
JTC1/SC22/WG14 N924 September 19, 2000 1 of 11

C language support for small scale embedded systems

JTC1/SC22/WG14 N924

Walter Banks
Byte Craft Limited

421 King Street North
Waterloo, Ontario N2J 4E4

Voice : (519) 888 6911
Fax : (519) 746 6751

Email : walter@bytecraft.com

1. Introduction:
These comments reflect the needs of small scale embedded developers. The

effective expression of an application in a high level language requires appropriate
vocabulary and syntax, and language that grows with the industry that embraces it.

Our industry is growing up from the cottage industry to a multi-billion dollar
industry. Software is an industry of individuals implementing everything in an individual
way. We are now using high level languages to implement applications small scale
embedded systems.

Small scale embedded systems are currently supported by many C compiler
vendors each offering their variation on the C language loosely based on various
ISO/ANSI C language standards. None of these C language development tools come close
to any specific recognized standard. Most of the C compiler vendors would like a standard
to benchmark their products against, and their customers would like standard features
implemented in a standard way. The existing standards fail to provide reasonable working
definitions of the C language that can be effectively implemented on the target processors
used by small scale embedded systems. The C compiler vendors for small scale embedded
systems have each added new features to the language and structured their implementation
around the needs of their customers and the constraints of the runtime environment. The
lack of high-level language standards has resulted in babble speak and inefficient
application implementation.

C standards for embedded systems are needed to meet the communication needs
between the application developer and the application. The C language has the dual
purpose of providing an abstract description of the target environments and as a portable

JTC1/SC22/WG14 N924 September 19, 2000 2 of 11

description of an algorithm that can be moved from application to application and
processor to processor.

We have tended to believe that small low cost embedded systems are one-of-a-
kind applications while failing to recognize that as many as 90% of all low end embedded
system applications could be implemented on at least one member of the leading dozen of
so microcomputers. The small scale embedded systems implemented in a high level
language (most often a C dialect) are now being regularly employed in watches,
microwave ovens, bathroom scales, children’s toys, personal organizers, TV remote
controls, and automotive applications. Embedded small-scale products have become very
complex. Code quality from many compilers rivals that from the best hand coded assembly
language. In other words, we as an industry can benefit from standardized features.

The traditional view of low-cost embedded microcomputers is that they have many
different types of non-standard I/O hardware. By volume, as many as 50% of the
embedded microcomputers are sold to the volume manufactures for less than $1 US. The
view of application developers was that each vendor offered a particular innovative
solution to embedded systems. Part of the application development process has been to
match the facility offered by the silicon vendor to requirements of the application. Of
course this has to some extent been true, however competitive pressures over the last
twenty years have created a feature similarity between many competitive offerings.

Applications that are developed for low cost embedded systems are not
particularly sensitive to development cost. Applications themselves are innovative and
unique. So what is the incentive for standardization. Time to market, reliable reusable
code, product reliability and product liability. Standardization will focus the attention of
the third party software vendors to develop portable applications and libraries. Twenty-
five years has brought many similarities between most of the popular processors. A study
we did found remarkably few variations in function, only in silicon implementations

The major high level language problem in small scale micro-controllers are the
need for low level library routines, the standard description of multiple memory spaces in
applications, and a consistent, portable method of accessing differing numerical
representations.

2. Rationale
Any standard that will be widely accepted and used for code generation on small-
embedded system processors will need to address the following issues.

2.1 Diverse memory support.
Embedded systems have many different forms of memory, and the languages that
support them need to be flexible enough to address memory related issues like the
following.

2.1.1 Multiple address space support.

The C register address space modifier recognizes that all memory is not the
same and the programmer has the option specifying that some variables can

JTC1/SC22/WG14 N924 September 19, 2000 3 of 11

be assigned to one or another memory form. All embedded systems support
multiple address spaces (even the Motorola 6805/6808/6811 and the
6502). This is not the traditional Von Neuman vs. Harvard architecture
argument but also includes issues of first page access Vs all of RAM space
and multiple non contiguous memory area’s, I/O address space. There are
processors that have separate RAM and ROM address space that in some
configurations can directly access ROM including writing to it.

2.1.2 Device driver based memory support.

Many embedded systems include memory that can only be accessed with
some form of device drivers. For example, serial data busses including I2C,
SPI, and on board flash memory in processors used as a form of non-
volatile memory. Device driver memory support is needed in any
application where the details of the access method needs to separated from
the details of the application.

Device driver based memory support allows applications to utilize symbol
table handling and allocation management features of a compiler. It has
been found that the compiler optimizer is easily capable of making calls to
the appropriate device drivers whenever a reference is made that requires
calls to the user supplied device drivers. The compiler implementation
issues are similar to processors requiring memory management support for
data access. There is an argument that device driver based memory support
could be handled under C++. At this time there is very little movement for
small scale embedded systems to be implemented using C++.

