042). See motion 25.

 21
ˇ
 N0661 = 95-0061

 Stroustrup gave this example:

 z p;
 ...
 new (p) x;

 Under this proposal, an exception thrown from the new expression invokes
 delete p if and only if there's an operator delete(void *, z) in scope
 that matches operator new(size_t, z).

 Adamczyk observed that the WP currently prohibits overloading operator
 delete, but this proposal allows it. He asked if that's the intent.
 Stroustrup said yes. Pennello asked if you can handle such exceptions
 using try and catch explicitly. Stroustrup said no, not if the placement
 argument is an allocator.

 Straw Vote: Who favors this proposal? lots yes, 1 no, 3 abstain.

 Stroustrup presented a proposal to clarify and simplify the rules for
 throwing objects whose types have private or ambiguous base classes.
 With this change, a program can can throw an object with a private or
 ambiguous base class, but it can't catch the exception by such a base.
 See motion 26 for details.

 Stroustrup explained that these rules are context independent. That is,
 where the throw and catch occur doesn't affect whether the handler
 matches the throw.

 Straw Vote: Who favors this proposal? lots yes, 1 no, 1 abstain.

 Stroustrup presented a proposal to allow

 throw X;

 to mean

 throw X();

 (from N0632 = 95-0032). If X names both a type and an object, throw X
 still throws the object. See motion 27.

 Several members were confused about whether motion 9 (on initializers of
 the form T()) affects this motion. Stroustrup explained that, as word-
 ed, this motion assumes motion 9 has not [yet] passed.

 Straw Vote: Who favors this proposal?
 WG21+X3J16: 27 yes, 17 no, 5 abstain.
 WG21 only: 4 yes, 1 no, 1 abstain.

 Stroustrup presented a proposal to add function-try-blocks as a way to
 catch exceptions thrown by ctor-initializers. He gave this example:

 22
ˇ
 N0661 = 95-0061

 X::X()
 try // this is new
 : a(1), b(2)
 {
 ...
 }
 catch (e) { // so it this
 ...
 }

 By this proposal, any function can use a function-try-block. For con-
 structors and destructors, it's essential. For others, it's just a
 convenience. See motion 28 for details.

 Straw Vote: Who favors this proposal? lots yes, 4 no, 4 abstain.

 Stroustrup proposed to clarify the effect of using-declarations on over-
 load resolution (from N0643 = 95-0043 and from edit box 38 in clause
 7.3.3). He gave this example:

 struct B {
 virtual void f(int);
 };
 struct D : B {

 virtual void f(double);
 using B::f;
 };
 void g(D* p)
 {
 p->f(1); // call B::f
 }

 Under this proposal, the using-declaration introduces B::f into D as if
 it were a member of D. See motion 29 for precise wording.

 Straw Vote: Who favors this proposal? lots yes, 0 no, 2 abstain.

 Stroustrup presented a proposal to clarify operator lookup in the pres-
 ence of namespaces (N0645 = 95-0045). He explained the problem and the
 proposed solution using an example very similar to the one on the first
 page of that paper. See motion 30 for details.

 Straw Vote: Who favors this proposal? lots yes, 2 no, 5 abstain.

 Stroustrup proposed to ban specialization of member template types. For
 example:

 template <class T> class X {
 template <class U> class M {
 ...
 };
 };

 23
ˇ
 N0661 = 95-0061

 template <class T> class X<T>::M<char> { // error
 ...
 };
 class X<int>::M<char> { // ok
 ...
 };

 See motion 31 for details.

 Straw Vote: Who favors this proposal? lots yes, 0 no, 2 abstain.

 Stroustrup presented a proposal to specify the overloading and linkage
 of template functions (from discussion in N0578 = 94-0191 and item 3.21
 of N0607 = 95-0007). He explained the problem with an example. See
 motion 32 for the example as well as precise wording for the resolution.

 Straw Vote: Who favors this proposal? lots yes, 1 no, 5 abstain.

 Regarding the example from the previous discussion (see the text of
 motion 32), Shopiro asked what happens the if the templates are in the
 same file. Stroustrup said the next proposal answers that question.

 Stroustrup explained a proposal to clarify template function overload
 resolution (based in discussion in N0578 = 94-0191 and item 3.22 of
 N0607 = 95-0007). He gave this example to illustrate the proposal's
 effect:

 template <class T>
 void swap(T&, T&); // 1

 template <class T>

 void swap(vector<T>&, vector<T>&); // 2

 int i, j;
 vector<int> v1, v2;

 swap(i, j); // uses 1

 swap(v1, v2); // uses 2

 See motion 33 for details.

 Straw Vote: Who favors this proposal? lots yes, 1 no, 2 abstain.

 Stroustrup described a proposal to clarify partial specialization of
 class templates (from discussion in N0578 = 94-0191). He used this
 example to illustrate the proposal's effect:

 template <class T>
 class list { ... }; // 1

 24
ˇ
 N0661 = 95-0061

 template <class T>
 class list<T*> { ... }; // 2

 class list<void*> { ... }; // 3

 list<int> li; // uses 1
 list<int*> lip; // uses 2
 list<void*> lvp; // uses 3

 See motion 34 for details.

 Straw Vote: Who favors this proposal? lots yes, 2 no, 3 abstain.

 Stroustrup presented resolutions to three open issues from N0607 =
 95-0007. See motion 35.

 Straw Vote: Who favors this proposal? lots yes, 0 no, 2 abstain.

 Stroustrup presented a proposal to allow explicit qualification of
 template names in certain contexts (from issue 6.21 of N0607 = 95-0007
 and edit box 63 from clause 14.9.1 of the WP). Stroustrup explained the
 proposal using this example:

 class X {
 template<size_t> X* alloc();
 };

 void f(X* p)
 {
 p->alloc<200>(); // error
 p->template alloc<200>(); // ok (this is new)
 };

 See motion 36 for details.

