
C9X Proposal WG14/N495 X3J11/95-096Initializer Repetition Counts

David Keaton (dmk@dmk.com)

22 December, 1995

1. Introduction
1.1 Purpose

This document specifies the form and interpretation of a pure extension to the language portion of the C
standard to provide important additional flexibility to initializers.

5 1.2 Scope

This document, although extending the C standard, still falls within the scope of that standard, and thus
follows all rules and guidelines of that standard except where explicitly noted herein.

1.3 References

1. ISO/IEC9899:1990,Programming Languages — C.

10 2. WG14/N494 X3J11/95-095, Prosser & Keaton. C9XAddition, Designated Initializers, 8 December,
1995.

All references to the ISO C standard will be presented as subclause numbers.For example, §6.4
references constant expressions.

1.4 Rationale

15 Initializerrepetition counts provide a mechanism for initializing multiple elements of an array with the
same value, a practice common in numerical programming.They add useful functionality that already
exists in Fortran so that programmers migrating to C need not suffer the loss of a program-text-saving
notational feature.

Initializer repetition counts integrate easily into the C grammar and do not impose any additional run-
20 timeoverhead on a user’s program. They also combine well with designated initializers (see [2] and [3]).

A form of repetition counts is known to have been implemented in at least one C compiler, from
Whitesmith’s.

Note that this proposal only applies the feature to arrays.In theory it could be extended to any
aggregate or union type. The general feeling is that this would cause more programming errors than it

25 solves, but the issue is open for debate and the proposal could easily be changed to accommodate all
aggregate and union types.

2. Language
2.1 Designated Initializers

The syntax for initializer repetition counts was originally chosen so that it would not depend on the
30 existence of designated initializers [2].However, they do combine to form an even more convenient

notation. Thisis discussed further below.

Since designated initializers have been accepted into the C language, more possibilities for the syntax of
initializer repetition counts can be considered.For example, the designator, repetition-count-expression,
and stride-expression could all be combined within one set of square brackets. If this is done, it might be

35 decidedthat subscript ranges would be a better idea than repetition counts.

Negative repetition counts are not proposed here because any functionality they would add could just as
easily be obtained by combining designated initializers and initializer repetition counts.Requiring
nonnegative repetition counts also simplifies their specification.

- 1 -

C9X Proposal Initializer Repetition Counts WG14/N495 X3J11/95-096

2.2 Initializer Repetition Counts

The syntax, constraints, and semantics for initializers in §6.5.7 are augmented by the following:

Syntax

initializer-list:
5 designation

opt
repetition-count

opt
initializer

initializer-list , designation
opt

repetition-count
opt

initializer

repetition-count:
* [repetition-count-expression stride

opt
] =

repetition-count-expression:
10 constant-expression

stride:
: stride-expression

stride-expression:
constant-expression

15 Constraints

No initializer shall attempt to provide a value for an object not contained within the entity being
initialized.1

An object initialized with a repetition-count shall have array type and the repetition-count-expression
shall be an integral constant expression that shall evaluate to a nonnegative value. If the array is of

20 unknown size, any nonnegative repetition count value is valid.

A stride-expression shall be an integral constant expression that shall evaluate to a nonzero positive
value.

Semantics

The span of subobjects specified by a repetition-count is a set of consecutive subobjects. If a
25 designationis present, the span begins at the designated subobject, otherwise it begins with thecurrent

object.2

A repetition-count-expression defines the length of a span. In the absence of a stride, the following
initializer initializes all the subobjects in the span. The initializer itself is evaluated exactly once.3

A stride-expression with a value s indicates that the following initializer initializes only the first
30 subobjectin the span and every sth subobject thereafter within the span; the others are skipped.

If an array of unknown size is initialized, its size is determined by the largest indexed element that is
explicitly initialized.4

1. This exact wording was actually already added to the C9X draft by designated initializers [2].It replaces the former
first constraint of ‘‘There shall be no more initializers in an initializer list than there are objects to be initialized.’’

2. The current object is defined in the C9X draft as specified by designated initializers [2].
3. There is room for discussion here.The intent is that compilers that extend initializers to include nonconstant expressions

should generate the side effects exactly once.
4. This encompasses both the former ‘‘size determined by the number of initializers’’ rule and the designated initializers [2]

rule that ‘‘size is determined by the largest indexed element with an explicit initializer.’’

- 2 -

C9X Proposal Initializer Repetition Counts WG14/N495 X3J11/95-096

Examples

The following sets the entire arraycosts to initially contain large values.

double costs[1000] = { *[1000] = HUGE_VAL };

The following is an example of a way that designated initializers [2] might be combined with initializer
5 repetition counts to achieve a one-line initialization of the interior of an array. The designator comes before

the* and the repetition count comes after it.

int interior_mask[100][100] = { [1]*[98] = { [1]*[98] = 1 } };

Repetition counts combined with designated initializers could be used to initialize an array with a
particular value, and then override certain locations.5

10 char primes[] = {
* [100] = TRUE,
[0] * [2] = FALSE,
[2*2] * [100-2*2 : 2] = FALSE,
[3*3] * [100-3*3 : 3] = FALSE,

15 [5*5] * [100-5*5 : 5] = FALSE,
[7*7] * [100-7*7 : 7] = FALSE

};

Initializers with repetition counts behave just as if the initializer had been listed the number of times
specified by the repetition-count-expression (except that the initializer is evaluated only once). This is

20 illustratedin the case of partially elided braces as follows.

int array[10][10] = { *[100] = 42 };

5. This improved version of the primes example was provided by Hallvard B. Furuseth, h.b.furuseth@usit.uio.no.

- 3 -