2.1.3 I/O device definition.

I/O registers are a unique special form of memory accessed directly with
specialized instructions or are mapped on one of the memory areas. Most
processors consistently address I/O registers with only minor variations
between different parts. The compiler needs information to understand I/O
register variations and the data structure and address of each I/O device.
Access methods include read/write, read only, write only and read modify
write. Operations on I/O devices are part architecture of the processor and
within a processor family can be safely be encapsulated within the compiler.

2.2 A rich selection data types and math support.

Embedded developers want rich resources when they express themselves through
applications. Developers see the need for processor-based support where the int
of one processor fits the needs of the processor but may not be the same size or
characteristic as the int from another processor.

JTC1/SC22/WG14 N924 September 19, 2000 4 of 11

Developers also want to declare variables of a specific size, independent of the
platform on which they are to be implemented. This supports two forms of
portability that dominates the embedded system world. Algorithms that are
ported between applications may have some data specific requirements and data
structures transmitted between separate embedded system applications require
very specific data sizes in order to maintain compatibility.

2.3 Embedded standard input output libraries.

ISO/ANSI C standard libraries were developed primarily for much larger systems
either hosted applications or large, low volume embedded systems. These
libraries accomplished a lot for making the developed code very portable.
Development systems and application developers became more productive. Code
for critical and often difficult I/O functions is now stable, reusable, and well
understood.

Standardized embedded system libraries are needed to support the common I/O
devices relevant to embedded applications. The goal is to define an embedded
stdio that provides common calling conventions for parallel ports, serial
communication, serial bus support, watchdog and timer management. The
emphasis is on portability between target platforms.

3 Implementation details
3.1 Diverse memory support

3.1.1 Multiple address space support.
The traditional C approach to multiple address spaces is handled with
modifiers. C provides for the register modifier. Most of the compiler
vendors have extended this concept to provide support for additional
memory address spaces as dictated by the target environment.

It may be reasonable to allow compiler-specific modifiers to be used and
the actual placement of data in the multiple address space environments to
be resolved by the linker. The format of the allowable address space
modifiers should be such as to reduce or eliminate variable naming
conflicts. One possibility is to incorporate a fixed prefix for example
_memory into the modifier name. The special function register space found
on many processors might then be referenced as _memory_sfr.

The biggest C implication of multiple address space support is mapping
pointers to each of the address spaces. The pointer problem can be briefly
described as how is,”memory de-referenced when pointers are passed in an
application with multiple address spaces?”

3.1.2 Device driver memory support.

JTC1/SC22/WG14 N924 September 19, 2000 5 of 11

Many small-scale embedded systems applications include the use of
memory that can only be accessed with some form of device drivers. For
example, serial data busses including I2C, SPI, and on board flash memory
in processors used as a form of non-volatile memory.

Extending the multiple address space modifier system just described for use
with user defined memory requires a formal link in the compiler to be
established between the variable allocated in the address space and drivers
that can read and write that data. In a test implementation, data allocated in
_memory_my_mem assumed that functions would exist to resolve calls to
char memorymy_mem_r(address)

and
void memory_my_mem_w (address,data)

These functions were called directly as part of the code generation of the
compiler. The function names were constructed from the symbol table
information for the variable. The linker resolves the calls to the user
supplied function definitions.

3.1.3 Input/Output device definition.
I/O registers are a unique special form of memory accessed directly with
specialized instructions or mapped on one of the memory areas. Most small
scale embedded systems processors address Input / Output registers in the
same manner with only minor variations between different parts. The
information that the compiler needs to understand these variations and the
data structure and address of each I/O device is:

3.1.3.1 Permitted access methods: read/write, read only, write only and
read/modify/write. These definitions should be encapsulated within a
modifier and used by the compiler for usage consistency checking.

3.1.3.2 Physical address. Many of the current embedded C compiler vendors
have adopted the @ operator to define a physical address rather than a
pointer to a constant. Both forms could be used however it has been found
that the @ operator is easier to understand.

It is important to note that, in architectures with banked memory spaces, that
one physical port may appear at several different addresses. The syntax
used for port definitions should reflect this.

3.1.3.3 Port data structure. Many small-scale embedded systems hardware
ports include a data structure with several packed data fields. The
current C support for structures and will serve to define the individual
fields within a port.

JTC1/SC22/WG14 N924 September 19, 2000 6 of 11

Operations on I/O devices are part of the architecture of the processor and
within a processor family can be safely be encapsulated within the compiler.

Some examples of port declarations.

The following declaration of a port with read and write permissions located at
address 0x90 of the _memory_sfr address space.

