
C9X Proposal WG14/N496 X3J11/95-097Compound Literals

David Prosser (dfp@novell.com)
David Keaton (dmk@dmk.com)

22 December, 1995

1. Introduction
1.1 Purpose

This document specifies the form and interpretation of a pure extension to the language portion of the C
standard to provide important additional flexibility to literals in expressions.

5 1.2 Scope

This document, although extending the C standard, still falls within the scope of that standard, and thus
follows all rules and guidelines of that standard except where explicitly noted herein.

1.3 References

1. ISO/IEC9899:1990,Programming Languages — C.

10 2. WG14/N494 X3J11/95-095, Prosser & Keaton. C9XAddition, Designated Initializers, 8 December,
1995.

All references to the ISO C standard will be presented as subclause numbers.For example, §6.4
references constant expressions.

1.4 Rationale

15 Compoundliterals provide a mechanism for specifying constants of aggregate or union type.This
eliminates the requirement for temporary variables when an aggregate or union value will only be needed
once.

Compound literals integrate easily into the C grammar and do not impose any additional run-time
overhead on a user’s program. They also combine well with designated initializers (see [2] and [3]) to form

20 anev en more convenient aggregate or union constant notation. Their initial C implementation appeared in
a compiler by Ken Thompson at AT&T Bell Laboratories.

2. Language
2.1 Compound Literals

The syntax, constraints, and semantics forpostfix-expressionin §6.3.2 are augmented by the following:

25 Syntax

postfix-expression:
(type-name) { initializer-list }
(type-name) { initializer-list , }

Constraints

30 Thetype name shall specify an object type or an array of unknown size.

No initializer shall attempt to provide a value for an object not contained within the entire unnamed
object specified by the compound literal.1

If the postfix expression occurs in any context other than within the body of a function, the initializer
list shall consist of constant expressions.

1. This is the ‘‘There shall be no more initializers...’’ constraint modified to take into account designated initializers[2].

- 1 -

C9X Proposal Compound Literals WG14/N496 X3J11/95-097

Semantics

A postfix expression that consists of a parenthesized type name followed by a brace-enclosed list of
initializers is known as acompound literal. It provides an unnamed object with value given by the
initializer list.2

5 If the type name specifies an array of unknown size, the size is determined by the initializer list as
specified in §6.5.7, and the type of the compound literal is that of the completed array type.Otherwise
(when the type name specifies an object type), the type of the compound literal is that specified by the type
name. Ineither case, the result is an lvalue.

The value of the compound literal is that of an unnamed object initialized by the initializer list.The
10 objecthas static storage duration if and only if the postfix expression occurs in a context other than within

the body of a function; otherwise, it has automatic storage duration associated with the enclosing block.

Except that the initializers need not be constant expressions (when the unnamed object has automatic
storage duration), all the semantic rules and constraints for initializer lists in §6.5.7 are applicable to
compound literals.3 The order in which any side effects occur within the initialization list expressions is

15 unspecified.4

String literals, and compound literals with const-qualified types, need not designate distinct objects.5

Examples

The file scope definition

int *p = (int []){2, 4};

20 initializesp to point to the first element of an array of two ints, the first having the value two and the
second, four. The expressions in this compound literal must be constant. The unnamed object has static
storage duration.

In contrast, in

void f(void)
25 {

int *p;
/*...*/
p = (int [2]){*p};
/*...*/

30 p is assigned the address of an unnamed automatic storage duration object that is an array of two ints, the
first having the value previously pointed to byp and the second, zero.

Designated initializers [2] readily combine with compound literals. On-the-fly structure objects can be
passed to functions without depending on member order:

drawline((struct point){.x=1, .y=1},
35 (struct point){.x=3, .y=4});

2. Note that this differs from a cast expression. For example, a cast specifies a conversion to scalar types only, and the result
of a cast expression is not an lvalue.

3. For example, subobjects without explicit initializers are initialized to zero.
4. In particular, the evaluation order need not be the same as the order of subobject initialization. The extensions to

initializers described in [2] prescribe an ordering for the implicit assignments to the subobjects that comprise the unnamed
object.

5. This allows implementations to share storage for string literals and constant compound literals with the same or
overlapping representations.

- 2 -

C9X Proposal Compound Literals WG14/N496 X3J11/95-097

Or, if drawline instead expected pointers tostruct point:

drawline(&(struct point){.x=1, .y=1},
&(struct point){.x=3, .y=4});

A read-only compound literal can be specified through constructions like:

5 (const float []){1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6}

The following three expressions have different meanings:

"/tmp/fileXXXXXX"
(char []){"/tmp/fileXXXXXX"}
(const char[]){"/tmp/fileXXXXXX"}

10 Thefirst always has static storage duration and has type array ofchar, but need not be modifiable; the last
two hav eautomatic storage duration when they occur within the body of a function, and the first of these
two is modifiable.

Like string literals, const-qualified compound literals can be be placed into read-only memory and can
ev en be shared. For example,

15 (const char[]){"abc"} == "abc"

might yield 1 if the literals’ storage is shared.

Since compound literals are unnamed, a single compound literal cannot specify a circularly linked
object. For example, there is no way to write a self-referential compound literal that could be used as the
function argument in place of the named objectendless_zerosbelow:

20 struct int_list { int car; struct int_list *cdr; };
struct int_list endless_zeros = {0, &endless_zeros};
eval(endless_zeros);

Outside the body of a function, a compound literal is an initialization of a static object;however, inside
a function body, it is an assignment to an automatic object. Therefore, the following two loops produce the

25 samesequence of values for the objects associated with their respective compound literals.

for (i = 0; i < 10; i++) {
f((struct foo){.a = i, .b = 42});

}

for (i = 0; i < 10; i++)
30 f((struct foo){.a = i, .b = 42});

2.2 Design Discussion

There has been some discussion that perhaps compound literals could be made to have C++ style
expression scope, a concept that does not currently exist in C.However, the principle of least surprise
dictates that the following should work.

35 void f(void)
{

int *p = (int []){ 1, 1, 2, 3, 5, 8, 13 };

for (; *p < 10; p++) {
/*...*/

40 }
/*...*/

Therefore, the scope of a compound literal inside a function body should encompass the enclosing block.

- 3 -