 Stroustrup said this is the only proposal that was somewhat controver-
 sial in the WG. The WG approved it 9 yes, 3 no.

 Straw Vote: Who favors this proposal? lots yes, 6 no, 8 abstain.

5.4 Environments WG

 None.

5.5 C Compatibility WG

 Plum presented a proposal to ban "implicit int" from C++ (N0633 =
 95-0033). He explained that Bruck presented this proposal last year.
 Plum (as liaison) took the issue to WG14. WG14's members fell into two
 camps: (1) ban it, or (2) deprecate it. Plum said the WG21+X3J16 C
 Compatibility WG recommended banning it. See motion 37.

 25
ˇ
 N0661 = 95-0061

 Koenig said he'd vote against the ban unless you could still write

 main()
 {
 ...
 }

 Straw Vote: Who favors this proposal? lots yes, 3 no, 0 abstain.

5.6 Formal Syntax WG

 None.

5.2 Library WG (revisited)

 Vilot reopened the discussion on the effect of exceptions thrown from
 destructors (N0623 = 95-0023). He presented revised wording for the
 proposal. See motion 41.

 Much discussion followed. Colvin thought the revised proposal was too
 general -- it's not limited to containers and strings as was the earlier
 version. Vilot said we need some statement of constraints on programs.
 Corfield and Koenig agreed strongly. Stroustrup thought the revised
 proposal was a definite improvement.

 Straw Vote: Who favors this proposal?
 WG21+X3J16: lots yes, 4 no, 4 abstain.
 WG21 only: 4 yes, 0 no, 2 abstain.

 Vilot introduced two proposals on standard exceptions: (1) N0566R1 =
 94-0179R1, and (2) N0665 = 95-0065, a compromise written the night
 before by Schwarz, Myers, Clamage and Colvin (the "Gang of Four").
 Dawes favored (2), as did Clamage. Clamage added that all the issues
 were on the table before the paper was written, and all four authors
 held different positions going in. Clamage said he thought it repre-
 sents a good compromise.

 Straw Vote: Who favors the proposal in N0665R1 = 95-0065R1? lots yes, 2
 no, 6 abstain.

 Henricson suggested changing the name [XUNEXPECTED] to bad_exception.
 No one objected. See motion 38.

 Lenkov closed the committee of the whole.

The committees recessed at 11:55 on Thursday and reconvened at 16:00 on
Thursday.

6 WG Sessions

7 Distribute formal motions

 26
ˇ
 N0661 = 95-0061

8 General Session II

8.1 Library WG

 Vilot presented revised wording for motions 23 and 41. No one objected
 to the revisions.

 Vilot presented a proposal to specify the library for freestanding
 implementations (N0654 = 95-0054). Several members objected to the
 omission of <cstdarg> from the list of minimum library components.
 Vilot amended the proposal to include <cstdarg>. See motion 42. No one
 objected to the proposal.

 Vilot introduced a proposal to overload the math functions in the
 library. See motion 43. No one objected to the proposal. Unruh noted
 that the proposal makes sqrt(2) ambiguous.

 Vilot introduced a proposal to restore the basic_string getline
 function.

 Straw Vote: Who favors this proposal? lots yes, 1 no, 0 abstain.

 Schwarz presented details of the "Gang of Four" compromise proposal on
 class exception (N0665 = 95-0065). Unruh noted that the proposal does
 not declare a copy constructor for the class. Schwarz said it should.

 Vilot said the proposal doesn't change the placement of names in stan-
 dard headers. Schwarz said the authors did not intend to make any
 changes. Stroustrup said he thought a single exception hierarchy is not
 a good idea, but he'd go along. He also said that bad_unexpected is
 poorly named.

 Vilot said there's still a problem with a declaration for string in a
 header where it doesn't belong. Plum suggested making certain sig-
 natures optional under certain circumstances to cure the problem. Vilot
 said the WG would consider that.

8.2 Core WG

 Lajoie reintroduced the proposal to resolve object initialization
 issues. She explained that the words that went into the final form of
 the resolutions were not what she presented to the committee yesterday.
 She explained the new wording. (See motion 9, which refers to N0675 =
 95-0075.) No one objected to submitting this for a formal vote.

8.3 Extensions WG

 Stroustrup summarized the WG's most recent deliberations. The WG con-
 sidered:
 -- adding typedef templates to C++. The WG decided they would not be
 that useful.

 27
ˇ
 N0661 = 95-0061

 -- allowing the keyword explicit on operator functions. The WG agreed
 it could be done, but wouldn't be all that useful.
 -- allowing initialization of member aggregates. They decided it was a
 rare problem that's easy to work around.

 Stroustrup said the template compilation model is still an open issue.
 Plum requested a technical session on this topic for the next meeting.
 Hartinger said the German delegation is very concerned about the model,
 particularly because of implicit context merging. Others expressed
 interest in a technical session, which Spicer agreed to do.

 Stroustrup said the WG discussed a proposal to allow N::m to refer to
 something that isn't declared in N, but is accessible because of a
 using-directive (N0635 = 95-0035). They made no progress.

8.4 Environments WG

 Nothing.

8.5 C Compatibility WG

 Nothing.

8.6 Formal Syntax WG

 Nothing.

9 WG sessions (if any time left)

 Lenkov closed the committee of the whole.

The committee recessed at 17:30 on Thursday and reconvened at 08:35 on Friday.

10 Review of the meeting

 WG21+X3J16 reviewed the wording of the formal motions in preparation for
 voting.

10.1 Formal motions

 Lenkov counted 38 X3J16 members and 7 WG21 delegations.

