
Proposal for C2y
WG14

Document Number: N3794
Author: Abdulmalek Almkainzi <aalmkainzi@gmail.com>
Title: Namespacing with prefixes
Proposal category: New Features
Target Audience: General Developers

Abstract:
Prefixing identifiers has been the de facto standard way C developers avoid name collisions in their
APIs. This proposal aims to add proper namespaces to C without implicit name mangling by
utilizing prefixes.

Table of Contents
Introduction and Rationale...2
Proposal.. 3

Name Resolution..5
Capture-Prefix Scopes...6
Nesting... 10
Sub Prefixes... 12
The _Using Keyword...12
Aliasing Namespaces...13
Backward/Forward Compatibility...13
Compatibility with C++...14
Convenience Header.. 14

Prior Art.. 15
Limitations..15
References..15

Introduction and Rationale
C library developers should prefix their entire exposed API, otherwise name collisions may occur.
Having to write the library prefix for every identifier the library exposes can be tedious, both for
library developers and their users.

Consequently, it isn’t uncommon for some libraries to expose identifiers that aren’t properly
prefixed, which can be problematic (e.g. X11 [0], raylib [1], json-c [2]).

This proposal has two goals:

• Make creating a prefixed API more convenient.
• Make using prefixed APIs more convenient.

This paper proposes that there should be a language provided construct for namespacing an entire
scope, and applying a prefix to all file scope identifiers in that scope. And another construct for
converting an already prefixed API into a namespace.

Ultimately, the benefit of namespaces is the ability to make code easier to write and be less noisy:

C23 C2y (with this proposal)

SDL_Event e;

SDL_WaitEvent(&e);

if(e.type == SDL_EVENT_QUIT)
{
 quit = true;
}

SDL_SetRenderDrawColor(renderer,
0xFF, 0xFF, 0xFF, 0xFF);

SDL_RenderClear(renderer);

SDL_SetRenderDrawColor(renderer,
0xFF, 0x00, 0x00, 0xFF);

SDL_RenderFillRect(renderer,
&squareRect);

SDL_RenderPresent(renderer);

_Using _Namespace sdl;

Event e;

WaitEvent(&e);

if(e.type == EVENT_QUIT)
{
 quit = true;
}

SetRenderDrawColor(renderer, 0xFF,
0xFF, 0xFF, 0xFF);

RenderClear(renderer);

SetRenderDrawColor(renderer, 0xFF,
0x00, 0x00, 0xFF);

RenderFillRect(renderer,
&squareRect);

RenderPresent(renderer);

Proposal
Identifiers that can enter a namespace are file scope identifiers. These include struct and union tags,
type names, global variables, function names, enumeration constants, and namespaces. Namespace
definitions are only allowed at file scope, and identifiers that are declared in the namespace scope
are still considered to be file scope.

This paper proposes two ways to create a namespace. The first adds file scope identifiers declared
in a scope to a namespace (if it isn’t already added) and, except for nested namespace names,
prefixes the identifiers with a specified prefix. This will be referred to as an apply-prefix
namespace scope:

An apply-prefix scope is useful for creating new library code. It makes it so that library developers
omit the prefix they would normally include for every file scope identifier.

File scope identifiers declared inside a namespace scope and contain a namespace access are not
prefixed by the apply-prefix scope, nor are they added to the namespace:

Namespace mylib += "MyLib"
{
 struct S {
 char c;
 };

 int count;

 struct S foo();
}

int main()
{
 mylib::count = 0;
 mylib::foo();
 struct mylib::S s;

 MyLib_count = 0;
 MyLib_foo();
 struct MyLib_S s2;
}

In order to make using existing prefixed libraries easier for users, this paper also proposes another
way to define namespaces, such that prefixed identifiers in a scope enter a namespace with their
prefixes omitted. The idea is to create a mapping from a prefix to a namespace, and matching file
scope identifiers in the scope against that mapping. This will be referred to as a capture-prefix
namespace scope:

It’s important to note that a namespace doesn’t have to be only associated with a single scope, users
are allowed to reopen the namespace with a different scope:

Namespace bits -= "stdc"
{
 #include <stdbit.h>
}

int main()
{
 return bits::leading_zeros_ui(1);
}

Namespace mylib += "MyLib"
{
 void foo();
}

_Namespace mylib -= "MyLib2__"
{
 void MyLib2__bar();
}

int main()
{
 mylib::foo(); // calls MyLib_foo
 mylib::bar(); // calls MyLib2__bar

 MyLib_foo();
 MyLib2__bar();
}

Namespace B += "B"
{
 extern int B_f;
}
Namespace A += "A"
{
 int ::i;
 extern int B::f;
}

int main()
{
 int a = i; // ok
 int b = B::f; // ok
 int c = B_f; // ok
 int d = A::i // error
 int e = A::f; // error
}

If the prefixed declarations collide, a constraint violation occurs:

In the above example `A::foo` and `B::_foo` refer to the same function, which is allowed. The
error occurred because the function `h_bar` was declared twice with a different type signature, as if
they were written fully prefixed without namespaces.