 _memory_portrw char port1 @ _memory_sfr 0x90;

The status register of a serial port may, for example, be defined as the following
structure. Bits may be individually accessed at a very low level directly from C. It
should also be noted that the port in this case is declared as read-only. Writes to
any of the referenced bits should produce compiler warnings.

 _memory_portr struct
{
 int tdre : 1;
 int tcie : 1;
 int rie : 1;
 int ilie : 1;
 int te : 1;
 int re : 1;
 int dummy : 2;
 }
sccr2 @ 0x000F;

Data fields may also be accommodated as the following declaration shows. This is
also a case of read/write access. The dummy variables are placeholders in the
blank fields. In both of these examples the port has been mapped on the normal
address space.

 _memory_portrw struct
{
 int dummy1 : 2;
 int scp : 2;
 int dummy2 : 1;
 int scr : 3;
 }
baud @ 0x000D;

3.2 A rich selection data types and math support.

The C language needs to address two data typing needs:

JTC1/SC22/WG14 N924 September 19, 2000 7 of 11

1. The common data types that are target implementation specific where int’s
are the natural size of the processor or 16 bits and the remainder of the
standard data names reflect the underlying architecture of the target
environment. These data types are handled with the current char, int, long
and double combinations.

2. A clean method of the application to specify specific data types. Portability is
usually cited but is certainly not the only valid reason to specify a specific
data type for a variable.

The needs of small scale embedded systems requires the following data types

3.2.1 Integer support for 8*2^n types of standard 8,16,32,64 ... bit data.
3.2.2 Integer support for data sizes that are not 8*2^n (for example 24 bits which

are the more rational choice for many embedded applications)
3.2.3 Definition in a standard way for data types of a specific size. (stdint..h)
3.2.4 Support for fixed point data types in addition to int and float types. There

has been a lot of formal justification in two of the earlier papers. The
widely circulated N854 DSP-C paper describes, fixed point requirements
from a DSP perspective in a lot of detail. Willem Wakker has refined this
paper in N907, and taken a position on fixed point with which I largely
agree.
Fixed-point data types should be defined as a combination of integer and
fraction part for example fixed16_8_t where the integer part is 16bits and
the fraction is 8 bits. This is a superset of the N854 description and
requirements of fixed-point data types.

3.2.5 Support for the saturated modifier. Section 2.3 of the N907 paper makes a
case for a saturation modifier. I agree with Mr. Wakker’s comments on this
point. The saturation modifier says that a variable declared with the
saturation modifier in arithmetic operations will saturate at maximum
positive or negative values rather than wrap as a result of math operations.

3.3 Embedded standard input / output libraries.

The standard C libraries fail to address the needs of small scale embedded
systems. In a survey of most of the available processors a remarkable amount of
similarity between the offerings of each of the embedded 8-bit processor families.
Together these processor families have in excess of 95% of the market in both
application designs and production volume.

Library calling sequences are based on the ability of a library function to be
implemented on a broad spectrum of common embedded systems. The library
calls themselves should be application oriented and not hardware implementation
specific. A Digital to Analog output should be transparent to the application

JTC1/SC22/WG14 N924 September 19, 2000 8 of 11

developer, whether it is implemented with a D to A converter on a parallel port
or implemented with a PWM. Efficient compilers will compensate for potential
losses from standardized calling sequences in standardized libraries. There are a
number of ways that compilers in the next decade will be able to compensate for
standardized libraries. The tradeoffs are comparing specialized functions or inline
code with the overhead for standardization libraries. I have taken a fair amount
of space in this paper to describe both a measurement and a methodology that
will allow code developed around embedded system libraries to be effective in an
application.

The following library function definitions illustrate some of the potential
candidates for inclusion into a standard embedded system library.

3.3.1 Parallel Ports
Port support is perhaps the simplest of the I/O support for embedded
systems. The major complicating factor for port support is initialization of
the data direction control registers. On some processors this requires a one
and others a control bit of zero. Our proposal is a common call for
initialization of the port for output. This call will assume that the port is
otherwise configured for inputs.

void initPORTwrite(port,output);
Initialize the port for outputs. A one means the corresponding bit is an
output. The call assumes that the remaining bits are always inputs.

void writePORT(port,data); // Write a byte to an output port.
char readPORT(port); // Read a byte from a port.

Although reads and writes to a port may be achieved through function
calls, it is more likely that these calls are realized with inline code generated
by the compiler. Port accesses within a processor family have been found
to be consistent and it is reasonable to establish access validation and
restrictions within the code generator of the compiler.

