Proposal for C2y
WG14

Document Number: N3794

Author: Abdulmalek Almkainzi <aalmkainzi@gmail.com>
Title: Namespacing with prefixes

Proposal category: New Features

Target Audience: General Developers

Abstract:

Prefixing identifiers has been the de facto standard way C developers avoid name collisions in their

APIs. This proposal aims to add proper namespaces to C without implicit name mangling by
utilizing prefixes.

Table of Contents

Introduction and RaAtiONale.......cc.euveiieeiiiiiiiiiiiiieeeeee et e e e e e e s esasbraaarrreeeeesenas 2
PIOPOSAL ...ttt ettt ettt e et e e bt e et be et e e et e e bt e e sbe e taeeabeeaeeenseennes 3
JAVEEY 0 Tl Y0] 1 o) s VRSP TR 5
CapUIe-PTrefiX SCOPES....cccviiiiiiriieiie ettt ettt e st st e e st e et e e beessbeessbeesaesnsaesnsaennsanns 6
INESTIME. ..vteeeiiieeeeeeittee e ettt e e e ettt e e e sttt e e e s stbeeessatteeeessaeeeessasaaeessssaeeeesassaaessnsssaaessnssaeessssseessnnssenes 10
SUD PrOfiXeS.uviiiieieiieieeiieee ettt eeetee e eette e e e e tae e e eeetaaeeeeesaeeeeensbaseeeeessseeeeessaseeensssseeeesenes 12
The _USING KEYWOI......cccciiiiiiiieiiieeciie ettt tte et e te e e ste e s sate e e ae e s saaeesssaeesssaeesssaasssseeessseenns 12
AliaSiNG INAIMESPACES.......eeeruieereeriieeieeriteeteertesteesttesteesaeesbesseesssaesseesssessseesssesssaesssesssessssessseennes 13
Backward/Forward Compatibility.........cccciecieiriiiiiiiiiieeiieecieecciee et e s svee e sve e e eae e e saveeesavee s 13
Compatibility With Cr..oeeiiiieieieeeeee ettt et e s te et e e beessbesbaenanens 14
CONVENIEIICE HEAAET.......uevvviiiiiiiiiieeiiieiieee ettt e e e e eeeseaaaaeeeeeeeesessssaaeeeeeeesessssssssrseesessensnsssnes 14
30 (o) o AN PPt 15
Nl IATIOTS. ¢uvvvvreririreiitiieriteeireeererererarer rerereaararerarasasasarasasasasssssasssasssasssasasssasssasssssssasasassssssssssssrsrassrsranes 15
RETEIEIICES. ... eveeeeeeireee ettt eeette e e eeetta e e e eeetaaeeeeeessaaeeeeeesseeeeeeessssseeeensssseeeeessseeeeensssseeseesnreeas 15

Introduction and Rationale

C library developers should prefix their entire exposed API, otherwise name collisions may occur.
Having to write the library prefix for every identifier the library exposes can be tedious, both for
library developers and their users.

Consequently, it isn’t uncommon for some libraries to expose identifiers that aren’t properly
prefixed, which can be problematic (e.g. X11 [0], raylib [1], json-c [2]).

This proposal has two goals:

* Make creating a prefixed API more convenient.
* Make using prefixed APIs more convenient.

This paper proposes that there should be a language provided construct for namespacing an entire
scope, and applying a prefix to all file scope identifiers in that scope. And another construct for

converting an already prefixed API into a namespace.

Ultimately, the benefit of namespaces is the ability to make code easier to write and be less noisy:

C23 C2y (with this proposal)

_Using _Namespace sdl;

SDL_Event e; Event e;

SDL_WaitEvent(&e); WaitEvent(&e);

if(e.type == SDL_EVENT_QUIT) {f(e.type == EVENT_QUIT)
{ {

quit = true; quit = true;

} }

SetRenderDrawColor(renderer, OxFF,
OxFF, OxFF, OXFF);

SDL_SetRenderDrawColor(renderer,
OxFF, OxFF, OxFF, OxFF);

SDL_RenderClear(renderer);

SDL_SetRenderDrawColor(renderer,
OxFF, 0x00, 0x00, OXFF);

SDL_RenderFillRect(renderer,
&squareRect);

SDL_RenderPresent(renderer);

RenderClear(renderer);

SetRenderDrawColor(renderer, OxFF,
0x00, 0x00, OxFF);

RenderFillRect(renderer,
&squareRect);

RenderPresent(renderer);

Proposal

Identifiers that can enter a namespace are file scope identifiers. These include struct and union tags,
type names, global variables, function names, enumeration constants, and namespaces. Namespace
definitions are only allowed at file scope, and identifiers that are declared in the namespace scope
are still considered to be file scope.