If any collisions happen within a namespace, a constraint violation occurs:

Name Resolution
Referring to an identifier by using a namespace is done by putting the `::` punctuator between the
namespace name and the identifier’s unprefixed name. If the namespace name is not provided, then
the identifier is searched for in the outermost file scope:

When inside a namespace scope, the unprefixed names can be used without a namespace access,
except in capture-prefix scopes with identifiers that were captured by the prefix that the scope is

Namespace A += "h"
{
 int foo(); // becomes h_foo
 void bar(); // becomes h_bar
}

_Namespace B += "h"
{
 int _foo(); // ok, becomes h_foo
 int _bar(); // error, h_bar declared with different type
}

constexpr int i = 5;

Namespace A += "A"
{
 constexpr int i = 10;

 int foo()
 {
 return ::i; // returns 5
 }

 int bar()
 {
 return i; // returns 10
 }
}

Namespace A -= "a"
{
 int a_foo(); // A::foo
}

Namespace A -= "A"
{
 int A_foo(); // error
 // A::foo already exists and refers to a different function
}

capturing, or with declarations inside a capture-prefix scope. Additionally, identifiers other than
nested namespaces can always be referred to with their fully prefixed name.

Identifiers inside a namespace scope with the same unprefixed name as outer file scope identifiers
will cause the outer ones to be hidden when inside the namespace scope:

Essentially, identifiers are resolved by searching from the names available in the innermost nested
namespace, continuing outwards if no match found. When there is ambiguity between file scope
identifiers at the same nest level, a constraint violation occurs.

Capture-Prefix Scopes
A non-namespace file scope identifier that is declared inside the capture-prefix scope is added to the
namespace if it meets the following:

• It does not contain a namespace access `::`
• It starts with the prefix
• It is a valid identifier after the prefix
• It is not already in the namespace

When a capture-prefix scope adds an identifier to a namespace, the identifier is added without the
prefix that was used to capture it. However, that prefix cannot be omitted when inside a capture-
prefix scope that maps from that prefix to the namespace:

int i;
int foo();

Namespace A += "A"
{
 int i;
 int foo();

 static inline int bar()
 {
 return i + foo(); // returns A::i + A::foo()
 }
}

Namespace B -= "b"
{
 int b_count; // added to the namespace B
 int b_func(); // added to the namespace B

 int bar(); // not added to the namespace B
 int b_(); // not added to the namespace B
 int b_1(); // not added to the namespace B
}

int main()
{
 return B::count + B::func() + bar() + b_() + b_1();
}

When an identifier is added to a namespace, the things that need to be taken into account are:

• The name that enters the namespace (the unprefixed name)
• The fully prefixed name
• The prefix that was used to capture it (if it was added via a capture-prefix scope)

File scope identifiers declared inside a capture-prefix scope are not allowed to use the namespace’s
available names, the names declared must be as if in outermost global file scope:

The reason for disallowing omitting the prefix when inside a capture-prefix scope that captures the
same prefix is backwards compatibility, for example:

Namespace A -= "A"
{
 void A_foo();

 static inline void A_bar()
 {
 A_foo(); // ok
 foo(); // error
 }
}

Namespace A -= "AAA"
{
 static inline void AAA_baz()
 {
 A_foo(); // ok, full prefixed name
 foo(); // ok since this scope doesn’t capture "A_"
 }
}

Namespace A += "A"
{
 Namespace B += "B"
 {
 void foo();
 }
}

Namespace A -= "A"
{
 void A_bar();
 void foo(); // not A_foo, but a new foo declaration ::foo

 void A_bar()
 {
 foo(); // since this isn't a declaration, this calls A::foo
 // because it’s at a deeper nest level than ::foo
 }
}

If the requirement to not allow omitting the prefix inside a capture-prefix scope wasn’t
implemented, then main would return the value of `lib_errno` instead of the standard `errno`.

It is allowed to specify multiple mappings when defining a capture-prefix scope:

In such case, the scope belongs to all the namespaces specified. The purpose of this is to handle
libraries that apply different prefixes. It’s also useful for transitive includes, where a header includes
another library, and the user wants to namespace both libraries. Example of usage:

// lib.h

#ifndef LIB_H
#define LIB_H

#include <errno.h>

extern int lib_errno;

static inline int lib_get_errno()
{
 return lib_errno;
}

static inline int lib_get_std_errno()
{
 return errno;
}

#endif

// main.c

Namespace lib -= "lib"
{
 #include "lib.h"
}

int main()
{
 return lib::get_std_errno();
}

_Namespace
A -= "A_",
B -= "B_",
C -= "C_"
{
 int A_func(); // enters the namespace A
 int B_func(); // enters the namespace B
 int C_func(); // enters the namespace C
}

The process of determining which namespace an identifier maps to is sequential. A file scope
identifier would be checked against the first mapping, if it doesn’t match, it’s checked against the
one after it, and so on.