3.3.2 SERIAL I/0
The serial port I/O library is perhaps more complicated that it needs to be.
It allows for support for both synchronous and asynchronous serial ports.
There is support for more than one serial port as well. The library design is
organized to interface to the ANSI C library functions putc and getc
through simple macro calls. The serial ports may be implemented either
through serial port hardware or through software-implemented UART’s.

void initSerialPort(port,sync/async,baudrate,databits,parity,stopbits)
void _putc(port,ch);
char _getc(port);

JTC1/SC22/WG14 N924 September 19, 2000 9 of 11

3.3.3 MICROWIRE I2C SPI
This family of I/O support buses can provide a wide variety of I/O support
facilities ranging from inter-processor communications to interfaces with
external serial and parallel ports, RAM, ROM, EEPROM, A/D and D/A
devices.

void initSPI(port,config);
char rwSPI(port,data);
char readSPI(port);
void writeSPI(port,data);

3.3.4 Analog to Digital
Embedded microcomputers have between one and eight analog input
channels, with current resolution between 8 and 16 bits. Most of the A to
D converters need some form of general setup. Typical setups select a
reference source and sometimes resolution and conversion time parameters.
In looking at a lot of application code this is never changed over the course
of code execution in an application. The two supporting calls follow. The
initialization is a single call loading configuration information. The
readAtoD call will read the A to D value on a specific channel.

void initAtoD(void);
int readAtoD(channel);

3.3.5 Digital to Analog
Very few embedded systems have a D to A converter built into the into
them. In some applications, Pulse Width Modulation (PWM) ports are used
to generate an analog output voltage. These library calls are
implementation independent and can be used effectively even when support
for the PWM also is being used. The support calls for the D to A follows.

void DtoA(void);
void writeDtoA(analogvalue);

3.3.6 Pulse Width Modulation
Pulse Width Modulation (PWM) ports are very flexible output ports that
can generate levels, sophisticated pulse trains, and with the addition of a
simple low pass filter they can generate analog outputs. The number of
PWM channels varies among 2 and 16, and the resolution of the generated
pulse stream is among 6 and 14 bits.

void initPWM(port);
void PWM(port,frequency,dutycycle);

JTC1/SC22/WG14 N924 September 19, 2000 10 of 11

3.3.7 Delays
Library routines that will impliment a delay in real time for the application.
The standard delay times are in seconds, milliseconds or microseconds. The
implimentation can use hardware timer registers or software delay loops.
The user interface is:

void delay(time_seconds);
void delay_ms(time_milliseconds);
void delay_us(time_microseconds);

3.3.8 Watchdog Timers
Watch dog timers are used by embedded systems as a check against
runaway execution of code. The hardware implementation of watchdog
timers varies considerably between different processors. In general, Watch
Dog Timers must be turned on once, often within the first few cycles after
reset, and then reset periodically within the software. Some of the
watchdog timers have the ability to be programmed for different time-out
delays. The reset sequence is sometimes as simple as a specialized
instruction or as complex as sending a sequence of bytes to a port.
Watchdog timers either reset the processor of execute an interrupt when
they time out.

The following are the proposed library functions supporting watchdog
timers.

void initWD(timoutdelay);

Watchdog timer initialization call. “timeoutdelay” is maximum time
between clearing the watchdog timer.

void clearWDT0(void);
void clearWDT1(void);
void clearWDT(void);

This call will clear the watchdog timer. Some processors support a
sequence that needs to be called in sequence to clear the watchdogtimer.
The first call is clearWDT0 followed by clearWDT1. The call clearWDT
will clear the watch dog timer it will generate the complete sequence if
necessary to clear the watchdog timer.

4 Conclusions

What will these changes to the non-hosted C standards achieve? It will bring a
consistency over time for the code creation products for small scale embedded systems.

JTC1/SC22/WG14 N924 September 19, 2000 11 of 11

The incentive to adopt and support the standards will be high if the standards support the
requirements of this part of the industry. Increasingly, it will provide even more portability
between widely different target micros. The role of the chip vendor will be to supply
silicon in an ever-increasing competitive marketplace. This will reduce company loyalty. It
will also provide an incentive for the third party software vendors to provide compatible
cross platform tools.

There are benefits for software reliability in using standardized libraries. The first
benefit is dramatically improved system reliability, stemming from a well-defined user
interface; this reduces the number of series terms in the reliability equations. Secondly
reduced development cost through the use of well developed and (I assume) well-
debugged standardized modules.

Standardized calling sequences will improve the overall reliability of application
code. Reusable code reduces application development time, minimizes debugging,
improves product reliability thereby reducing potential liability suits.

Acknowledgments
Andre Labelle and Sherif Abdel-Kader implemented the embedded systems libraries on the

Microchip PIC, Motorola C6808, Scenix SX, National COP8, 8051, and Cypress USB M8 series. Bruno
Bratti was responsible for surveying the available I/O facilities on most of the popular microcomputer
products. The work of these people at Byte Craft contributed to much of the material presented here.

I would also like to thank Jan Kristoffersen for his comments on a draft of this paper.