 1) Motion (to accept the WP) by Dawes/Rumsby:

 Move we accept N0629 = 95-0029 as the current WP.

 Motion passed X3J16: lots yes, 0 no, 1 abstain.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

 2) Motion (to relax restrictions on overloading) by Adamczyk/Lajoie:

 28
ˇ
 N0661 = 95-0061

 Move we amend the WP as proposed in N0631 = 95-0031, and change the
 first sentence of 13.1 [over.load] paragraph 2 to:

 Certain function declarations cannot be overloaded:

 Motion passed X3J16: lots yes, 1 no.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

 3) Motion (to allow default arguments on operator new and operator())
 by Adamczyk/Lajoie:

 Move we amend the WP as follows:

 -- Delete 8.3.6 [dcl.fct.default] paragraph 9.

 -- Add to the end of 3.7.3.1 [basic.stc.dynamic.allocation] para-
 graph 1:

 Parameters other than the first can have associated default
 arguments (_dcl.fct.default_).

 -- Add to the end of 13.4 [over.oper] paragraph 8:

 , except where explicitly stated below. Operator functions can-
 not have more or fewer parameters than the number required for
 the corresponding operator, as described in the rest of this
 section.

 -- Add after the first sentence of 13.4.4 [over.call] paragraph 1:

 It can have default arguments.

 Motion passed X3J16: lots yes, 0 no.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

 4) Motion (to make conversions of pointer types to bool worse than
 other standard conversions in overload resolution) by Adamczyk/
 Lajoie:

 Move we amend 13.2.3.2 [over.ics.rank] paragraph 4 by adding an
 additional bullet before the first bullet:

 -- A conversion that is not a conversion of a pointer, or pointer
 to member, to bool is better than another conversion that is
 such a conversion.

 Motion passed X3J16: lots yes, 1 no.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

 5) Motion (to add additional subsequence cases in the ordering of
 standard conversions) by Adamczyk/Wilcox:

 29
ˇ
 N0661 = 95-0061

 Move we amend the WP as follows:

 -- In 13.2.3.2 [over.ics.rank] paragraph 4, add additional bullets
 at the end:

 -- Conversion of C to B is better than conversion of C to A.

 -- Conversion of B* to A* is better than conversion of C* to
 A*.

 -- Binding an expression of type B to a reference of type A& is
 better than binding an expression of type C to a reference
 of type A&.

 -- Conversion of B::* to C::* is better than conversion of A::*
 to C::*.

 -- Conversion of B to A is better than conversion of C to A.

 -- Add to the end of the first bullet of the same paragraph:

 , and conversion of A* to void* is better than conversion of B*
 to void*.

 Motion passed X3J16: lots yes, 0 no.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

 6) Motion (to add class name injection and resolve some name lookup
 issues) by Pennello/Adamczyk:

 Move we amend the WP in accordance with the substantive changes
 (indicated in bold face) of N0663R1 = 95-0063R1, with the recom-
 mendation in section 8 of that paper revised to read:

 Add to the WP subclause 12.5 [class.free] after paragraph 10:

 For a virtual destructor (whether user-defined or implementa-
 tion-generated), the deallocation function to be called is
 determined by looking up the name of operator delete in the
 context of the outermost block of that destructor's definition
 (ignoring any names defined in that block). If the result of
 the lookup is ambiguous, inaccessible or not unique, the program
 is ill-formed.

 With the footnote:

 Note that this applies to destructor definitions, not mere dec-
 larations. A similar restriction is not needed for the array
 version of the delete operator because 5.3.5 [expr.delete] re-
 quires the static type to be the same as the dynamic type.

 30
ˇ
 N0661 = 95-0061

 Motion passed X3J16: lots yes, 0 no.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

 7) Motion (to incorporate a memory model compatible with C) by Lajoie/
 Bruns:

 Move we adopt the changes described in N0670 = 95-0070.

 Motion passed X3J16: lots yes, 0 no.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

 8) Motion (to define the interaction of the memory and object models)
 by Lajoie/Bruns:

 Move we adopt the changes proposed in N0673 = 95-0073.

 Motion passed X3J16: lots yes, 2 no.
 Motion passed WG21: 5 yes, 0 no, 1 abstain.

 9) Motion (to resolve core issues of initialization) by Anderson/
 Lajoie:

 Move we adopt the changes from N0675 = 95-0075.

 Winder asked if this consistent with the upcoming motion (motion 27) to
 make throw X the same as throw X()? Anderson said the motions are not,
 and should not be, consistent with each other.

 Motion passed X3J16: lots yes, 4 no.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

 10) Motion (to define behavior of class copy) by Lajoie/Wilkinson:

 Move we adopt the proposed changes from N0671 = 95-0071.

 Motion passed X3J16: lots yes, 0 no.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

 11) Motion (to enable implementations to optimize away copy operations)
 by Lajoie/Wilkinson:

 Move we adopt the resolution proposed in N0641 = 95-0041.

 Bruck said the meaning of the word "use" in the cited paper needs
 editorial clarification. Gibbons said the proposed change isn't needed
 under the execution model's "as if" rule, except for copy operations
 involving the execution of one constructor and one destructor.

