
ISO/IEC JTC1/SC22 WG14/N854

DSP-C
An extension to ISO/IEC IS 9899:1990

ACE Associated Compiler Experts bv

Release: 9.9
Date: October 7, 1998
Status: release
Con�dentiality: public
Reference: CoSy-8025P-dsp-c

Copyright notice: cCopyright 1998 by ACE Associated Compiler Experts bv

All rights reserved. This document is submitted to ISO/IEC JTC1/SC22 WG14 as background material for possible
new functionality that could be included in the C9X standard. In this context, and for this purpose, this document
may freely be copied, assuming that this original copyright notice is not removed. Otherwise, no part of this document
may be photocopied, reproduced or translated in any way, without prior written consent of ACE Associated Compiler
Experts bv.

The information contained in this document is subject to change without notice.

Printed in The Netherlands.

WG14/N854 CONTENTS

Contents

1 Introduction 5

1.1 Purpose . 5
1.2 Scope . 5

1.3 Organization of the document . 5
1.4 Standardization . 6
1.5 Acknowledgements . 6

2 Normative references 6

3 De�nitions and conventions 6

4 Compliance 6

5 Environment 7

5.1 Conceptual models . 7
5.1.1 Translation environment . 7

5.1.2 Execution environments . 7
5.2 Environmental considerations . 7

5.2.1 Character sets . 7
5.2.2 Character display semantics . 8
5.2.3 Signals and interrupts . 8

5.2.4 Environmental limits . 8

6 Language 12

6.1 Lexical elements . 12
6.1.1 Keywords . 12
6.1.2 Identi�ers . 12

6.1.3 Constants . 14
6.1.4 String literals . 15
6.1.5 Operators . 15

6.1.6 Punctuators . 15
6.1.7 Header names . 15
6.1.8 Preprocessing numbers . 15

6.1.9 Comments . 16
6.2 Conversions . 16

6.2.1 Arithmetic operands . 16
6.2.2 Other operands . 20

6.3 Expressions . 22

6.3.1 Primary expressions . 22
6.3.2 Post�x operators . 22
6.3.3 Unary operators . 23

6.3.4 Cast operators . 24
6.3.5 Multiplicative operators . 24

2 CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998

CONTENTS WG14/N854

6.3.6 Additive operators . 24
6.3.7 Bitwise shift operators . 25
6.3.8 Relational operators . 25
6.3.9 Equality operators . 25
6.3.10 Bitwise AND operator . 25
6.3.11 Bitwise exclusive OR operator . 25
6.3.12 Bitwise inclusive OR operator . 25
6.3.13 Logical AND operator . 25
6.3.14 Logical OR operator . 25
6.3.15 Conditional operator . 25
6.3.16 Assignment operators . 25
6.3.17 Comma operator . 26

6.4 Constant expressions . 26
6.5 Declarations . 26

6.5.1 Storage-class speci�ers . 26
6.5.2 Type speci�ers . 27
6.5.3 Type quali�ers . 27
6.5.4 Declarators . 29
6.5.5 Type names . 30
6.5.6 Type de�nitions . 30
6.5.7 Initialization . 30

6.6 Statements . 30
6.6.1 Labeled statements . 30
6.6.2 Compound statement, or block . 31
6.6.3 Expression and null statements . 31
6.6.4 Selection statements . 31
6.6.5 Iteration statements . 31
6.6.6 Jump statements . 31

6.7 External de�nitions . 32
6.7.1 Function de�nitions . 32
6.7.2 External object de�nitions . 32

6.8 Preprocessing directives . 32
6.8.1 Conditional inclusion . 32
6.8.2 Source �le inclusion . 32
6.8.3 Macro replacement . 32
6.8.4 Line control . 33
6.8.5 Error directive . 33
6.8.6 Pragma directive . 33
6.8.7 Null directive . 33
6.8.8 Prede�ned macro names . 33

6.9 Future language directions . 33
6.9.1 External names . 33
6.9.2 Character escape sequences . 33
6.9.3 Storage-class speci�ers . 33

CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998 3

WG14/N854 CONTENTS

6.9.4 Function declarators . 34
6.9.5 Function de�nitions . 34
6.9.6 Array parameters . 34

6.10 Future language extensions . 34
6.10.1 Positional storage quali�ers . 34
6.10.2 Register storage quali�ers . 34
6.10.3 Storage on known address . 34
6.10.4 Complex types . 34
6.10.5 �xedpoint types . 34

7 Library 36

7.1 Introduction . 36
7.1.1 De�nitions of terms . 36
7.1.2 Standard headers . 36
7.1.3 Errors <errno.h> . 36
7.1.4 Limits <float.h> and <limits.h> . 36
7.1.5 Common de�nitions <stddef.h> . 36
7.1.6 Use of library functions . 36

7.2 Diagnostics <assert.h> . 36
7.3 Character handling <ctype.h> . 36
7.4 Localization <locale.h> . 36
7.5 Mathematics <math.h> . 37
7.6 Non-local jumps <setjmp.h> . 37
7.7 Signal handling <signal.h> . 37
7.8 Variable arguments <stdarg.h> . 37
7.9 Input/Output <stdio.h> . 37
7.10 General utilities <stdlib.h> . 38
7.11 String handling <string.h> . 38
7.12 Date and time <time.h> . 38
7.13 Fixedpoint support . 39

A Fixedpoint 40

A.1 fixed types . 40
A.1.1 Representation . 40
A.1.2 signed fixed type . 41
A.1.3 unsigned fixed type . 41

A.2 accum types . 42
A.2.1 signed accum type . 42
A.2.2 unsigned accum type . 42

A.3 Saturation . 42
A.4 The �le <fixed.h> . 43

4 CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998

Introduction WG14/N854

1 Introduction

1.1 Purpose

This document de�nes an extension to the ISO/IEC IS 9899:1990 (\ISO C") standard to sup-
port the speci�c hardware features of Digital Signal Processors (DSP's). The most important
basic language elements added are a �xedpoint data type (in various forms), memory spaces
and circular pointers. Some features of this extension, most notably the memory spaces, may
also be applicable to embedded processors which are not DSP's, such as microcontrollers.

The DSP-C extensions to the ISO-C de�nition as speci�ed in this document combined with
the ISO-C de�nition specify a language (\DSP-C") that is meant to be generic for di�erent
DSP's. This means that applications written in DSP-C for use on one DSP should be portable
and can be compiled using any compiler supporting this language extension. Applications
which rely on implementation de�ned aspects, such as the size of the various data types, may
produce di�erent results when compiled for a di�erent DSP. This is actually no di�erent from
the situation which exists for ISO C programs.

1.2 Scope

This document speci�es the form and establishes the interpretation of programs written in
DSP-C, an extension to the ISO C programming language de�ned in ISO/IEC IS 9899:1990.
It speci�es:

� the syntax and constraints of the DSP extensions to ISO C

� the semantic rules for interpreting these extensions

� the representation of input data to be processed by these extensions

� the representation of output data

� the restrictions and limits imposed on a conforming implementation of these extensions

1.3 Organization of the document

This document has the same structure as the ISO/IEC IS 9899:1990 document, and is divided
into four major sections:

� this introduction

� the characteristics of environments that translate and execute C programs

� the language syntax, constraints and semantics

� the library facilities

This document is meant as an addition to the ISO/IEC IS 9899:1990 document, and
should be read in conjunction with it. Appendices cover �xedpoint data representation and
other implementation issues. These appendices are not part of the DSP-C speci�cation.

CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998 5

WG14/N854 Compliance

1.4 Standardization

DSP-C has been de�ned because of the lack of an open, portable extension to ISO C (as
opposed to C++ or a subset thereof). An implementation of DSP-C is currently available
to users of the CoSy compilation system, but the language speci�cation is also available to
other compiler developers. The current speci�cation is expected to evolve further over time,
as implementations for more DSP's lead to new user requirements. DSP-C will be submitted
to the relevant ISO standardization committees for inclusion in a future ISO C standard.

Comments on this document, as well as requests for more information about this standard,
can be sent by electronic mail to dspc@ace.nl.

1.5 Acknowledgements

This language speci�cation has been made possible by Philips Semiconductors NV. Although
it is impossible to mention all the people that have somehow contributed to this speci�cation,
the most important contributors have been:
Jan van Dongen
Job Ganzevoort
Jos van der Heijden
Ernst van der Horst
Martien de Jong
Wim Kloosterhuis
Rob Kurver
Martijn de Lange
Hans van Someren
Rob Woudsma

2 Normative references

No additions in this chapter.

3 De�nitions and conventions

No additions in this chapter.

4 Compliance

No additions in this chapter.

6 CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998

Environment WG14/N854

5 Environment

5.1 Conceptual models

No additions in this section.

5.1.1 Translation environment

No additions in this section.

5.1.1.1 Program structure

No additions in this section.

5.1.1.2 Translation phases

No additions in this section.

5.1.1.3 Diagnostics

No additions in this section.

5.1.2 Execution environments

No additions in this section.

5.1.2.1 Free-standing environment

No additions in this section.

5.1.2.2 Hosted environment

No additions in this section.

5.1.2.3 Program execution

No additions in this section.

5.2 Environmental considerations

No additions in this section.

5.2.1 Character sets

No additions in this section.

CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998 7

WG14/N854 Environment

5.2.1.1 Trigraph sequences

No additions in this section.

5.2.1.2 Multibyte characters

No additions in this section.

5.2.2 Character display semantics

No additions in this section.

5.2.3 Signals and interrupts

No additions in this section.

5.2.4 Environmental limits

No additions in this section.

5.2.4.1 Translation limits

No additions in this section.

5.2.4.2 Numerical limits

No additions in this section.

5.2.4.3 Fixedpoint limits

New constants are introduced to denote the behavior and limits of �xedpoint arithmetic.

A conforming implementation shall document all the limits speci�ed in this section, as an
addition to the limits required by the ISO C standard. The limits speci�ed in this section
shall be speci�ed in the header �le <fixed.h>.

See also Appendix A for an explanation of �xedpoint types.

Sizes of �xedpoint types <fixed.h>

The values given below shall be replaced by constant expressions suitable for use in #if

preprocessing directives. Moreover, the following shall be replaced by expressions that have
the same type as would an expression that is an object of the corresponding type converted ac-
cording to the promotion rules. Except for the various EPSILON values, their implementation-
de�ned values shall be equal or greater in magnitude (absolute value) to those shown, with
the same sign. For the various EPSILON values, their implementation-de�ned values shall be
equal or smaller in magnitude to those shown.

8 CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998

Environment WG14/N854

� number of bits for object of type signed short fixed

SFIXED BIT 8

� minimum value for an object of type signed short fixed

SFIXED MIN (-0.5r-0.5r)

� maximum value for an object of type signed short fixed

SFIXED MAX 0.9921875r

� the di�erence between 0.0r and the least value greater than 0.0r that is representable
in the signed short fixed type

SFIXED EPSILON 0.0078125r

� maximum value for an object of type unsigned short fixed

USFIXED MAX 0.9921875ur

� the di�erence between 0.0r and the least value greater than 0.0r that is representable
in the unsigned short fixed type

USFIXED EPSILON 0.0078125ur

� number of bits for object of type signed fixed

FIXED BIT 16

� minimum value for an object of type signed fixed

FIXED MIN (-0.5r-0.5r)

� maximum value for an object of type signed fixed

FIXED MAX 0.999969482421875r

� the di�erence between 0.0r and the least value greater than 0.0r that is representable
in the signed fixed type

FIXED EPSILON 0.000030517578125r

� maximum value for an object of type unsigned fixed

UFIXED MAX 0.999969482421875ur

� the di�erence between 0.0r and the least value greater than 0.0r that is representable
in the unsigned fixed type

UFIXED EPSILON 0.000030517578125ur

� number of bits for object of type signed long fixed

LFIXED BIT 16

CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998 9

WG14/N854 Environment

� minimum value for an object of type signed long fixed

LFIXED MIN (-0.5R-0.5R)

� maximum value for an object of type signed long fixed

LFIXED MAX 0.999969482421875R

� the di�erence between 0.0R and the least value greater than 0.0R that is representable
in the signed long fixed type

LFIXED EPSILON 0.000030517578125R

� maximum value for an object of type unsigned long fixed

ULFIXED MAX 0.999969482421875UR

� the di�erence between 0.0R and the least value greater than 0.0R that is representable
in the unsigned long fixed type

ULFIXED EPSILON 0.000030517578125UR

� number of bits for object of type signed short accum

SACCUM BIT 12

� minimum value for an object of type signed short accum

SACCUM MIN (-8.0a-8.0a)

� maximum value for an object of type signed short accum

SACCUM MAX 15.9921875a

� the di�erence between 0.0a and the least value greater than 0.0a that is representable
in the signed short accum type

SACCUM EPSILON 0.0078125a

� maximum value for an object of type unsigned short accum

USACCUM MAX 15.9921875ua

� the di�erence between 0.0a and the least value greater than 0.0a that is representable
in the unsigned short accum type

USACCUM EPSILON 0.0078125ua

� number of bits for object of type signed accum

ACCUM BIT 20

� minimum value for an object of type signed accum

ACCUM MIN (-8.0a-8.0a)

10 CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998

Environment WG14/N854

� maximum value for an object of type signed accum

ACCUM MAX 15.999969482421875a

� the di�erence between 0.0a and the least value greater than 0.0a that is representable
in the signed accum type

ACCUM EPSILON 0.000030517578125a

� maximum value for an object of type unsigned accum

UACCUM MAX 15.999969482421875ua

� the di�erence between 0.0a and the least value greater than 0.0a that is representable
in the unsigned accum type

UACCUM EPSILON 0.000030517578125ua

� number of bits for object of type signed long accum

LACCUM BIT 20

� minimum value for an object of type signed long accum

LACCUM MIN (-8.0A-8.0A)

� maximum value for an object of type signed long accum

LACCUM MAX 15.999969482421875A

� the di�erence between 0.0A and the least value greater than 0.0A that is representable
in the signed long accum type

LACCUM EPSILON 0.000030517578125A

� maximum value for an object of type unsigned long accum

ULACCUM MAX 15.999969482421875UA

� the di�erence between 0.0A and the least value greater than 0.0A that is representable
in the unsigned long accum type

ULACCUM EPSILON 0.000030517578125UA

CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998 11

WG14/N854 Language

6 Language

6.1 Lexical elements

No additions in this section.