This paper proposes two ways to create a namespace. The first adds file scope identifiers declared
in a scope to a namespace (if it isn’t already added) and, except for nested namespace names,
prefixes the identifiers with a specified prefix. This will be referred to as an apply-prefix
namespace scope:

Namespace mylib += "MyLib"

{
struct S {
char c;
s
int count;
struct S foo();
}
int main()
{
mylib::count = 0;
mylib::foo();
struct mylib::S s;
MyLib_count = 0;
MyLib_foo();
struct MyLib_S s2;
}

An apply-prefix scope is useful for creating new library code. It makes it so that library developers
omit the prefix they would normally include for every file scope identifier.

File scope identifiers declared inside a namespace scope and contain a namespace access are not
prefixed by the apply-prefix scope, nor are they added to the namespace:

Namespace B += "B"

{
extern int B_f;

}

Namespace A += "A"
int ::1;
extern int B::f;

}

int main()

{
int a = // ok
int b = B::f; // ok
int ¢ = B_f; // ok
int d = A::1 // error
int e = A::f; // error

}

In order to make using existing prefixed libraries easier for users, this paper also proposes another
way to define namespaces, such that prefixed identifiers in a scope enter a namespace with their
prefixes omitted. The idea is to create a mapping from a prefix to a namespace, and matching file
scope identifiers in the scope against that mapping. This will be referred to as a capture-prefix
namespace scope:

Namespace bits -= "stdc"
{
#include <stdbit.h>
}
int main()
{
return bits::leading_zeros_ui(1);
}

It’s important to note that a namespace doesn’t have to be only associated with a single scope, users
are allowed to reopen the namespace with a different scope:

Namespace mylib += "MyLib"

{
void foo();
}
_Namespace mylib -= "MyLib2__"
{
void MyLib2__bar();
}
int main()
{
mylib::foo(); // calls MyLib_foo
mylib::bar(); // calls MyLib2__bar

MyLib_foo();
MyLib2__bar();

If the prefixed declarations collide, a constraint violation occurs:

Namespace A += "h"

{
int foo(); // becomes h_foo
void bar(); // becomes h_bar
}
_Namespace B += "h"
{
int _foo(); // ok, becomes h_foo
int _bar(); // error, h_bar declared with different type
}

In the above example "A: : foo™ and 'B: :_foo" refer to the same function, which is allowed. The
error occurred because the function "h_bar" was declared twice with a different type signature, as if
they were written fully prefixed without namespaces.

If any collisions happen within a namespace, a constraint violation occurs:

_Namespace A -= "a

{
}

Namespace A -= "A"

{

int a_foo(); // A::foo

int A_foo(); // error
// A::foo already exists and refers to a different function

}

Name Resolution

Referring to an identifier by using a namespace is done by putting the " : : * punctuator between the
namespace name and the identifier’s unprefixed name. If the namespace name is not provided, then
the identifier is searched for in the outermost file scope:

constexpr int i = 5;
Namespace A += "A"
{

constexpr int i = 10;

int foo()
{

}

int bar()
{

}

return ::1; // returns 5

return i; // returns 10

When inside a namespace scope, the unprefixed names can be used without a namespace access,
except in capture-prefix scopes with identifiers that were captured by the prefix that the scope is

capturing, or with declarations inside a capture-prefix scope. Additionally, identifiers other than
nested namespaces can always be referred to with their fully prefixed name.