 Motion passed X3J16: lots yes, 0 no.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

 31
ˇ
 N0661 = 95-0061

 12) Motion (to integrate non-converting constructors into the library)
 by Myers/Henricson:

 Move we amend the WP as per N0624 = 95-0024, except that:
 -- in clause 23 [lib.containers], do not make bits(unsigned long)
 explicit
 -- in clause 26 [lib.numerics], do not make valarray constructors
 explicit

 Motion passed X3J16: lots yes, 0 no.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

 13) Motion (to close clause 18 [lib.language.support] issues) by
 Henricson/Rumsby:

 Move we amend the WP as follows:
 -- Adopt the proposed resolutions for issues 1, 2 and 4 from N0649
 = 95-0049.
 -- Remove the header <stddef>
 -- In subclause 23.2.1.1 [lib.cons.bits], change the bits con-
 structor to:

 bits(const string& str, size_t pos = 0, size_t n = -1);

 -- Delete subclause 18.1.1 [lib.stddef.values].
 -- Add a subclause to 21.1.1.3 [lib.basic.string] describing the
 template class basic_string member:

 static const size_type npos = -1;

 Motion passed X3J16: lots yes, 0 no.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

 14) Motion (to require that operator new throw exceptions) by Dawes/
 Myers:

 Move we amend the WP as described in N0647 = 95-0047.

 Motion passed X3J16: lots yes, 5 no.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

 15) Motion (to make numerous small STL changes) by Podmolik/Dawes:

 Move we amend clauses 20 [lib.utilities], 23 [lib.containers], 24
 [lib.iterators] and 25 [lib.algorithms] as described in N0614R1 =
 95-0014R1, except that:

 -- In section 1.2 of the paper, change the box in tables 49 and 50
 describing the return type of iterator expressions from:

 iterator type pointing to X::reference

 32
ˇ
 N0661 = 95-0061

 to:

 when operator*() is applied, yields type X::iterator

 -- similarly for const_iterator

 Motion passed X3J16: lots yes, 0 no.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

 16) Motion (to modify auto_ptr) by Dawes/Henricson:

 Move we amend the WP as per N0589R1 = 94-0202R1, page 1, with an
 additional note that:

 The template constructor and template assignment operator modify
 the argument r, even though it is declared as a reference to a
 const auto_ptr.

 Motion passed X3J16: lots yes, 2 no.
 Motion passed WG21: 5 yes, 1 no, 0 abstain.

 17) Motion (to close clause 21 [lib.strings] issues) by Wilhelm/Rumsby:

 Move we amend the WP by adopting the recommendations for the
 following issues from N0616R1 = 95-0016R1:
 -- issue 6: change order of template arguments
 -- issue 9: remove const qualifier on charT argument
 -- issue 10: change const_pointer back to const charT *

 Motion passed X3J16: lots yes, 0 no.

 Motion passed WG21: 6 yes, 0 no, 0 abstain.

 18) Motion (to add an iterator interface to basic_string without remov-
 ing the indexing interface) by Wilhelm/Dawes:

 Move we amend the WP as per N0628R1 = 95-0028R1.

 Steinmuller said this change has consequences for implementations,
 not just for the interface.

 Motion passed X3J16: lots yes, 2 no.
 Motion passed WG21: 4 yes, 1 no, 1 abstain.

 19) Motion (to make minor changes to clause 22 [lib.localization]) by
 Myers/Rumsby:

 Move we amend the WP as per N0601R1 = 94-0214R1 and N0625 = 95-0025,
 with the following changes:

 -- The enumerator values will not be specified, but left to be
 implementation-defined.

 33
ˇ
 N0661 = 95-0061

 Motion passed X3J16: lots yes, 0 no.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

 20) Motion (to make minor changes to clause 23 [lib.containers]) by
 Podmolik/Dawes:

 Move we amend the WP as per the recommendations for the following
 issues from N0613R2 = 95-0013R2:
 -- issue 6:
 -- rename bits member function toggle() to flip()
 -- change "bits" to "bitset"
 -- change the header name from <bits> to <bitset>
 -- issue 7: add vector<bool>::flip()
 -- issue 8: add nested class bitset::reference

 Motion passed X3J16: lots yes, 0 no.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

 21) Motion (to make minor changes to clause 24 [lib.iterators]) by
 Myers/Dawes:

 Move we amend the WP as recommended in N0621 = 95-0021 (relax
 requirements on Iterator++ result) and N0622 = 95-0022 (fix
 streambuf iterator).

 Motion passed X3J16: lots yes, 0 no.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

 22) Motion (to close clause 26 [lib.numerics] issues) by Holly/Myers:

 Move we amend the WP as per N0637 = 95-0037 from the following
 issues:
 -- issue 002: change the definition of operator>> for complex
 -- issue 006: change valarray
 -- issue 008: add/specify numeric_limits specializations in clause
 18

 Motion passed X3J16: lots yes, 0 no.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

 23) Motion (to remove basic_convbuf) by Schwarz/Rumsby:

 Move we amend the WP as per N0664 = 95-0064, sections 2 and 3, with
 the changes described in N0674 = 95-0074.

 Motion passed X3J16: lots yes, 0 no.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

 24) Motion (to close clause 27 issues) by Schwarz/Myers:

 Move we amend the WP as per N0634 = 95-0034 from the following
 issues:

 34
ˇ
 N0661 = 95-0061

 -- issue 004: remove static functions eof() and newline()
 -- issue 011: define stossc() in Annex D (Deprecated)
 -- issue 012: change sputc(int_type) to sputc(char_type) and
 document the intended behavior of sputc(-1)
 -- issue 015: add tellg, seekg, tellp, seekp to streams
 -- issue 016: change operator>>(streambuf&) and
 operator<<(streambuf &) to (streambuf*), and document that
 calling them with a null pointer results in undefined behavior
 -- issue 023: change operator<<(ostream&, void*) to
 operator<<(ostream &, const void*)

 Motion passed X3J16: lots yes, 0 no.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

 25) Motion (to add placement delete semantics) by Corfield/Gibbons:

 Move we amend the WP as described in N0642 = 95-0042.