If an empty string is specified as the prefix in a capture-prefix mapping, all file scope identifiers
will match.

In the above example the namespace `A` will contain `A::bar`, `B` will contain `B::foo`, and `C`
will contain both `C::baz` and `C::lib_`. If the order of the specified mapping was `B -=

_Namespace
A -= "A_",
B -= "B_",
C -= "C_"
{
 void A_foo();
 void B_foo();
 void C_foo();
}

// A contains foo which is A_foo
// B contains foo which is B_foo
// C contains foo which is C_foo

_Namespace
A -= "AA_",
B -= "BB_",
C -= "CC_"
{
 static inline void AA_bar()
 {
 A::foo(); // ok
 // A:: not found at current nest level
 // search continues next level up
 // finds A:: and no other A:: exists at that level
 }
 static inline void BB_bar()
 {
 B_foo(); // ok
 // fully prefixed name
 }
 static inline void CC_bar()
 {
 foo(); // error, ambiguous
 }
}

_Namespace
A -= "lib__",
B -= "lib_",
C -= ""
{
 void baz();
 void lib__bar();
 void lib_foo();
 void lib_();
}

"lib_"` before `A -= "lib__"`, then `A` would be empty. A warning diagnostic could be raised
when a capture-prefix mapping is guaranteed to never match with any identifier. Perhaps an
alternative design is preferred, where the longer prefixes have higher priority.

Nesting
In case of an apply-prefix scope being declared directly inside another apply-prefix scope, the inner
namespace is added as a member to the outer one, and the prefixes are applied inner prefix first:

In case of a capture-prefix scope being declared inside another namespace scope, the inner
namespace will not be added to the outer one.

A capture-prefix scope is never nested by scoping, nor is it ever a parent by scoping. The only way
to make nested namespaces with scopes declared inside each other is direct chains of apply-prefix
scopes:

Namespace Lib += "lib"
{
 Namespace Math += "math"
 {
 float mul(float a, float b);
 // lib_math_mul == Lib::Math::mul
 }
}

Namespace S += "S"
{
 Namespace A += "A"
 {
 Namespace B -= "B"
 {
 int B_foo();
 int bar();
 }
 }
}
int main()
{
 return B::foo() + B_foo() + bar();
}

In the above example, the namespaces created are as follows:

Namespace Identifiers (not
including nested
namespaces)

Fully prefixed

A foo P_foo

bar A_bar

baz P_baz

A::B baz A_B_baz

C foo C_foo

D foo D_foo

Note how the only nesting that happened is `A::B`, that is because they are both apply-prefix
scopes, where `B` is directly declared in the scope of `A`.

The reason why `A` contains `baz` (`P_baz`) is because file scope identifiers declared inside a
capture-prefix scopes are also candidates to all outer capture-prefix scopes if the identifiers aren’t
already members of the current scope’s namespace:

Namespace A -= "P"
{
 void P_foo();
 Namespace A += "A"
 {
 void bar();
 Namespace B += "B"
 {
 void baz();

 Namespace C -= "C"
 {
 Namespace D += "D"
 {
 void foo();
 }
 void C_foo();
 void K_foo2();
 void P_baz();
 }
 }
 }
}

int main()
{
 A::foo();
 A::bar();
 A::B::baz();
 C::foo();
 D::foo();
}

The above code results in the following namespaces:

Namespace Identifiers Fully prefixed

A foo A_foo

A2 foo A_foo

A3 foo A_foo

bar A_bar

Sub Prefixes
In many cases, a library declares identifiers with sub prefixes (e.g. enumerations prefixed by the
enum type name, a category of functions, etc.).

To add those to their own namespace, nested under the library’s main namespace, the user can
specify a namespace as nested when defining it:

As mentioned previously, the order of capture-prefix mappings matters. In this example, if the order
was reversed, the `sdl::gpu` namespace would be empty.

The _Using Keyword
This paper also proposes adding the `_Using` keyword. Its purpose is to allow names from a
namespace to be used within the current scope without requiring a namespace access or a prefix.