6.1.1 Keywords

Newly added keywords:
accum fixed

circ

sat

In addition, target speci�c (implementation de�ned) memory space names should be added
to this keywords list; as an example in this document we use the names X and Y.

6.1.2 Identi�ers

No additions in this section.

6.1.2.1 Scopes of identi�ers

No additions in this section.

6.1.2.2 Linkage of identi�ers

No additions in this section.

6.1.2.3 Name spaces of identi�ers

No additions in this section.

6.1.2.4 Storage durations of identi�ers

No additions in this section.

6.1.2.5 Types

Additional types to the ISO C de�ned basic and arithmetic types are denoted as short

fixed, fixed, long fixed, short accum, accum, long accum. Together these
types will be named the �xedpoint types. For each of the fixed and accum types, there
is a corresponding signed and unsigned type.

An object with long fixed type is not necessarily capable of holding larger values than
an object with fixed type. In essence its scale will be larger, i.e. computations done in long

fixed arithmetic may produce identical or more precise results compared to computations
done in fixed arithmetic. For a de�nition of scale, see appendix A.

12 CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998

Language WG14/N854

In the list of short fixed, fixed, long fixed, the scale of each type is smaller than
or equal to the scale of the next type in the list.

In the list of short accum, accum, long accum, the integral part of each type shall
not be larger than the integral part of the next type in the list. The scale of short accum

shall be equal to the scale de�ned for short fixed. Likewise, the scale of accum shall be
equal to the scale of fixed, and the scale of long accum shall be equal to the scale of
long fixed.

For each of the signed types, there is a corresponding (but di�erent) unsigned type that
uses the same amount of storage (including sign information). For each unsigned type, the
scale has the same size as its corresponding signed type, or one larger.

Types can be extended by addition of memory-quali�ers. Each existing type (including
const-quali�ed and volatile-quali�ed types) can have a corresponding memory-quali�ed type
for each existing memory quali�er. This creates a memory-quali�ed type, not a quali�ed-type.

General memory-quali�ers are de�ned, as an example we will call them X and Y, actual
names are implementation de�ned. Especially X and Y are quite common in the world of
DSP processors. A derived type is not quali�ed by the memory-quali�ers (if any) of the type
from which it is derived (derived types are e.g. structures, unions and function return types).

To pointer types, an extra quali�er can be added, the circ-quali�er, thus annotating the
pointer to point to a circular array, with special address arithmetic behavior (this behavior
is explained in Section 6.3.6).

The �xedpoint types can be extended with a saturation-quali�er sat. This quali�er
is only allowed with �xedpoint types short fixed, fixed and long fixed and their
unsigned versions. Saturation is further explained in Appendix A.3.

Example

The type designated as "int *" has type "pointer to int". The integer is found in an
implementation de�ned memory. The X-memory-quali�ed version of this type is designated
as "int * X" whereas the type designated as " X int *" is not a memory-quali�ed-type |
its type is "pointer to X-memory-quali�ed int" and is a pointer to a memory-quali�ed-type.

The same holds for pointers to circ arrays. The notation to create a pointer to a circ

array is:

circ X int * Y p;

Meaning, 'p' is a pointer object, which pointer value is stored within Y-memory. It is
taken to point to an array within X-memory, which is of circ int type.

6.1.2.6 Compatible type and composite type

Additional rules for determining whether two types are compatible are described in 6.5.3.1 for
memory-quali�ers, in 6.5.3.2 for saturation-quali�ers, and in 6.5.3.3 for circular-quali�ers.

CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998 13

WG14/N854 Language

6.1.3 Constants

Syntax

constant:

oating-constant

integer-constant

enumeration-constant

character-constant

�xed-constant

6.1.3.1 Floating constants

No additions in this section.

6.1.3.2 Integer constants

No additions in this section.

6.1.3.3 Enumeration constants

No additions in this section.

6.1.3.4 Character constants

No additions in this section.

6.1.3.5 Fixedpoint constants

Syntax

�xed-constant:

digit-sequenceopt . digit-sequence �xed-su�x

digit-sequence:

digit

digit-sequence digit

�xed-su�x:

unsigned-�xtype-su�xopt �xtype-su�x

unsigned-�xtype-su�xopt long-�xtype-su�x

unsigned-�xtype-su�x: one of
u U

�xtype-su�x: one of

14 CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998

Language WG14/N854

r a

long�xtype-su�x: one of
R A

All �xedpoint constants are of non-saturated type. To change the saturation-type, an
explicit type cast should be used.

The type of a �xedpoint constant is the �rst of the corresponding list in which its value
can be represented. Su�xed by the letter r: fixed, accum, unsigned accum. Su�xed
by the letter a: accum, unsigned accum. Su�xed by the letter R: long fixed, long
accum, unsigned long accum. Su�xed by the letter A: long accum, unsigned long

accum. Su�xed by ur or Ur: unsigned fixed, unsigned accum. Su�xed by ua or Ua:
unsigned accum. Su�xed by uR or UR: unsigned long fixed, unsigned long accum.
Su�xed by uA or UA: unsigned long accum.

A fixed-type value is in the range [-1.0,+1.0>.
Note: the unary minus is not part of the �xedpoint constant, therefore the notation -1.0r

is not a valid fixed-type constant, writing (-0.5r-0.5r) will fold to the desired value.

6.1.4 String literals

No additions in this section.

6.1.5 Operators

No additions in this section.

6.1.6 Punctuators

No additions in this section.

6.1.7 Header names

No additions in this section.

6.1.8 Preprocessing numbers

Description

Preprocessing numbers lexically include all oating, integer and �xedpoint constant tokens.

Semantics

A preprocessing number does not have type or a value. It acquires both after a successful
conversion to a oating constant token, an integer constant token or a �xedpoint constant
token.

CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998 15

WG14/N854 Language

6.1.9 Comments

No additions in this section.

6.2 Conversions

No additions in this section.

6.2.1 Arithmetic operands

When a short fixed or unsigned short fixed is used in an expression, it is �rst pro-
moted to fixed or unsigned fixed, respectively. Likewise, when a short accum or
unsigned short accum is used in an expression, it is �rst promoted to accum or unsigned
accum, respectively. These conversions shall be value-preserving and thus do not a�ect the

result of the expression.

6.2.1.1 Characters and integers

No additions in this section.

6.2.1.2 Signed and unsigned integers

No additions in this section.

6.2.1.3 Floating and integral

No additions in this section.

6.2.1.4 Floating types

No additions in this section.

6.2.1.5 Usual arithmetic conversions

In addition, for �xed type arithmetic conversions, see the Section 6.2.1.9.

No (un)usual conversions between integral and �xedpoint types are de�ned. Only explicit
type conversions are de�ned.

6.2.1.6 Fixedpoint types

When a �xedpoint type is promoted to another �xedpoint type, if the value can be accurately
represented by the new type, its value is unchanged.

When a �xedpoint type is promoted to another �xedpoint type, when the new type has a
smaller scale, then the least signi�cant bits of the value being converted are discarded to the
size of the scale of the new type (for the de�nition of scale, see appendix A).