 Motion passed X3J16: lots yes, 2 no.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

 26) Motion (to clarify the rules for throwing objects whose types have
 private or ambiguous base classes) by Gibbons/Spicer:

 Move we amend the WP as follows:

 -- replace subclause 15.3 [except.handle] paragraph 2 with:

 A handler with type T, const T, T&, or const T& is a match for a
 throw-expression with an object of type E if

 [1] T and E are the same type, or

 [2] T is a public base class of E, or

 [3] T is a pointer type and E is a pointer type that can be
 converted to T by a standard pointer conversion (_conv.ptr_)
 not involving conversions to pointers to private or
 protected base classes.

 -- delete subclause 15.1 [except.throw] paragraph 3.

 Motion passed X3J16: lots yes, 1 no.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

 27) Motion (to allow throw simple-type-specifier) by Koenig/Bruck:

 Move we amend the WP as follows:

 -- add the following after clause 15 [except] paragraph 1:

 35
ˇ
 N0661 = 95-0061

 If throw is followed by a simple-type-specifier, instead of an
 assignment-expression, the implementation creates and throws an
 object of the specified type. If the type is a class with a
 default constructor (_class.ctor_), that constructor will be
 called; otherwise the result is the default value given to a
 static object of the specified type.

 -- in clause A.4 [gram.expr] and clause 15 [except] replace:

 throw-expression:
 throw assignment-expression-opt

 with:

 throw-expression:
 throw assignment-expression-opt
 throw simple-type-specifier

 Bruns said the Core WG spent a lot of time trying to make T distinct
 from T(). He advised against this change.

 Koenig said he mulled this proposal over, and still stands by it.
 Anderson said this creates a necessary inconsistency.

 Shopiro and others suggested this is change is gratuitous.

 Motion failed X3J16: 14 yes, 29 no.
 Motion failed WG21: 0 yes, 4 no, 2 abstain.

 28) Motion (to allow handling of exceptions in mem-initializers) by
 Bruck/Corfield:

 Move that we amend the WP as follows:

 -- replace the grammar in clause 8.4 [dcl.fct.def] and clause A.7
 [gram.dcl.decl]:

 function-definition:
 decl-specifier-seq-opt declarator ctor-initializer-opt
 function-body

 with:

 function-definition:
 decl-specifier-seq-opt declarator ctor-initializer-opt
 function-body
 decl-specifier-seq-opt declarator function-try-block

 -- add a new grammar production in clause 15 [except] and clause
 A.13 [gram.except]:

 36
ˇ
 N0661 = 95-0061

 function-try-block:
 try ctor-initializer-opt function-body handler-seq

 -- add the following paragraph after clause 15 [except] paragraph
 2:

 A function-try-block associates a handler-seq with a constructor
 initializer and the function body. An exception thrown in the
 constructor initializer or the function body transfers control
 to a handler in a function-try-block in the same way as an ex-
 ception thrown in a try-block transfers control to other hand-
 lers.

 -- add the following paragraphs after subclause 15.3
 [except.handler] paragraph 7:

 Referring to any non-static member or base class of the object
 in a handler of a function-try-block of a constructor or de-
 structor for that object results in undefined behavior.

 The fully constructed base classes and members of an object
 shall be destroyed before entering the handler of a function-
 try-block of a constructor or destructor for that object.

 The scope and lifetime of the parameters of a function or con-
 structor extend into the handlers of a function-try-block.

 If the handlers of a function-try-block contain a jump into the
 body of a constructor or destructor, the program is ill-formed.

 If a return statement appears in a handler of a function-try-
 block of a constructor, the program is ill-formed.

 The exception being handled shall be rethrown if control reaches
 the end of a handler of the function-try-block of a constructor
 or destructor. Otherwise, the function shall return when con-
 trol reaches the end of a handler of the function-try-block
 (_stmt.return_).

 Myers said this introduces a new and unnecessary instance of undefined
 behavior (namely, when execution runs off the end of a catch clause).
 Bruck said this is the same as the undefined behavior that existed
 previously.

 Motion passed X3J16: lots yes, 3 no.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

 29) Motion (to clarify the effect of using-declarations on overload
 resolution) by Ball/Gibbons:

 Move we amend the WP by adding the following after 7.3.3
 [namespace.udecl] paragraph 12:

 37
ˇ
 N0661 = 95-0061

 For the purpose of overload resolution, the functions which are

 introduced by a using-declaration into a derived class will be
 treated as though they were members of the derived class. In par-
 ticular, the implicit "this" parameter shall be treated as if it
 were a pointer to the derived class rather than to the base class.
 This has no effect on the type of the function, and in all other
 respects the function remains a member of the base class.

 Motion passed X3J16: lots yes, 1 no.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

 30) Motion (to describe operator lookup in the presence of namespaces)
 by Corfield/Holaday:

 Move we amend the WP by replacing 13.2.1.2 [over.match.oper]
 paragraph 3 with:

 For a fully-qualified type ::N1::...::Nn::C1::...::Cm::T where Ni is
 a namespace name and Ci is a class name, the fully- qualified name-
 space name ::N1::...::Nn is called the "namespace of the type T".
 To lookup X in the "context of the namespace of the type T" means to
 perform the qualified name lookup of ::N1::...::Nn::X
 (_over.call.func_).

 For a unary operator @ and operand e1 of type T1, or binary operator
 @ and operands e1 and e2 of types T1 and T2 respectively, three sets
 of candidate functions (member candidates, non-member candidates and
 built-in candidates) are constructed as follows:

 -- If T1 is a class type, the set of member candidates is the
 result of the qualified lookup of T1::operator@ (_over.call.
 func_); otherwise, the set of member candidates is empty.

 -- The set of non-member candidates is the union of the following
 name lookups:

 -- The unqualified lookup of operator@ in the context of the
 expression according to the usual rules for name lookup
 except that all member functions are ignored.