It can be used to either allow a single name, or all the names from a namespace:

Namespace A3 += "A"
{
 int bar();
}

Namespace A -= "A"
{
 Namespace A2 -= "A"
 {
 Namespace A3 -= "A"
 {
 int A_foo();
 int A_bar();
 // since A3::bar() already exists,
 // it isn’t considered for outer scopes
 }
 }
}

_Namespace
sdl::gpu -= "SDL_GPU_",
sdl::gpu -= "SDL_GPU",
sdl -= "SDL_"
{
 #include <SDL3/SDL.h>
}

Aliasing Namespaces
namespaces can be aliased in a scope with `_Namespace alias = existing_namespace;`:

Backward/Forward Compatibility
Since this proposal doesn’t require any modification to existing code to become useful, nor does it
break any old code, backwards compatibility isn’t a concern for the most part.

Forward compatibility is also maintained:

_Namespace
stdc::bits -= "stdc_",
stdc::mem -= "mem",
stdc::str -= "str"
{
 #include <stdbit.h>
 #include <string.h>
}

int main()
{
 _Using _Namespace stdc::bits; // introduces all names from stdc::bits
into this scope

 unsigned i = leading_zeros_ui(1);

 _Using stdc::mem::cmp; // introduces only stdc::mem::cmp

 int c = cmp("a", "b", 1); // calls stdc::mem::cmp (aka memcmp)

 _Using stdc::str::cmp;

 int c2 = cmp("a", "b"); // error, ambiguous
 // either use fully prefixed name, or access via namespace
}

Namespace pthread -= "pthread"
{
 #include <pthread.h>
}

void *proc(void *arg);

int main()
{
 _Namespace pt = pthread;

 pthread_t thread;

 pt::create(&thread, 0, proc, 0);

 pt::join(thread, 0);
}

Even if pthread.h adds a namespace scope in a future version, this code will always work as
intended. This is why capture-prefix scopes were designed such that they can never nest by scoping,
and why file scope identifiers are considered for all outer capture-prefix scopes.

Compatibility with C++
Many libraries aim to have their header files be compatible with both C and C++. With this
proposal, library header files can remain as-is, and the responsibility to namespace the library can
be left to the user of the header.

Alternatively, if the library wants to convenience C2y users, it can use conditional compilation to
only use namespaces if the language is C2y:

Convenience Header
A new header <stdnamespace.h> might be desired to define the macros:

Namespace pt -= "pthread"
{
 #include <pthread.h>
}

void *proc(void *arg);

int main()
{
 pthread_t thread;
 pt::create(&thread, 0, proc, 0);
 pt::join(thread, 0);
}

#define IS_C2Y (__STDC_VERSION__ >= 202ymmL) // whatever the number ends up
being

#if IS_C2Y
_Namespace
MyLib::Math -= "mylib_math_",
MyLib -= "mylib_"
{
#elif defined(__cplusplus)
extern "C" {
#endif

// declarations

#if IS_C2Y || defined(__cplusplus)
}
#endif

#define namespace _Namespace
#define using _Using

Prior Art
Many other programming languages provide namespaces, or a similar feature that eliminates the
need for users to prefix all file scope identifiers. The most similar prior art to this proposal is C++
namespaces.

The biggest difference between what this paper proposes and prior art is that this proposal entirely
avoids implicit name mangling. It instead requires the user to specify a prefix. And there appears to
be no prior art for converting a prefixed API into a namespace.

Limitations
The biggest limitation of this proposal is that macros can’t get namespaced (since namespaces are
processed after all macros have been expanded). Another limitation is that it doesn’t help when
working with libraries that already pollute the global namespace [0] [1] [2]. It only helps make
using prefixed libraries easier, and helps make prefixing new libraries easier.

A future draft may include an extension to the apply-prefix scope to specify that it should only
apply the prefix to non-external linkage file scope identifiers. That would help with libraries that
declare file scope identifiers with internal linkage or no linkage without a proper prefix:

External linkage identifiers in the scope would still enter the namespace, they just don’t get
prefixed.

References
[0]:
https://www.reddit.com/r/cpp_questions/comments/lxjhgg/how_do_you_deal_with_c_libraries_whi
ch_pollute/
[1]: https://github.com/raysan5/raylib/issues/1217
[2]: https://github.com/json-c/json-c/issues/621

_Namespace(no_extern) raylib += "RL_"
{
 #include <raylib.h>
}

https://github.com/json-c/json-c/issues/621
https://github.com/raysan5/raylib/issues/1217
https://www.reddit.com/r/cpp_questions/comments/lxjhgg/how_do_you_deal_with_c_libraries_which_pollute/
https://www.reddit.com/r/cpp_questions/comments/lxjhgg/how_do_you_deal_with_c_libraries_which_pollute/

	Introduction and Rationale
	Proposal
	Name Resolution
	Capture-Prefix Scopes
	Nesting
	Sub Prefixes
	The _Using Keyword
	Aliasing Namespaces
	Backward/Forward Compatibility
	Compatibility with C++
	Convenience Header

	Prior Art
	Limitations
	References