Identifiers inside a namespace scope with the same unprefixed name as outer file scope identifiers
will cause the outer ones to be hidden when inside the namespace scope:

int i;
int foo();

Namespace A += "A"

{
int 1i;
int foo();
static inline int bar()
{
return i1 + foo(); // returns A::1 + A::foo()
}
}

Essentially, identifiers are resolved by searching from the names available in the innermost nested
namespace, continuing outwards if no match found. When there is ambiguity between file scope
identifiers at the same nest level, a constraint violation occurs.

Capture-Prefix Scopes

A non-namespace file scope identifier that is declared inside the capture-prefix scope is added to the
namespace if it meets the following:

* It does not contain a namespace access "::-
» It starts with the prefix

* Itis avalid identifier after the prefix

* Itis not already in the namespace

Namespace B -= "b"
{
int b_count; // added to the namespace B
int b_func(); // added to the namespace B
int bar(); // not added to the namespace B
int b_(); // not added to the namespace B
int b_1(); // not added to the namespace B
}
int main()
{
return B::count + B::func() + bar() + b_() + b_1();
}

When a capture-prefix scope adds an identifier to a namespace, the identifier is added without the
prefix that was used to capture it. However, that prefix cannot be omitted when inside a capture-
prefix scope that maps from that prefix to the namespace:

Namespace A -= "A"

{
void A_foo();

static inline void A_bar()

{
A_foo(); // ok
foo(); // error

}

Namespace A -= "AAA"
{
static inline void AAA_baz()
{
A_foo(); // ok, full prefixed name
foo(); // ok since this scope doesn’t capture "A_"

When an identifier is added to a namespace, the things that need to be taken into account are:

* The name that enters the namespace (the unprefixed name)
* The fully prefixed name
* The prefix that was used to capture it (if it was added via a capture-prefix scope)

File scope identifiers declared inside a capture-prefix scope are not allowed to use the namespace’s
available names, the names declared must be as if in outermost global file scope:

Namespace A += "A"
{
Namespace B += "B"

{
}

void foo();
}

Namespace A -= "A"

{
void A_bar();
void foo(); // not A_foo, but a new foo declaration ::foo

void A_bar()
{
foo(); // since this isn't a declaration, this calls A::foo
// because it’'s at a deeper nest level than ::foo

The reason for disallowing omitting the prefix when inside a capture-prefix scope that captures the
same prefix is backwards compatibility, for example:

// lib.h

#ifndef LIB_H
#define LIB_H

#include <errno.h>
extern int lib_errno;

static inline int lib_get_errno()

{
return lib_errno;
}
static inline int lib_get_std_errno()
{
return errno;
}
#endif
// main.c
Namespace 1lib -= "lib"
{
#include "1ib.h"
}
int main()
{
return lib::get_std_errno();
}

If the requirement to not allow omitting the prefix inside a capture-prefix scope wasn’t
implemented, then main would return the value of "1ib_errno" instead of the standard "errno".

It is allowed to specify multiple mappings when defining a capture-prefix scope:

Namespace
IIA_ n ,
n B_ n ,
IIC_II

A0 >

int A_func()
int B_func()
int C_func()

// enters the namespace A
// enters the namespace B
; // enters the namespace C

)
)

In such case, the scope belongs to all the namespaces specified. The purpose of this is to handle
libraries that apply different prefixes. It’s also useful for transitive includes, where a header includes
another library, and the user wants to namespace both libraries. Example of usage:

Namespace
IIA— " s
n B_ n s
IIC_II

A0 >

void A_foo();
void B_foo();
void C_foo();

}

// A contains foo
// B contains foo
// C contains foo

which i1s A_foo
which i1s B_foo
which i1s C_foo

Namespace
IIAA_II s
n BB_II s
n CC_II

A0 >

static inline void AA_bar()
{
A::foo(); // ok
// A:: not found at current nest level

search continues next level up

// finds A:: and no other A:: exists at that level
itatic inline void BB_bar()
{ B_foo(); // ok
// fully prefixed name
gtatic inline void CC_bar()
i foo(); // error, ambiguous

The process of determining which namespace an identifier maps to is sequential. A file scope
identifier would be checked against the first mapping, if it doesn’t match, it’s checked against the
one after it, and so on.