 -- For each Ti of class type and each of its direct and in-
 direct base class types, operator @ is looked up in the
 context of the namespace of each of those types according to
 the usual rules for name lookup.

 -- For each Ti of enumeration type, operator @ is looked up in
 the context of the namespace of the type according to the
 usual rules for name lookup.

 -- For the binary operator , or the unary operator &, the set of
 built-in candidates is empty. For all other operators, the set
 of built-in candidates includes all of the built-in operators

 38
ˇ
 N0661 = 95-0061

 defined in _over.built_ that, compared to the given operator,

 -- have the same operator name, and

 -- accept the same number of operands, and

 -- accept operand types to which the given operand or operands
 can be converted according to _over.best.ics_.

 Motion passed X3J16: lots yes, 0 no.
 Motion passed WG21: 5 yes, 1 no, 0 abstain.

 31) Motion (to restrict specialization of member types) by Spicer/Ball:

 Move we amend the WP by replacing the first sentence of 14.5
 [temp.spec] paragraph 1 with:

 Except for a type member or template class member of a non-special-
 ized template class, the following can be declared by a declaration
 where the declared name is a template-id: a specialized template
 function, a template class, or a static member of a template; that
 is: ...

 Motion passed X3J16: lots yes, 0 no.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

 32) Motion (to resolve overloading and linkage of template functions) by
 Spicer/Corfield:

 Move we amend the WP by adding the following new section as 14.9.x
 before 14.9.4 [temp.over.spec]:

 Overloading and linkage [temp.over.link]

 It is possible to overload template functions so that specializa-
 tions of two different template functions have the same type. For
 example:

 // file1.c // file2.c
 template<class T> template<class T>
 void f(T*); void f(T);
 void g(int* p) { void h(int* p) {
 f(p); // call f_PT_pi f(p); // call f_T_pi
 } }

 Such specializations are distinct functions and do not violate the
 ODR.

 The signature of a specialization of a template function consists of
 the actual template arguments (whether explicitly specified or de-
 duced) and the signature of the function template.

 39
ˇ
 N0661 = 95-0061

 The signature of a function template consists of its function sig-
 nature and its return type and template parameter list. The names
 of the template parameters are significant only for establishing the
 relationship between the template parameters and the rest of the
 signature.

 Motion passed X3J16: lots yes, 1 no.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

 33) Motion (to clarify overloading of function templates) by
 Gibbons/Spicer:

 Move we amend the WP according to N0668 = 95-0068, section 1.

 Motion passed X3J16: lots yes, 1 no.

 Motion passed WG21: 6 yes, 0 no, 0 abstain.

 34) Motion (to describe partial specialisation of template classes) by
 Gibbons/Spicer:

 Move we amend the WP according to N0668 = 95-0068, section 2.

 Motion passed X3J16: lots yes, 3 no.
 Motion passed WG21: 5 yes, 0 no, 1 abstain.

 35) Motion (to resolve various template issues) by Spicer/Corfield:

 Move we amend the WP according to N0667 = 95-0067.

 Motion passed X3J16: lots yes, 0 no.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

 36) Motion (to allow disambiguation of template names in certain con-
 texts) by Spicer/Gibbons:

 Move we amend the WP as follows:

 -- replace BOX 63 (at the end of 14.9.1 [temp.arg.explicit]) with:

 For a template function name to be explicitly qualified by tem-
 plate arguments, the name must be known to refer to a template.
 When the name appears after . or -> in a postfix-expression, or
 after :: in a qualified-id where the nested-name-specifier de-
 pends on a template argument, the member template name must be
 prefixed by the keyword template. Otherwise the name is assumed
 to name a non- template. For example:

 class X {
 public:
 template<size_t> X* alloc();
 };

 40
ˇ
 N0661 = 95-0061

 void f(X* p)
 {
 X* p1 = p->alloc<200>(); // error < means less than
 X* p2 = p->template alloc<200>(); // < starts explicit
 // qualification
 }

 If a name prefixed by the keyword template in this way is not
 the name of a member template function, the program is ill-
 formed.

 -- in 5.1 [expr.prim] paragraph 7 and A.4 [gram.expr] replace the
 grammar for qualified-id with:

 qualified-id:
 nested-name-specifier template-opt unqualified-id

 -- replace the first clause of 5.1 [expr.prim] paragraph 8 with:

 A nested-name-specifier that names a class (_dcl.type_) followed
 by ::, optionally followed by the keyword template (_temp.arg.
 explicit_), and then followed by the name of a member of either

 that class (_class.mem_) or one of its bases (_class.derived_),
 is a qualified-id;

 -- 5.2 [expr.post] paragraph 1 and A.4 [gram.expr] add the
 following productions to the grammar for postfix- expression:

 postfix-expression . template id-expression
 postfix-expression -> template id-expression

 -- replace the first sentence of 5.2.4 [expr.ref] paragraph 1 with:

 A postfix expression followed by a dot . or an arrow -> , op-
 tionally followed by the keyword template (_temp.arg.explicit_),
 and then followed by an id-expression, is a postfix expression.

 Motion passed X3J16: lots yes, 6 no.
 Motion passed WG21: 4 yes, 0 no, 2 abstain.

 37) Motion (to ban implicit int in C++) by Micco/Plum:

 Move we amend subclause 7.1.5 [dcl.type] paragraph 3 and subclause
 7.1.3 [dcl.typedef] paragraph 1, as described on page 2 of N0633 =
 95-0033.

 Koch said this is the greatest thing we're going to do today.