16 CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998

Language WG14/N854

When a �xedpoint type is promoted to an unsigned �xedpoint type with equal or greater
size, if the value being converted is non-negative, its value is unchanged. Otherwise, if the
value being converted is negative, it is �rst converted to the signed �xedpoint type corre-
sponding to the unsigned �xedpoint type and then converted to the unsigned �xedpoint type
by adding or subtracting epsilon more than the maximum value that can be represented in
the new type until the value is in the range of the new type.

When a �xedpoint type is promoted to a signed �xedpoint type with equal or greater size,
if the value being converted is negative, its value is unchanged. Otherwise, if the value being
converted can be represented by the new type, its value is unchanged. Otherwise, the result
is implementation de�ned.

When a �xedpoint type is converted to a �xedpoint type with smaller size, if the value
being converted can be represented by the smaller type (without looking at the precision of
the two types), its value is unchanged. When the smaller type cannot represent the value,
the result is implementation de�ned.

When needed (conversion from accum to sat fixed types), saturation shall take
place at the time of the conversion. These are the only conversions de�ned doing saturation
on values. Saturation shall be done on the value which is converted into the new type, before
doing the type conversion.

6.2.1.7 Fixedpoint and integral

Conversions from �xedpoint to integral types are value based.

During the conversion, the fractional part will be discarded. Since a signed fixed-type
object represents values in the range [-1.0, +1.0>, the only resulting integral values are -1
or 0. Since an unsigned fixed-type object represents values in the range [0, +1.0>, the
only resulting integral value is 0.

If the integral part of the �xedpoint value cannot be represented by the integral type, the
behavior is unde�ned.

When the value of an integral type is converted to �xedpoint, if the value being converted
cannot be represented within the integral part of the �xedpoint, the result is unde�ned.

6.2.1.8 FixedPoint and oating

When a value with a �xedpoint type is converted to a oating point type, the result value is
the nearest possible value representable by the new type.

When a value with oating point type is converted to �xedpoint, when the �xedpoint type
can represent the original value (apart from precision), then the value is converted according
to the speci�ed oating point conversion rules.

When the oating point value is not representable in the �xedpoint type, the result is
unde�ned. When converting the oating point value to a sat FixedPoint type, no saturation
is done.

This implies conversion from a value with oating type to a fixed-type is always valid
when the oating point value is within the range [-1.0,+1.0>. Any other values produce
implementation de�ned results.

CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998 17

WG14/N854 Language

6.2.1.9 (Un)usual arithmetic conversions

Additional promotions are speci�ed.
Constraints:
Automatic promotions between (unsigned) long fixed and (unsigned) accum types

do not exist.
When all usual arithmetic conversions do not apply, then the following rules are taken

into account:

unsigned long int

long int

unsigned int

int

double

float

long double

@(#)types.fig 9.1 98/03/03

unsigned long __accum

long __accum

unsigned long __fixed unsigned __accum

long __fixed __accum

unsigned __fixed

__fixed

 No unusual conversions exist between integral and __fixed/__accum types
 No unusual conversions exist between long __fixed and __accum types

Figure 1: Unusual arithmetic conversions

If either operand has type unsigned long accum, the other operand is converted to
unsigned long accum.

Otherwise, if one operand has type long accum and the other has type unsigned

accum, if a long accum can represent all values of an unsigned accum, the operand

18 CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998

Language WG14/N854

of type unsigned accum is converted to long accum. If a long accum cannot
represent all values of an unsigned accum, both operands are converted to unsigned

long accum.

Otherwise, if either operand has type long accum, the other operand is converted to
long accum.

Otherwise, if either operand has type unsigned long fixed, the other operand is
converted to unsigned long fixed.

Otherwise, if one operand has type long fixed and the other has type unsigned

fixed, if a long fixed can represent all values of an unsigned fixed, the operand
of type unsigned fixed is converted to long fixed. If a long fixed cannot
represent all values of an unsigned fixed, both operands are converted to unsigned

long fixed.

Otherwise, if either operand has type unsigned accum, the other operand is converted
to unsigned accum.

Otherwise, if one operand has type accum and the other has type unsigned fixed,
if an accum can represent all values of an unsigned fixed, the operand of type
unsigned fixed is converted to accum. If an accum cannot represent all values of
an unsigned fixed, both operands are converted to unsigned accum.

Otherwise, if either operand has type accum, the other operand is converted to accum.

Otherwise, if either operand has type unsigned fixed, the other operand is converted
to unsigned fixed.

Otherwise, both operands have type fixed.

The conversions are also shown in Figure 1. It should be read as:

If one operand of an operation has type of node 'x', and the other operand has a type of
node 'y', then if node 'y' is in a subtree of node 'x', 'x' will be the type of the operation.

Otherwise, if node 'x' is in the subtree of node 'y', then 'y' will be the type of the
operation.

Otherwise, no 'unusual' conversion is de�ned and the conversion is not a legal conversion.

6.2.1.10 Saturation promotions

Special promotions are speci�ed, which only apply to the saturation-quali�er within an ex-
pression. The sat quali�er is only valid on short fixed, fixed and long fixed

typed objects and expressions (signed and unsigned). The sat quali�er does not apply to
short accum, accum and long accum typed objects and expressions.

CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998 19

WG14/N854 Language

Saturation on signed fixed types saturate on the values [-1.0,+1.0>, while saturation
on unsigned fixed types saturate on the values [0,+1.0>.

The saturation quali�ed type of an expression result is inherited from its operands in the
following way:

If either operand has sat quali�ed type, and the expression has a fixed-type result,
then the expression result becomes sat quali�ed.

Otherwise (both operands have non- sat quali�ed type), then the expression result
becomes non- sat quali�ed.

During expression evaluation, saturation e�ects shall be e�ective before the result of the
expression is used.

For assignment expressions, the result �rst is saturated according to the expression's type
speci�cation, then it is converted to the saturation type of the object assigned to. This to
ensure the object always contains a valid value according to its saturation-quali�ed type.

6.2.2 Other operands

No additions in this section.

6.2.2.1 Lvalues and function designators

No additions in this section.

6.2.2.2 void

No additions in this section.

6.2.2.3 Pointers

For a description of the memory-quali�ers, see Section 6.5.3.1.

A pointer to non-memory-quali�ed void may be converted to or from a pointer to any
incomplete or object type. A pointer to any incomplete or object type may be converted to
a pointer to void and back again; the result shall compare equal to the original pointer.

When no memory-quali�er is de�ned for a pointer declaration, then the pointer shall be
capable to address any object as de�ned by the normal ISO-C de�nition.

For any memory-quali�erm, whether a pointer to an m-quali�ed type may be converted to
another memory-quali�ed type (with a di�erent memory-quali�er) is implementation de�ned.

A memory-quali�ed pointer can be converted into an non-memory-quali�ed pointer to
the same type. Conversion from an non-memory-quali�ed into the same memory-quali�ed
pointer type is allowed.

A pointer value with circular-quali�ed type can be converted into (using a type cast) or
assigned to a non-circular-quali�ed pointer type, the result will be the value of the original
pointer without circ behavior.

20 CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998

Language WG14/N854

A pointer value with non-circular-quali�ed type can be converted to (using a type cast)
or assigned to a circular-quali�ed pointer type. The circular-quali�ed result shall behave like
it is a non-circular-quali�ed pointer value.

A pointer value to a saturation-quali�ed type may be converted into (using a type cast)
or assigned to a to a non-saturation-quali�ed type, and vice versa.

