
Rvalue Arrays
N835/J11 98-034

June 18, 1998
Randy Meyers

1. Introduction
A year or two ago, the committee discussed that certain array expressions were fairly useless since the
committee was overly specific in defining the conversion of arrays to pointer types.  There was general
agreement that the Standard was incorrect, but no one ever drafted new words.  This paper provides the
new words.

2. Example
struct S {int a[2];};
struct S f(void)
{

struct S x;
x.a[0] = x.a[1] = 1;
return x;

}
…
printf(“answer is %d\n”, f().a[0]);

The expression f().a[0]  is undefined.  The []  operator requires a pointer operand (Subclause 6.5.2.1,
paragraph 1).  However, f().a  does not undergo the usual conversion of array to pointer since Subclause
6.3.2.1 Paragraph 3 says:

Except when it is the operand of the sizeof operator or the unary & operator, or is a
character string literal used to initialize an array of character type, or is a wide string
literal used to initialize an array with element type compatible with wchar_t , an lvalue
that has type ‘‘array of type’’ is converted to an expression that has type ‘‘pointer to
type’’ that points to the initial element of the array object and is not an lvalue. If the array
object has register storage class, the behavior is undefined.

The expression f().a  is not an lvalue since the member selection operator is only an lvalue if its left
operand is an lvalue, and a function call is not an lvalue.

Note that C++ does not have this problem.  Subclause 4.2 of the C++ Standard says:

An lvalue or rvalue of type “array of N T ” or “array of unknown bound of T” can be
converted to an rvalue of type “pointer to T.” The result is a pointer to the first element
of the array.

3. Change to C9x
Change Subclause 6.3.2.1 Paragraph 3 to:

Except when it is the operand of the sizeof operator or the unary & operator, or is a
character string literal used to initialize an array of character type, or is a wide string
literal used to initialize an array with element type compatible with wchar_t , an



expression that has type ‘‘array of type’’ is converted to an expression that has type
‘‘pointer to type’’ that points to the initial element of the array object and is not an
lvalue. If the array object has register storage class, the behavior is undefined.

(The above edit changes “lvalue” in the original text to “expression.”)

The above change permits pointers to be formed to rvalue arrays in structs, and those pointers might be
used to form lvalues to store into such arrays or access the array after its natural lifetime unless we plug
the holes.  The holes occur with any operator that yields an rvalue struct.  The following changes plug the
holes.

Add a new paragraph after paragraph 10 in Subclause 6.5.2.2 Function calls:

If an attempt is made to modify the result of a function call, the behavior is undefined.  If
an attempt is made to access the result of a function call after the next sequence point, the
behavior is undefined.

Add a new paragraph after paragraph 6 in Subclause 6.5.15 Conditional Operator:

If an attempt is made to modify the result of a conditional operator, the behavior is
undefined.  If an attempt is made to access the result of a conditional operator after the
next sequence point, the behavior is undefined.

Add a new paragraph after paragraph 3 in Subclause 6.5.16 Assignment operators:

If an attempt is made to modify the result of a assignment operator, the behavior is
undefined.  If an attempt is made to access the result of a assignment operator after the
next sequence point, the behavior is undefined.

Add a new paragraph after paragraph 2 in Subclause 6.5.17 Comma operator:

If an attempt is made to modify the result of a comma operator, the behavior is
undefined.  If an attempt is made to access the result of a comma operator after the next
sequence point, the behavior is undefined.