 Motion passed X3J16: lots yes, 1 no.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

 38) Motion (to decouple class exception) by Schwarz/Clamage:

 41
ˇ
 N0661 = 95-0061

 Move we amend the WP as proposed in N0665R1 = 95-0065R1, and in
 addition, change all uses of the placeholder name XUNEXPECTED to
 bad_exception.

 Motion passed X3J16: lots yes, 1 no.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

 39) Motion (to authorize convener to submit disposition of comments for
 CD registration ballot) by Harbison/Lajoie:

 Move we authorize the WG21 convener to submit document N0669 =
 95-0069 to SC22 as the Disposition of Comments for the CD Regis-
 tration Ballot.

 Motion passed X3J16: lots yes, 0 no, 1 abstain.
 Motion passed WG21: 5 yes, 0 no, 1 abstain.

 40) Motion (to authorize the convener to submit the CD) by Harbison/
 Lajoie:

 Move we authorize the WG21 convener to submit the Working Paper, as
 modified by resolutions at this meeting, to SC22 for registration as
 a Committee Draft and for subsequent CD ballot.

 Motion passed X3J16: lots yes, 2 no, 2 abstain.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

 41) Motion (to note constraints on programs) by Steinmuller/Dawes:

 Move we amend the WP as per N0623 = 95-0023, but instead add the
 following paragraphs to subclause 17.3.3 (Constraints on Programs):

 In certain cases (replacement functions, handler functions, opera-
 tions on types used to instantiate standard library template compo-
 nents), the C++ Standard Library depends on components supplied by a
 C++ program. If these components do not meet their requirements,
 the Standard places no requirements on the implementation.

 In particular, the effects are undefined in the following cases:

 -- for replacement functions (18.4.1), if the replacement function
 does not implement the semantics of the applicable "Required
 behavior" paragraph
 -- for handler functions (18.4.2.2, 18.6.1.1, 18.6.2.2), if the
 installed handler function does not implement the semantics of
 the applicable "Required behavior" paragraph
 -- for types used as template arguments when instantiating a tem-
 plate components, if the operations on the type do not implement
 the semantics of the applicable "Requirements" subclause (20.1,
 23.1, 24.1,

 42
ˇ
 N0661 = 95-0061

 -- if any of these functions or operations throws an exception, un-
 less specifically allowed in the applicable "Required behavior"
 paragraph.

 Myers said this omits a restriction on specializing templates.

 Motion passed X3J16: lots yes, 3 no.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

 42) Motion (to define library for freestanding implementations) by
 Spicer/Becker:

 Move we amend the WP as per N0654 = 95-0054, page 2, adding the
 following line to Table 25:
 Subclause Header(s)
 --------- ---------
 18.7 Other runtime support <cstdarg>

 Motion passed X3J16: lots yes, 0 no.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

 43) Motion (to overload math functions) by Gibbons/Ball:

 Move we amend the WP as per N0666 = 95-0066.

 Motion passed X3J16: lots yes, 0 no.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

 44) Motion (to restore basic_string getline) by Becker/Dawes:

 Move we amend the WP as per N0611 = 95-0011, changing the function
 signature to:

 template<class charT, class IS_traits, class STR_traits,
 class STR_Alloc>
 basic_istream<charT, IS_traits> &

 getline(basic_istream<charT, IS_traits> &is,
 basic_string<charT, STR_traits, STR_Alloc> &str,
 charT delim = IS_traits::newline());

 Motion passed X3J16: lots yes, 2 no.
 Motion passed WG21: 6 yes, 0 no, 0 abstain.

10.2 Review of action items

 Lenkov opened the committee of the whole.

 The WG chairs submitted the following action items.

 Core WG (Lajoie):

 43
ˇ
 N0661 = 95-0061

 -- Lajoie will assist Koenig in incorporating the Core WG resolutions
 into the WP.
 -- Lajoie will investigate the issues regarding the ODR.

 Core WG (Adamczyk):

 -- Eager will write a paper on volatile semantics and volatile copy
 constructors.
 -- Welch will write a paper on implied accessibility.
 -- Gafter will analyze name lookup (no promise of paper).
 -- Gafter will write a paper on defining operators like "|" directly
 for bool.
 -- Micco will write a paper on the requirements on a parameter passed
 to va_start.
 -- Schreiber will write a paper on references in unions.
 -- Adamczyk will reconcile chapters 13 and 14 with respect to over-
 loading and templates, and add examples to chapter 13.

 Extensions WG:

 -- None

 Library WG:

 -- Schwarz will write a paper describing how to do direct wide
 character output to files.

 C Compatibility WG:

 -- Plum will add items to C Compatibility Annex on: copying volatile
 PODs, class declarations that erroneously have a storage class, and
 banning implicit int.

 Other:

 -- Harbison, Plum and Lajoie will segregate the examples and notes from
 the normative text in the draft.

11 Plans for the future

11.1 Next meeting

 Murphy advised that the host(s) for future meetings reserve a block of

 rooms for the weekend prior to the meeting (for those who arrive early).

 Lenkov said that the following people will meet on July 7 and 8 to han-
 dle the US public comments: Stroustrup, Spicer, Gibbons, Adamczyk,
 Pennello, Holaday, Wilcox, Schwarz, Plum, Vilot, Podmolik, Wilhelm,
 Dawes, Becker, Clamage, Scian.

11.2 Mailings

 44
ˇ
 N0661 = 95-0061

 Hartinger announced that, since Email is now widely available, Siemens-
 Nixdorf will not handle any mailings outside Germany after the upcoming
 post-meeting mailing.

 Lajoie offered to send postal mail directly to each head of delegation
 for the pre-Monterey meeting mailing. Harbison said he'd figure out
 what to do about later mailings to WG21.

 Lajoie said she must receive all items for the post-Austin mailing by
 March 24, 1995 and for the pre-Monterey mailing by May 30.

