
JTC1/SC22/WG14 N946 May 31, 2001

1

C Support for Multiple Address Spaces in
Embedded Systems

Walter Banks
Byte Craft Limited

421 King Street North
Waterloo, Ontario N2J 4E4

Voice : (519) 888 6911
Fax : (519) 746 6751

Email : walter@bytecraft.com

Introduction

The small-scale embedded systems implemented in a high-level language (most
often a C dialect) are now being regularly employed in watches, microwave ovens,
bathroom scales, children’s toys, personal organizers, TV remote controls, and
automotive applications. Embedded small-scale products have become very complex.
Code quality from many compilers rivals that from the best hand coded assembly
language. In other words, we as an industry can benefit from standardized features.

The traditional view of low-cost embedded microcomputers is that they have
many different types of non-standard I/O hardware. By volume, 50% of embedded
microcomputers are sold to volume manufacturers for less than $1 US. A study we did
found remarkably few variations in function, only in silicon implementations. Features of
embedded processors are so similar that as many as 90% of all low-end embedded system
applications could be implemented on at least one member of the leading dozen or so
microcomputers.

Applications that are developed for low-cost embedded systems are not
particularly sensitive to development cost. Applications themselves are innovative and
unique. The incentives for standardization are: time to market, reliable reusable code,
product reliability and product liability. Standardization focuses the attention of the third-
party software vendors to develop portable applications and libraries.

The typical small-scale embedded system is designed to be manufactured in large
quantities, making production cost, reliability, code and system resource utilization
important. The small-scale embedded system has between 0.5 and 256k of ROM, 32 to
32K bytes of RAM, often with a fast RAM component of up to 256 bytes. I/O is typically
implemented in its own address space, or mapped on ROM or RAM address space. The

JTC1/SC22/WG14 N946 May 31, 2001

2

basic address spaces of most microcontrollers can be extended by using one of the serial
bus protocols (I2C, Microwire, SPI, USB, or CAN busses). It is worthy to note that in all
of the embedded microcontrollers, there exist multiple address spaces that do not directly
map in any single linear address map.

It is not a unique problem to use a C compiler to support application code on a
processor where it is desirable to implement more than one size of pointer. The traditional
implementation of this type of problem is to distinguish between different pointer types
with tags (most commonly near and far). Pointer size is tied to the tag, allowing
application performance to be enhanced. References to near pointers carry with them
implied address space information. Typically, pointers without tags are far pointers that
can reach all of the address space.

A case for named address space.
Current practice for small-scale embedded systems is to create a large virtual

address space, and map the actual processor on this space. This has been an ad hoc
process whose functionally is similar (but implementation varies) between compiler
vendors.

Reviewing for a moment the issues: small-scale embedded systems have multiple
address spaces, often specifically related to the application. Traditional C compilers
recognize that pointers may be either general or in some way context-specific.
Unqualified pointers have application-wide scope. Extending this approach to small-
scale embedded systems, we can create a virtual linear address space across the whole
system, where each segment corresponds to a single memory area.

Segment Local to Segment

Figure 1. Virtual address space created out of segments

A practical embedded system is likely to have multiple segments, organized along
both logical and physical divisions.

ROM ROM segment
FRAM Fast Ram
RAM RAM
IOspace I/OSpace
XMEM External Memory

Figure 2. Typical address spaces in small scale embedded system

JTC1/SC22/WG14 N946 May 31, 2001

3

Pointer declarations using named address space conventions can be declared by
tying the segment name to the pointer, as the following example shows. Unnamed
pointers are far and can be used to access any memory location.

int * FRAM ptr; // Pointer to int in fast RAM
char * cptr; // Global pointer to char

Application developers can use named address space to control the memory area that
variables can be allocated to. This feature of named address space is a particularly useful
tool to group variables. The embedded systems application developer is given the
freedom to choose the organization of the software.

char xmem ch; // char placed in external memory
int dsp_x x[32]; // array of int’s in DSP x memory

Named address space on execution space.
Traditional small embedded systems stored application executables in ROM,

organized as a linear address space. The last ten years have seen slow changes that have
eroded this simple linear address concept. It is useful to see how this has happened
historically, and to try to predict the likely path that execution space is taking.

Initially, the application code was contained in a linear address space that could be
completely addressed by the processor’s program counter. Application system
architecture generally separated the execution unit from the memory, resulting in
consistent ROM access time. At this point, the path diverges into two supported
architectures:

a) Single chip processors were developed, with ROM on board covering part of
the allowable address space, and with provision for optional external ROM
space.

b) Other processors had some form of memory management system grafted on
the basic processor to accommodate applications that would no longer fit
within the available address space. There are small differences in
implementation; some processors allow direct switching from page to page,
while others must switch by executing code from a common ROM area. From
a language perspective, the switching mechanism is masked in the compiler
implementation.

Many of the current small embedded systems have some component of executable
space implemented in flash memory. Developers are seeing the advantage of using flash
for field and feature upgrade capability for their products. Flash memory is also being
used to maintain calibration information, as well as code storage.

JTC1/SC22/WG14 N946 May 31, 2001

4

Memory management in embedded systems is currently receiving a lot of
attention, because it is one of the largest identifiable sources of application overhead (Our
studies are showing that as much as 25% of the execution cycles in some systems are
RAM and ROM memory management-related). It is a concern to some chip designers that
flash memory access times are slower than the fastest RAM available. Some systems are
being proposed and implemented that first load an execution RAM from flash on power-
up, to improve system execution performance. The clear next step is to load an
application from flash that is configured to support the specific requirements, and, if
possible, avoid some of the ROM memory management overhead. This approach is being
extended even further by having multiple processing units, each loaded with a part of the
application code. Execution is still “one processor execution at a time” (common data
RAM), but ROM memory management is reduced to calls between processors.

The apparent path is:
• single ROM only
• ROMs of differing access characteristics
• ROM memory management
• Flash first as storage media, then as update media, for either the entire

application or selective parts
• Flash being loaded into execution RAM
• Flash being used as mass storage
• Single path execution on multiple processors

The future, I believe, will involve multiple path execution on multiple processors (which
is part of some of the current engineering planning), and the use of flash as mass storage
(like a file system on conventional processors but with characteristics more like the paged
ROM in earlier embedded systems). Taking this path only slightly further into the 3- to 5-
year range will see applications that, with functions running on multiple processors
(perhaps distributed), are executing code from a single application source.

There still remain several language issues.
1) Pointer functions for a particular architecture have no need to access space beyond

the normal natural address space of the underlying processor.
2) There may be some advantage to placing some functions in a specific address

space. Execution speed differences for processors with internal and external
memory implementation is one reason. The argument that this can be well handled
by the linking phase of development is starting to change. The application needs
to be part of the function placement. It is reasonable to expect that a function will
reside in some address space that may not be part of the current processor’s
natural address space; how this call is achieved is implementation-specific. The
application developer sees only that a function call is needed, and may, in some
cases, need to control what memory space the function resides in.

JTC1/SC22/WG14 N946 May 31, 2001

5

Some final comments
It is important in this discussion to distinguish the difference between a

implementation problem (arrays used in DSP-based filter software), and the capability of
the language to support the needs of a broad base of users of the C language. Great care
should be taken to not imply any specific implementation into C language definition.
Adding named address space take nothing away from the current definition of the
language. It adds support for the multiple address spaces that are a current reality, and it is
flexible enough to support future embedded system architectures as they are developed.