Figure 2 shows when conversions are allowed, illegal or suspicious.

@(#)point.fig 9.2 98/10/05

conversions only changing the circular attribute

__circ <sat> <mem> <type> * __circ <sat> <mem> <type> *

conversions only changing the saturation attribute

<circ> _sat <mem> <type> * <circ> <mem> <type> * <circ> __sat <mem> <type> *

<sat> <mem> <type> *

<circ> <sat> spacea <type> * <circ> <sat> <type> * <circ> <sat> spacea <type> *

conversions only changing the space attribute

<circ> <sat> spacea <type> * <circ> <sat> spaceb <type> * <circ> <sat> spacea <type> *

conversions to and from un-memory qualified type

Text between ’<’ and ’>’ means the attribute/type is not changed in the conversion

Warnings according to ’normal ISO-C’ rules

Implementation defined (warning/error/OK)

Warning (not severe)

No warnings

conversions only changing the type (normal ISO-C conversion)

<circ> <sat> <mem> typea * <circ> <sat> <mem> typeb * <circ> <sat> <mem> typea *

<circ> <sat> void *<circ> <sat> spacea type * <circ> <sat> spacea type *

conversions to and from un-memory qualified void type

conversions to and from void type (normal ISO-C conversion)

<circ> <sat> <mem> type * <circ> <sat> <mem> void * <circ> <sat> <mem> type *

Figure 2: Allowed pointer type conversions

A void * declared object shall be capable of pointing to any type, except for circ types
(it will 'lose' the circular behavior). In this case a pointer declared as circ void * shall
be capable of pointing to all types of objects without restrictions.

CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998 21

WG14/N854 Language

6.3 Expressions

The unary operator ~ and the binary operators <<, >>, &, ^ and | are not allowed on �xedpoint
expressions.

6.3.1 Primary expressions

No additions in this section.

6.3.2 Post�x operators

No additions in this section.

6.3.2.1 Array subscripting

In DSP-C, pointers and arrays may be declared using the circ quali�er. The circ quali�er
is only allowed on arrays having one dimension. The semantics of subscripting in a circular
array matches the ISO C de�nition in the sense that it is equivalent to circular pointer addition
(see the ISO C de�nition). As a result, array subscripting expressions take care of an array
being circular and will not address elements outside the array.

Example

int circ x[5];

x[5] = 2;

will not e�ectively try to access the (non existing) element with index value 5. The element
x[0] is assigned to. The same holds for pointer expressions, writing:

int circ * p = x;

*(p+5) = 2;

will yield the same results as in the previous example.

6.3.2.2 Function calls

No default argument promotions are speci�ed for �xedpoint types. For pointers, default
argument promotion is to non-memory-quali�ed type.

6.3.2.3 Structure and union members

Structures and unions may have members with �xedpoint types. Circular arrays can be
member of a structure or union. Pointers to circular arrays can be a member of a structure
or union.

22 CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998

Language WG14/N854

When a structure or union member has a memory-quali�ed type, this memory-quali�er
does not a�ect the structure/union or its actual member. The structure or union itself can
be de�ned having a memory-quali�er.

Example

struct f
int X value; /* 'value' will reside within Y memory,

* without issuing a warning

*/

int X * p; /* '*p' will actually fetch an object from

* X memory (it points to X), the

* pointer itself is stored in Y memory

*/

g Y str;

will entirely be allocated within Y memory.

6.3.2.4 Post�x increment and decrement operators

No additions in this section.

6.3.3 Unary operators

No additions in this section.

6.3.3.1 Pre�x increment and decrement operators

No additions in this section.

6.3.3.2 Address and indirection operators

The result of the & operator is a pointer to the object or function designated by its operand.
The type of the pointer includes memory-quali�ers, circular and other quali�ers.

6.3.3.3 Unary arithmetic operators

The ~ can not be applied to �xedpoint values.

6.3.3.4 The sizeof operator

Pointers having di�erent memory-quali�ers or di�erent circular-quali�ers can have (and very
likely have) di�erent sizes. A pointer declared as void * p can have a size di�erent from a
pointer declared as void circ * p, which can have a di�erent size from a pointer declared
as void circ Y * p. As such, the sizeof operator will often return di�erent values for
the di�erent types of pointers.

CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998 23

WG14/N854 Language

6.3.4 Cast operators

Conversions between pointers with di�erent memory-quali�ers may produce unde�ned re-
sults. Implicit conversions are not provided. Explicit conversions are accepted, but produce
implementation de�ned results.

Conversion of a circular pointer to a non-circular pointer will lose its circular e�ect, even
when later in the program the pointer is assigned to a circular pointer again. This implicit
conversion will cause a compiler diagnostic.

Circular pointer objects are capable of containing non-circular pointer values, such a
conversion is allowed. The circular pointer will then behave as if it is circular over the full
possible address range, with an initial address value as assigned.

6.3.5 Multiplicative operators

No additions in this section.

6.3.6 Additive operators

For a circular pointer expression P, and an expression N of integral type, the following is
additionally de�ned:

� the expressions N+(P) and (P)+N are equivalent

� if an expression P points to an element of a circular array, then the expression (P)+0
will point to that same element.

� if an expression P points to the last element of a circular array, then the expression
(P)+1 will point to the �rst element of that array (and not to one past the last element
as for ordinary arrays and pointers)

� if an expression P points to an element (not the last) of a circular array, then the
expression (P)+1 points to the next element in that array

� if an expression P points to an element of a circular array, then the expression (P)+N
(N's value is larger than 1 and not larger than the size of the circular array) points to
the same element in that array as the expression ((P)+1)+(N-1)

� if an expression P points to the �rst element of a circular array, then the expression
(P)-1 will point to the last element of that array

� if an expression P points to an element (not the �rst) of a circular array, then the
expression (P)-1 points to the previous element in that array

� if an expression P points to an element of a circular array, then the expression (P)-N
(N's value is larger than 1 and not larger than the size of the circular array) points to
the same element in that array as the expression ((P)-1)-(N-1)

24 CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998

Language WG14/N854

� when in one of the expressions (P)+N and (P)-N, N's value is larger than the size of the
circular array, then it is unde�ned where that expression points to; the library functions
circ add and circ sub are provided to handle expressions (P)+N and (P)-N in which
N's value can be any value

Note that, as usual, when overow occurs during the computation of an expression N above,
the result is unde�ned.

6.3.7 Bitwise shift operators

Bitwise shifting is not allowed on �xedpoint values.

6.3.8 Relational operators

No additions in this section.

6.3.9 Equality operators

No additions in this section.

6.3.10 Bitwise AND operator

Bitwise operations are not allowed on �xedpoint expressions.

6.3.11 Bitwise exclusive OR operator

See comments in 6.3.10.

6.3.12 Bitwise inclusive OR operator

See comments in 6.3.10.

6.3.13 Logical AND operator

No additions in this section.

6.3.14 Logical OR operator

No additions in this section.

6.3.15 Conditional operator

In case of pointers, both operands should have compatible memory-quali�ers and circular-
quali�ers.

6.3.16 Assignment operators

No additions in this section.

CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998 25

WG14/N854 Language

6.3.16.1 Simple assignment

No additions in this section.

6.3.16.2 Compound assignment

No additions in this section.

6.3.17 Comma operator

No additions in this section.

6.4 Constant expressions

No additions in this section.

