C9X Proposal Compound Literals WG14/N496 X 3J11/95-097

David Piosser (dfp@neell.com)
David Keaton (dmk@dmk.com)

22 December1995

1. Introduction
1.1 Purpose

This document specifies the form and interpretation of a page@son to the language portion of the C
standard to provide important additional flexibility to literals in expressions.

5 1.2 Scope

This document, althoughending the C standard, still falls within the scope of that standard, and thus
follows all rules and guidelines of that standard except where explicitly noted herein.

1.3 References
1. ISO/IEC9899:1990Programming Languges — C

10 2. WG14/N494 X3J11/95-095, Prosser &#ton. C9XAddition, Designated Initializes, 8 December,
1995.

All references to the 1ISO C standard will be presented as subclause nuRbeexample, §6.4
references constant expressions.

1.4 Rationale

15 Compounditerals provide a mechanism for specifying constants of agigeor union type.This
eliminates the requirement for temporary variables when an gaggrer union alue will only be needed
once.

Compound literals ingrate easily into the C grammar and do not impose additional run-time
overhead on a usex’rogram. Thg dso combine well with designated initializers (see [2] and [3]) to form
20 aneven more colenient aggrgate or union constant notation. Their initial C implementation appeared in
a compiler by Ken Thompson at AT&T Bell Laboratories.
2. Language
2.1 Compound Literals
The syntax, constraints, and semanticpfustfix-expressioim §6.3.2 are augmented by the following:
25 Syntax

postfix-expression:
(type-name) { Iinitializer-list }
(type-name) { initializer-list , }

Constraints
30 Thetype name shall specify an object type or an array of unknown size.

No initializer shall attempt to provide a value for an object not contained within the entire unnamed
object specified by the compound litetal.

If the postfix expression occurs inyacontext other than within the body of a function, the initializer
list shall consist of constant expressions.

1.This is the “There shall be no more initializersc.onstraint modified to takinto account designated initializ¢®3.

C9X Proposal Compound Literals WG14/N496 X3J11/95-097

Semantics

A postfix expression that consists of a parenthesized type name followed by a brace-enclosed list of
initializers is knevn as acompound liteal. It provides an unnamed object with valuevegi by the
initializer list2

5 If the type name specifies an array of untncsize, the size is determined by the initializer list as
specified in §86.5.7, and the type of the compound literal is that of the completed arrapthpevise
(when the type name specifies an object type), the type of the compound literal is that specified by the type
name. Ireither case, the result is an Ivalue.

The value of the compound literal is that of an unnamed object initialized by the initializeFHest.
10 objecthas static storage duration if and only if the postfix expression occurs in a context other than within
the body of a function; otherwise, it has automatic storage duration associated with the enclosing block.

Except that the initializers need not be constant expressions (when the unnamed object has automatic
storage duration), all the semantic rules and constraints for initializer lists in 86.5.7 are applicable to
compound literal$. The order in which anside effects occur within the initialization list expressions is

15 unspecified.

String literals, and compound literals with const-qualified types, need not designate distincPobjects.
Examples
The file scope definition
int *p = (int []){2, 4};

20 initializesp to point to the first element of an array ofotivnt s, the first having the value ewand the
second, four The expressions in this compound literal must be constant. The unnamed object has static
storage duration.

In contrast, in

void f(void)
25 {
int *p;
[*0 0%
p = (int [2]){*p};
[*0 0%

30 pis assigned the address of an unnamed automatic storage duration object that is an avlagtc, tie
first having the value previously pointed tofpgnd the second, zero.

Designated initializers [2] readily combine with compound literals. On-the-fly structure objects can be
passed to functions without depending on member order:

draw i ne((struct point){.x=1, .y=1},
35 (struct point){.x=3, .y=4});

2. Note that this differs from a castgression. Br example, a cast specifies awmgion to scalar types onlgnd the result
of a cast expression is not an Ivalue.

3. For example, subobjects without explicit initializers are initialized to zero.

4.In particular the evauation order need not be the same as the order of subobject initialization. The extensions to
initializers described in [2] prescribe an ordering for the implicit assignments to the subobjects that comprise the unnamed
object.

5.This allows implementations to share storage for string literals and constant compound literals with the same or
overlapping representations.

C9X Proposal Compound Literals WG14/N496 X3J11/95-097

Or, if dr awl i neinstead expected pointersgor uct poi nt:
draw i ne(&(struct point){.x=1, .y=1},
&(struct point){.x=3, .y=4});
A read-only compound literal can be specified through constructions like:
5 (const float []){21e0, 1el, 1e2, 1le3, 1le4, 1leb5, le6}

The following three expressionsugadfferent meanings:

"Itp/ fil eXXXXXX!
(char [1){"/tnp/fil eXXXXXX"}
(const char[]){"/tnp/fil eXXXXXX"}

10 Thefirst aways has static storage duration and has type arrapaf, but need not be modifiable; the last
two haveautomatic storage duration whenyh@cur within the body of a function, and the first of these
two is modifiable.

Like dring literals, const-qualified compound literals can be be placed into read-only memory and can
even be dared. Br example,

15 (const char[]){"abc"} == "abc"
might yield 1 if the literals’ storage is shared.

Since compound literals are unnamed, a single compound literal cannot specify a circulady link
object. For example, there is noay to write a self-referential compound literal that could be used as the
function argument in place of the named obgutl ess_zer osbelow:

20 struct int_list { int car; struct int_list *cdr; };
struct int_list endless_zeros = {0, &endl ess_zeros};
eval (endl ess_zeros);

Outside the body of a function, a compound literal is an initialization of a static obmetver, inside
a function bodyit is an asignment to an automatic object. Therefore, the followirglbeps produce the
25 samesequence of values for the objects associated with their regpestipound literals.

for (i =0; i < 10; i++) {

f((struct foo){.a =i, .b = 42});
}
for (i =0; i < 10; i+4)
30 f((struct foo){.a =i, .b = 42});

2.2 Design Discussion

There has been some discussion that perhaps compound literals could be made Go+hsatyle
expression scope, a concept that does not currently exist iHd@ever, the principle of least surprise
dictates that the following should work.

35 void f(void)

{
int *p=(int []1){ 1, 1, 2, 3, 5, 8, 13 };

for (; *p < 10; p++) {
[*. . .%]
40 }
[*. . .%]

Therefore, the scope of a compound literal inside a function body should encompass the enclosing block.