Namespace
II'L.'Lb__II 5
II'L.'Lb_II s

A0 >

void baz();
void lib__bar();
void lib_foo();
void 1ib_();

If an empty string is specified as the prefix in a capture-prefix mapping, all file scope identifiers
will match.

In the above example the namespace "A” will contain "A: :bar’, 'B" will contain 'B: :foo’, and 'C
will contain both "C::baz” and "C::1ib_". If the order of the specified mapping was ‘B -=

"1ib_"" before 'A -= "1lib__"", then "A" would be empty. A warning diagnostic could be raised
when a capture-prefix mapping is guaranteed to never match with any identifier. Perhaps an
alternative design is preferred, where the longer prefixes have higher priority.

Nesting

In case of an apply-prefix scope being declared directly inside another apply-prefix scope, the inner
namespace is added as a member to the outer one, and the prefixes are applied inner prefix first:

Namespace Lib += "1lib"
{
Namespace Math += "math"
{
float mul(float a, float b);
// lib_math_mul == Lib::Math::mul
}
}

In case of a capture-prefix scope being declared inside another namespace scope, the inner
namespace will not be added to the outer one.

_Namespace S += "S_II
{
_NameSpace A += ”A_II
{
_Namespace B -= "B_II
{
int B_foo();
int bar();
}
}
}
int main()
{
return B::foo() + B_foo() + bar();
}

A capture-prefix scope is never nested by scoping, nor is it ever a parent by scoping. The only way
to make nested namespaces with scopes declared inside each other is direct chains of apply-prefix

scopes:

Namespace A -= "P"

{
void P_foo();
Namespace A += "A"
{
void bar();
Namespace B += "B"
{
void baz();
Namespace C -= "C"
{
Namespace D += "D"
{
void foo();
}
void C_foo();
void K_foo2();
void P_baz();
}
}
}
}
int main()
{
A::foo();
A::bar();
A::B::baz();
C::foo();
D::foo();
}

In the above example, the namespaces created are as follows:

Namespace Identifiers (not Fully prefixed
including nested
namespaces)
A foo P_foo
bar A_bar
baz P_baz
A::B baz A_B_baz
C foo C_foo
D foo D _foo

Note how the only nesting that happened is "A: :B’, that is because they are both apply-prefix
scopes, where "B’ is directly declared in the scope of "A".

The reason why "A" contains "baz" ("P_baz") is because file scope identifiers declared inside a
capture-prefix scopes are also candidates to all outer capture-prefix scopes if the identifiers aren’t
already members of the current scope’s namespace:

Namespace A3 += "A"
{
int bar();
}
Namespace A -= "A"
{
Namespace A2 -= "A"
{
Namespace A3 -= "A"
{
int A_foo();
int A_bar();
// since A3::bar() already exists,
// 1t isn’t considered for outer scopes
}
}
}

The above code results in the following namespaces:

Namespace Identifiers Fully prefixed
A foo A_foo
A2 foo A_foo
A3 foo A_foo
bar A_bar

Sub Prefixes

In many cases, a library declares identifiers with sub prefixes (e.g. enumerations prefixed by the
enum type name, a category of functions, etc.).

To add those to their own namespace, nested under the library’s main namespace, the user can
specify a namespace as nested when defining it:

_Namespace
sdl::gpu -= "SDL_GPU_",
sdl::gpu -= "SDL_GPU",
sdl -= "SDL_"
{

#include <SDL3/SDL.h>
}

As mentioned previously, the order of capture-prefix mappings matters. In this example, if the order
was reversed, the "sd1: :gpu” namespace would be empty.

The _Using Keyword

This paper also proposes adding the *_Using" keyword. Its purpose is to allow names from a
namespace to be used within the current scope without requiring a namespace access or a prefix.