6.5 Declarations

Syntax

declaration:

declaration-speci�ers init-declarator-listopt ;

declaration-speci�ers:

storage-class-speci�er declaration-speci�ersopt
type-speci�er declaration-speci�ersopt
type-quali�er declaration-speci�ersopt
memory-quali�er declaration-speci�ersopt
saturation-quali�er declaration-speci�ersopt
circular-quali�er declaration-speci�ersopt

init-declarator-list:

init-declarator

init-declarator-list , init-declarator

init-declarator:

declarator

declarator = initializer

6.5.1 Storage-class speci�ers

No additions in this section.

26 CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998

Language WG14/N854

6.5.2 Type speci�ers

Additional constraints

The set of type speci�ers is extended with the following set:

� short fixed, signed short fixed, unsigned short fixed

� fixed, signed fixed, unsigned fixed

� long fixed, signed long fixed, unsigned long fixed

� short accum, signed short accum, unsigned short accum

� accum, signed accum, unsigned accum

� long accum, signed long accum, unsigned long accum

6.5.2.1 Structure and union speci�ers

Syntax

speci�er-quali�er-list:

type-speci�er speci�er-quali�er-listopt
type-quali�er speci�er-quali�er-listopt
saturation-quali�er speci�er-quali�er-listopt
circular-quali�er speci�er-quali�er-listopt

6.5.2.2 Enumeration speci�ers

No additions in this section.

6.5.2.3 Tags

No additions in this section.

6.5.3 Type quali�ers

No additions in this section.

6.5.3.1 Memory quali�ers

Syntax

memory-quali�er:

X

Y

CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998 27

WG14/N854 Language

The names X and Y should be replaced by implementation de�ned names. More names
can exist. Within this document we use X and Y as two separated data memory spaces.

Constraints

At most one memory-quali�er shall appear in the same speci�er list or quali�er list, either
directly or via one or more typedefs.

Semantics

The properties associated with memory-quali�ed types are meaningful only for expressions
that are lvalues.

The address of an object declared using one memory-quali�er can be assigned to a pointer
declared as pointing to a type having the same memory-quali�er. The address of an object
declared using a memory-quali�er can be assigned to a non-memory-quali�ed pointer to the
same type. Whether the address of an object can be assigned to pointers having di�erent
memory-quali�ers is implementation de�ned.

6.5.3.2 Saturation quali�ers

Syntax

saturation-quali�er:

sat

Constraints

The sat-quali�er can only be speci�ed for fixed-type objects. At most one sat-quali�er
shall be speci�ed for an object.

Semantics

The sat-quali�er determines how arithmetic should be performed within arithmetic expres-
sions. They do not a�ect the storage or representation of any object itself.

When no sat-quali�er is speci�ed, the default is non- sat. Constants with a �xedpoint
type are non- sat quali�ed.

Saturation handling applies to all arithmetic operations resulting in a �xedpoint type.

6.5.3.3 Circular quali�ers

Syntax

circular-quali�er:

circ

28 CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998

Language WG14/N854

Constraints

The circular-quali�er shall not appear more than once in the same speci�er list or quali�er
list, either directly or via one or more typedefs. Only array types with one dimension and
pointer types can be speci�ed using this quali�er.

The circular-quali�er cannot be applied to:

� multi dimensional arrays

� simple type objects

Semantics

The circular-quali�er speci�es that array subscripting or pointer addressing should perform
modulo address arithmetic. This means that arithmetic on such an object can not run out of
the array's boundaries. See Section 6.3.6 for the address arithmetic behavior of such pointer
types.

6.5.4 Declarators

Syntax

declarator:

pointeropt direct-declarator

direct-declarator:

identi�er

(declarator)

direct-declarator [constant-expressionsopt]

direct-declarator (parameter-type-list)

direct-declarator (identi�er-listopt)

pointer:

* type-quali�er-listopt
* type-quali�er-listopt pointer

type-quali�er-list:

type-quali�er

memory-quali�er

type-quali�er-list type-quali�er

parameter-type-list:

parameter-list

parameter-list , ...

CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998 29

WG14/N854 Language

parameter-list:

parameter-declaration

parameter-list , parameter-declaration

parameter-declaration:

declaration-speci�ers declarator

declaration-speci�ers abstract-declaratoropt

identi�er-list:

identi�er

identi�er-list , identi�er

6.5.4.1 Pointer declarators

See also Section 6.5.3.3.

6.5.4.2 Array declarators

See also Section 6.5.3.3.

6.5.4.3 Function declarators (including prototypes)

No additions in this section.

6.5.5 Type names

No additions in this section.

6.5.6 Type de�nitions

No additions in this section.

6.5.7 Initialization

No additions in this section.

6.6 Statements

No additions in this section.

6.6.1 Labeled statements

No additions in this section.

30 CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998

Language WG14/N854

6.6.2 Compound statement, or block

No additions in this section.

6.6.3 Expression and null statements

No additions in this section.

6.6.4 Selection statements

No additions in this section.

6.6.4.1 The if statement

No additions in this section.

6.6.4.2 The switch statement

No additions in this section.

6.6.5 Iteration statements

No additions in this section.

6.6.5.1 The while statement

No additions in this section.

6.6.5.2 The do statement

No additions in this section.

6.6.5.3 The for statement

No additions in this section.

6.6.6 Jump statements

No additions in this section.

6.6.6.1 The goto statement

No additions in this section.

6.6.6.2 The continue statement

No additions in this section.

CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998 31

WG14/N854 Language

6.6.6.3 The break statement

No additions in this section.

6.6.6.4 The return statement

No additions in this section.

6.7 External de�nitions

No additions in this section.

6.7.1 Function de�nitions

No additions in this section.

6.7.2 External object de�nitions

Memory-quali�ers, saturation-quali�ers and other quali�ers used in external declarations
should exactly match the quali�ers used in the object de�nition, otherwise the behavior
is unde�ned.

6.8 Preprocessing directives

No additions in this section.

6.8.1 Conditional inclusion

No additions in this section.

6.8.2 Source �le inclusion

No additions in this section.

6.8.3 Macro replacement

No additions in this section.

6.8.3.1 Argument substitution

No additions in this section.

6.8.3.2 The # operator

No additions in this section.

32 CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998

Language WG14/N854

6.8.3.3 The ## operator

No additions in this section.

6.8.3.4 Rescanning and further replacement

No additions in this section.

6.8.3.5 Scope of macro de�nitions

No additions in this section.

6.8.4 Line control

No additions in this section.

6.8.5 Error directive

No additions in this section.

6.8.6 Pragma directive

No additions in this section.

6.8.7 Null directive

No additions in this section.

6.8.8 Prede�ned macro names

No additions in this section.

6.9 Future language directions

No additions in this section.

6.9.1 External names

No additions in this section.

6.9.2 Character escape sequences

No additions in this section.

6.9.3 Storage-class speci�ers

No additions in this section.

CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998 33

WG14/N854 Language

6.9.4 Function declarators

No additions in this section.

6.9.5 Function de�nitions

No additions in this section.

6.9.6 Array parameters

No additions in this section.

6.10 Future language extensions

The following sections describe extensions which might be added in the future. Investigation
is needed to determine if and how these should be added to DSP-C.