11.3 Following meetings

 Harbison listed the meeting dates for the upcoming meetings:
 -- July 9-14, 1995 in Monterey, CA, hosted by Sun Microsystems
 -- November 5-10, 1995 in Tokyo, Japan
 -- March 10-15, 1996 in Santa Cruz, USA hosted by Borland
 -- July 7-12, 1996 in Stockholm, Sweden, hosted by Ericsson
 -- November 10-15, 1996, Kona, Hawaii, USA hosted by Plum Hall

 Harbison asked how many members were planning to go to Tokyo. He
 counted about 23 X3J16 voting members, and 26 all together.

 Corfield offered to host the July, 1997 meeting in the UK. Harbison
 asked for volunteers to host other 1997 meetings in the USA.

12 National delegation caucuses

13 Adjournment

 The committees thanked Wood and Motorola for hosting the meeting.
 Applause.

 Lenkov closed the committee of the whole.

 Motion by Dawes/Harbison:

 Move we adjourn.

 Motion passed WG21+X3J16: lots yes, 0 no.

The committee adjourned at 10:30 on Friday.

Appendix A - Attendance

Name Affiliation Stat M Tu W Th F

Goldberg, Jody Algorithmics P A A A A A
Motamedrasa, Saeed AMD P V V V V V

Podmolik, Larry Andersen Consulting P V V V V V
Wilhelm, Richard Andersen Consulting A A A A A A

 45
ˇ
 N0661 = 95-0061

Winder, Wayne Asymetrix P V V V V V
Koenig, Andrew AT&T Bell Labs A V V V V V
Stroustrup, Bjarne AT&T Bell Labs A A A A A A
Becker, Pete Borland P V V V V V
Swan, Randall C-Team P V V V V V
Burleson, Kate Centerline Software A V V V V V
Holly, Mike Cray Research P V V V V V
Druker, Samuel Cygnus Support A V V V V
Yurkovsky, Victor Data In Formation P A A A A
Schwarz, Jerry Declarative Systems P V V V V V
Kimmel, Cathy Digital Equipment O A A A A A
Meyers, Randy Digital Equipment P V V V V V
Bruck, Dag Dynasim AB P V V V V V
Andrews, Graham Edinburgh Port. Compilers P A A A A A
Adamczyk, Steve Edison Design Group P V V V V V
Anderson, Mike Edison Design Group A A A A A A
Spicer, John Edison Design Group S A A A A A
Henricson, Mats Ellemtel P V V V V V
Coha, Joseph Hewlett-Packard A V V V V V
Lenkov, Dmitry Hewlett-Packard P A A A A A
Lajoie, Josee IBM P V V V V V
Murphy, Michael IBM A A A A A A
Colvin, Greg IMR P V V V V V
Roskind, Jim Info Seek P V V V V V
Auld, Will Intel A V V V
Andersson, Per Ipso Object Software P V V V V V
Stuessel, Marc IST GmBH P V V V V V
Ichiro Koshida Japan P A A A A A
Tsutomu Kamimura Japan P V V V V
Munch, Max Lex Hack & Associates O A A A A A
Dum, Stephen Mentor Graphics P V V V V V
Shopiro, Jonathan Merrill Lynch P V V V V V
Pennello, Tom MetaWare P V V V V V
Marcotty, Michael Metrowerks A A A A A
Caves, Jonathan Microsoft A A A A A A
Schreiber, Ben Microsoft P V V V V V
Eager, Michael Microtec Research A V V V V V
Saini, Atul Modena Software P V V V
Bruns, John Nations Banc-CRT P V V V V V
Vilot, Mike Object Craft P V V V V
Benito, John Perennial P V V V V V
Plum, Tom Plum Hall P V V V V V
Corfield, Sean Programming Research P V V V V V
D'Antonio, Larry Ramapo College P A A A A A
Wilcox, Thomas R. Rational P V V V V V
Eckel, Bruce Revolution2 P V V V
Guilmette, Ron RG Consulting P V V V V
Hinke, John Rogue Wave Software A A A A A A
Myers, Nathan Rogue Wave Software P V V V V V
Saks, Dan Saks & Associates P V V V V V
Koch, Gavin SAS Institute P V V V V V
Tooke, Simon SCO Canada P V V V V V

 46
ˇ
 N0661 = 95-0061

Hartinger, Roland Siemens Nixdorf P V V V V V
Langer, Angelika Siemens Nixdorf A A A A A A
Steinmuller, Uwe Siemens Nixdorf A A A A A A
Unruh, Erwin Siemens Nixdorf O A A A A A
Mehta, Michey Silicon Graphics A A A A
Wilkinson, John Silicon Graphics P V V V V V
Ball, Mike Sun Microsystems A V V V V V
Clamage, Steve Sun Microsystems A A A A A A
Gafter, Neal Sun Microsystems A A A A A
Landauer, Doug Sun Microsystems P A A A A A
Micco, John Symantec P V V V V V
Gibbons, Bill Taligent P V V V V V
Yinsun Feng Taligent O A A A A A
Harbison, Sam Tartan P V V V V V
Sullivan, Larry TechVisions P A A A A A
Tydeman, Fred Tydeman Consulting O A A A A A
Rumsby, Steve UK P V V V V V
Bixler, Don Unisys A V V V V V
Mollitor, Robert Visix Software A V V V V V
Scian, Anthony Watcom P V V V V V
Welch, Jim Watcom A A A A A A
Plauger, P. J. WG14 O A A A A
Crowfoot, Norm Xerox P A A A A A
Dawes, Beman P V V V V V
Holaday, Thomas P V V V V V

Total Attendance 79 80 80 77 68
Total Votes 52 52 52 49 45

 47