It can be used to either allow a single name, or all the names from a namespace:

_Namespace

StdC: :blts - “Stdc_"’
stdc: :mem = "mem",
stdc::str -= "str"

{

#include <stdbit.h>
#include <string.h>

}
int main()
{

_Using _Namespace stdc::bits; // introduces all names from stdc::bits
into this scope

unsigned i = leading_zeros_ui(1);

_Using stdc::mem::cmp; // introduces only stdc::mem::cmp

int ¢ = cmp("a", "b", 1); // calls stdc::mem::cmp (aka memcmp)

_Using stdc::str::cmp;

int ¢c2 = cmp("a", "b"); // error, ambiguous
// either use fully prefixed name, or access via namespace

Aliasing Namespaces

namespaces can be aliased in a scope with *~_Namespace alias = existing_namespace;:

Namespace pthread -= "pthread"

{
}

voild *proc(void *arg);

#include <pthread.h>

int main()

{ _Namespace pt = pthread;
pthread_t thread;
pt::create(&thread, 0, proc, 0);

, pt::join(thread, 0);

Backward/Forward Compatibility

Since this proposal doesn’t require any modification to existing code to become useful, nor does it
break any old code, backwards compatibility isn’t a concern for the most part.

Forward compatibility is also maintained:

Namespace pt -= "pthread"

{
}

#include <pthread.h>

voild *proc(void *arg);

int main()

{
pthread_t thread;
pt::create(&thread, 0, proc, 0);
pt::join(thread, 0);

Even if pthread.h adds a namespace scope in a future version, this code will always work as
intended. This is why capture-prefix scopes were designed such that they can never nest by scoping,
and why file scope identifiers are considered for all outer capture-prefix scopes.

Compatibility with C++

Many libraries aim to have their header files be compatible with both C and C++. With this
proposal, library header files can remain as-is, and the responsibility to namespace the library can
be left to the user of the header.

Alternatively, if the library wants to convenience C2y users, it can use conditional compilation to
only use namespaces if the language is C2y:

#define IS_C2Y (__STDC_VERSION__ >= 202ymmL) // whatever the number ends up
being

#1f IS_C2Y

_Namespace

MyLib::Math -= "mylib_math_",
MyLib -= "mylib_"

{
#elif defined(__cplusplus)
extern "C" {

#endif

// declarations
#1f IS_C2Y || defined(__cplusplus)
}

#endif

Convenience Header

A new header <stdnamespace.h> might be desired to define the macros:

#define namespace _Namespace
#define using _Using

Prior Art

Many other programming languages provide namespaces, or a similar feature that eliminates the
need for users to prefix all file scope identifiers. The most similar prior art to this proposal is C++
namespaces.

The biggest difference between what this paper proposes and prior art is that this proposal entirely
avoids implicit name mangling. It instead requires the user to specify a prefix. And there appears to
be no prior art for converting a prefixed API into a namespace.

Limitations

The biggest limitation of this proposal is that macros can’t get namespaced (since namespaces are
processed after all macros have been expanded). Another limitation is that it doesn’t help when
working with libraries that already pollute the global namespace [0] [1] [2]. It only helps make
using prefixed libraries easier, and helps make prefixing new libraries easier.

A future draft may include an extension to the apply-prefix scope to specify that it should only
apply the prefix to non-external linkage file scope identifiers. That would help with libraries that
declare file scope identifiers with internal linkage or no linkage without a proper prefix:

_Namespace(no_extern) raylib += "RL_"

{
}

#include <raylib.h>

External linkage identifiers in the scope would still enter the namespace, they just don’t get
prefixed.

References

[0]:
https://www.reddit.com/r/cpp questions/comments/Ixjhgg/how do you deal with c libraries whi

ch pollute/
[1]: https://github.com/raysan5/raylib/issues/1217

[2]: https://github.com/json-c/json-c/issues/621

https://github.com/json-c/json-c/issues/621
https://github.com/raysan5/raylib/issues/1217
https://www.reddit.com/r/cpp_questions/comments/lxjhgg/how_do_you_deal_with_c_libraries_which_pollute/
https://www.reddit.com/r/cpp_questions/comments/lxjhgg/how_do_you_deal_with_c_libraries_which_pollute/

	Introduction and Rationale
	Proposal
	Name Resolution
	Capture-Prefix Scopes
	Nesting
	Sub Prefixes
	The _Using Keyword
	Aliasing Namespaces
	Backward/Forward Compatibility
	Compatibility with C++
	Convenience Header

	Prior Art
	Limitations
	References