6.10.1 Positional storage quali�ers

Extra type quali�ers may be added, such as intern and extern, so the programmer can
have more inuence on the access time needed to access an object.

6.10.2 Register storage quali�ers

Extra storage quali�ers may be added, to force objects into speci�c registers or register sets.

6.10.3 Storage on known address

In computer systems, memory mapped devices are present. These can be addressed on �xed
positions. Within standard C, there is no facility to directly address and name such hardware.
Normally, this is done by creating a pointer object and initialize the pointer with a �xed value.
This however does not prevent a linker to allocate another object on the speci�ed address.

6.10.4 Complex types

The coming C9X standard introduces new types complex. Logically, DSP-C will be extended
with new complex types, with �xedpoint real and imaginary values.

6.10.5 �xedpoint types

The representation and capabilities of unsigned fixed types may be reconsidered.

Promotion rules for unsigned �xedpoint types where the scale is one larger than the scale
of a signed �xedpoint type are hard to understand, and do introduce a change in value
when converting from unsigned type into signed type. The conversion in itself needs a shift
operation, thus causing the conversion to be relatively expensive as well. Possibly allowance
of the unsigned �xedpoint types with this larger scale can be discarded.

34 CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998

Language WG14/N854

Allowing unsigned fixed types to represent values in the range [0,+2.0>. Not allowing
this, causes one bit of storage not to be used (and must be ignored). However, allowing this
range needs a de�nition of saturation e�ects (on +1.0 or +2.0), and can cause algorithms not
to be portable, when they use the e�ect that intermediate results can be > +1.0. Even so,
adding the type can be reconsidered.

CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998 35

WG14/N854 Library

7 Library

7.1 Introduction

Since pointers can point to di�erent memories within DSP-C, all standard functions expecting
or returning a pointer as argument or return value will expect or return a pointer to an non-
memory-quali�ed type.

All functions can be implemented according to the original ISO C de�nitions (normal
non-memory-quali�ed pointers in their prototypes).

7.1.1 De�nitions of terms

No additions in this section.

7.1.2 Standard headers

No additions in this section or subsections.

7.1.3 Errors <errno.h>

No additions in this section.

7.1.4 Limits <float.h> and <limits.h>

An extra header �le <fixed.h> de�nes several macros that expand to various limits and
parameters concerning �xedpoint types. The macros, their meanings, and the constraints on
their values are listed in Section 5.2.4.3.

7.1.5 Common de�nitions <stddef.h>

No additions in this section.

7.1.6 Use of library functions

No additions in this section.

7.2 Diagnostics <assert.h>

No additions in this section or subsections.

7.3 Character handling <ctype.h>

No additions in this section or subsections.

7.4 Localization <locale.h>

No additions in this section or subsections.

36 CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998

Library WG14/N854

7.5 Mathematics <math.h>

No additions in this section or subsections.

7.6 Non-local jumps <setjmp.h>

No additions in this section or subsections.

7.7 Signal handling <signal.h>

No additions in this section or subsections.

7.8 Variable arguments <stdarg.h>

No additions in this section or subsections.

7.9 Input/Output <stdio.h>

The printf() and scanf() formatters need to be extended with options to print fixed

and accum types, as well as with special pointer types.

De�ned is an addition of conversion speci�ers with:
%hr print/scan a short fixed value
%r print/scan a fixed value
%lr print/scan a long fixed value
%ha print/scan an short accum value
%a print/scan an accum value
%la print/scan a long accum value
%hR print/scan an unsigned short fixed value
%R print/scan an unsigned fixed value
%lR print/scan an unsigned long fixed value
%hA print/scan an unsigned short accum value
%A print/scan an unsigned accum value
%lA print/scan an unsigned long accum value
%P print/scan a circ pointer value

For all �xedpoint types, output always contains a decimal-point. Width speci�ers can be
speci�ed to specify the numbers of digits before the decimal-point and after the decimal-point,
similar to the '%f' conversion speci�er.

For circ pointer values, the representation of the pointer value is implementation de-
�ned.

In case pointer types are not promoted to one common pointer type, an implementation
may de�ne more conversion speci�ers to print/scan speci�c pointer types. In case all pointer
types are promoted to one common pointer type, the address argument corresponding to the
scanning value must be the address of such a common pointer type object.

CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998 37

WG14/N854 Library

7.10 General utilities <stdlib.h>

Extensions are de�ned, to add functions:

long fixed atolfixed(const char * nptr);

long accum atolaccum(const char * nptr);

long fixed strtolfixed(const char * nptr, char **endptr);

long accum strtolaccum(const char * nptr, char **endptr);

unsigned long fixed atoulfixed(const char * nptr);

unsigned long accum atoulaccum(const char * nptr);

unsigned long fixed strtoulfixed(const char * nptr, char **endptr);

unsigned long accum strtoulaccum(const char * nptr, char **endptr);

The set of malloc() functions can be extended to handle memory in each of the implemen-
tation de�ned memory spaces. Whether a complete set is o�ered is implementation de�ned.
An implementation should at least provide a malloc() function which can allocate memory
within a default memory (i.e. the memory can be addressed by using pointers declared as
pointing to default memory).

7.11 String handling <string.h>

Using the non-memory-quali�ed pointer routines is not always optimal in execution speed.
Therefore it is best to deliver a subset of the mostly used functions directly, in versions
optimized for their speci�c use. Which speci�c routines are delivered is implementation
de�ned.

Many implementations will want to de�ne extra memcpy() functions for the various (com-
binations of) memory spaces, e.g.:

void X * memcpy X X(void X * s1, const void X * s2, size t n);

void X * memcpy X Y(void X * s1, const void Y * s2, size t n);

void Y * memcpy Y X(void Y * s1, const void X * s2, size t n);

void Y * memcpy Y Y(void Y * s1, const void Y * s2, size t n);

7.12 Date and time <time.h>

No additions in this section or subsections.

38 CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998

Library WG14/N854

7.13 Fixedpoint support

An implementation can de�ne �xedpoint support functions (e.g. for bitwise conversions to and
from integral types), which the implementation will usually want to recognize as a compiler
known function in order to generate e�cient inline code for them.

Other features speci�c to a certain implementation can be de�ned in a similar manner,
such as functions to use hardware-supported bitreverse or �lter algorithms.

CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998 39

WG14/N854 Fixedpoint

A Fixedpoint

This appendix describes how a �xedpoint value is de�ned and what it means to an imple-
mentation.

In principle there are four �xedpoint types:

� signed fixed

� unsigned fixed

� signed accum

� unsigned accum

A.1 fixed types

The signed fixed and unsigned fixed types contain a mantissa value (value after the
decimal point). The number of bits to represent this mantissa value is called the scale of the
value. All �xedpoint values are stored in two's complement.

A fixed object represent values in the range [-1.0,+1.0>. No special values (like the
oating point NaN or Inf) are de�ned.

An unsigned fixed object represents values in the range [0.0,+1.0>.
The signed accum and unsigned accum types are extensions to the types signed

fixed and respectively unsigned fixed. They have equivalent behavior to the fixed

types, except they also have an integral part.

A.1.1 Representation

A �xedpoint type is completely characterized by three parameters:

Signedness Whether the type is signed or unsigned.

Size The total number of signi�cant bits in the type. Note that this size can di�er from the
storage size of the type.

Scale The number of fractional bits in the type.

We denote the scale with s, the size with n and the bits as bi. b0 is the least signi�cant
bit, bn�1 is the most signicant bit.

The value of an unsigned �xedpoint value is given by

V alue = 2�s
n�1X

i=0

2ibi

The value of a signed �xedpoint value is given by

V alue = 2�s(�2n�1bn�1 +
n�2X

i=0

2ibi)

40 CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998

Fixedpoint WG14/N854

The value 2�s corresponds to the type's EPSILON parameter from <fixed.h>.

The unsigned �xedpoint types shall have a scale equal to or one larger than the scale of
the corrsponding signed type. If the scale is the same, the conversions between corresponding
signed and unsigned types will not change representation.

If the scale is one larger, these conversions will need a shift of one bit to be value preserving.

Since unsigned �xedpoint types have an upper bound of 1.0, the version with the same
scale has one unused bit in the representation. Whether this extra bit is interpreted as an
integral part for unsaturated �xedpoint types is unde�ned.

A signed �xedpoint type needs one bit for the sign, therefore the scale can never be larger
than the size minus one.

A.1.2 signed fixed type

The signed fixed types exist in three avors:

Type minimum size minimum scale
(in bits) (in bits)

short fixed 8 7
fixed 16 15

long fixed 16 15
A short fixed may be used in an expression wherever a fixed may be used. The

value is converted to a fixed.

On fixed-type objects, the saturation-quali�ed versions imply saturation to occur on
the values -1.0 and (almost) +1.0.

A.1.3 unsigned fixed type

An unsigned fixed shall have the same scale as a fixed or one larger. Since the unsigned
version does not need a sign bit, the scale can be equal to the size.

The signed fixed and unsigned fixed types shall have same storage size. Because
of the two possible implementations, the minimum scaling is as de�ned in the next table:

Type minimum size minimum scale
(in bits) (in bits)

unsigned short fixed 8 7 or 8
unsigned fixed 16 15 or 16
unsigned long fixed 16 15 or 16
An implementation should choose one of the possibilities, and apply this on all fixed

types.

An unsigned short fixedmay be used in an expression wherever an unsigned fixed

may be used. The value is converted to an unsigned fixed.

For both unsigned fixed implementations, the saturation-quali�ed versions imply sat-
uration to occur on the values 0.0 and (almost) +1.0.

CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998 41

WG14/N854 Fixedpoint

A.2 accum types

A.2.1 signed accum type

An accum value is a fixed value, extended with an integral part. The accum-types shall
have the same scaling factors as the corresponding fixed-types. With an extension of 8
bits, an accum value can represent values between [-256.0,+256.0>.

signed accum types exist in three avors:
Type minimum size minimum scale

(in bits) (in bits)

short accum 12 7
accum 20 15

long accum 20 15
The integral part of any accum type shall not be less than 4 bits.

A short accum may be used in an expression wherever an accum may be used. The
value is converted to an accum.

A.2.2 unsigned accum type

An unsigned accum shall have the same scale as an accum or one larger. Its scale shall
be equal to the chosen unsigned fixed implementation.

The signed accum and unsigned accum types should have the same storage size.
Because of the two possible implementations, the minimum scaling is as de�ned in the next
table:

Type minimum size minimum scale
(in bits) (in bits)

unsigned short accum 12 7 or 8
unsigned accum 20 15 or 16
unsigned long accum 20 15 or 16
The integral part of any unsigned accum type shall not be less than 4 bits.

An unsigned short accummay be used in an expression wherever an unsigned accum

may be used. The value is converted to an unsigned accum.

A.3 Saturation

fixed objects can be declared using the sat-quali�er. This quali�er merely has its e�ect
during computational actions done with such an object.

Saturation is only done when one or more operands of an operator are saturation-quali�ed,
while the operation is done in a fixed type.

Saturation on signed fixed types will saturate to the values [-1.0,+1.0>. This means,
when due to a computation, the result is larger than the upper bound value of a signed

fixed type, the result will be (almost) 1.0. When, due to a computation, the result is
smaller than the lower bound of a signed fixed value, the result will be -1.0.

42 CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998

Fixedpoint WG14/N854

Example

sat signed fixed a;

sat signed fixed b;

sat signed fixed c;

a = -0.75r;

b = -0.75r;

c = a + b;

/* c = -1.0r !!! */

Saturation on unsigned fixed types will saturate to the values [0.0,+1.0>. This
means, when due to a computation, the result is larger than the upper bound value of an
unsigned fixed type, the result will be (almost) 1.0. When, due to a computation, the
result is smaller than the lower bound of an unsigned fixed value, the result will be 0.0.

Example

sat unsigned fixed a;

sat unsigned fixed b;

sat unsigned fixed c;

a = 0.50r;

b = 0.75r;

c = a - b;

/* c = 0.0r !!! */

A.4 The �le <fixed.h>

A new �le <fixed.h> is de�ned with the following contents (the values are examples only
and should be replaced by the proper values for an implementation):

/* Signed Fixed types */
/* short fixed */
SFIXED BIT 8
SFIXED MIN (-0.5r-0.5r) /* -1.0 */
SFIXED MAX 0.9921875r
SFIXED EPSILON 0.0078125r

/* fixed */
FIXED BIT 16
FIXED MIN (-0.5r-0.5r) /* -1.0 */
FIXED MAX 0.999969482421875r
FIXED EPSILON 0.000030517578125r

CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998 43

WG14/N854 Fixedpoint

/* long fixed */
LFIXED BIT 32
LFIXED MIN (-0.5R-0.5R) /* -1.0 */
LFIXED MAX 0.9999999995343387126922607421875R
LFIXED EPSILON 0.0000000004656612873077392578125R

/* Unsigned Fixed types */
/* unsigned short fixed */
USFIXED MAX 0.9921875ur
USFIXED EPSILON 0.0078125ur

/* unsigned fixed */
UFIXED MAX 0.999969482421875ur
UFIXED EPSILON 0.000030517578125ur

/* unsigned long fixed */
ULFIXED MAX 0.9999999995343387126922607421875UR
ULFIXED EPSILON 0.0000000004656612873077392578125UR

/* Signed Accum types */
/* short accum */
SACCUM BIT 16
SACCUM MIN (-128.0a-128.0a) /* -256.0 */
SACCUM MAX 255.9921875a
SACCUM EPSILON 0.0078125a

/* accum */
ACCUM BIT 24
ACCUM MIN (-128.0a-128.0a) /* -256.0 */
ACCUM MAX 255.999969482421875a
ACCUM EPSILON 0.000030517578125a

/* long accum */
LACCUM BIT 40
LACCUM MIN (-128.0A-128.0A) /* -256.0 */
LACCUM MAX 255.9999999995343387126922607421875A
LACCUM EPSILON 0.0000000004656612873077392578125A

/* Unsigned Accum types */
/* unsigned short accum */
USACCUM MAX 511.9921875ua
USACCUM EPSILON 0.0078125ua

/* unsigned accum */
UACCUM MAX 511.999969482421875ua
UACCUM EPSILON 0.000030517578125ua

/* unsigned long accum */
ULACCUM MAX 511.9999999995343387126922607421875UA
ULACCUM EPSILON 0.0000000004656612873077392578125UA

44 CoSy-8025P-dsp-c/Rel 9.9/October 7, 1998

