Variadic-argument introspection: __ VA COUNT__ and
__VA SLICE__

Kamila Szewczyk, Universitiat des Saarlandes

2026-01-15

Document number: N3792

Date: 2026-01-15
Project: ISO/TEC 9899:202y
Target: Integration into the next revision (“C2y”)
Proposal category: New feature (preprocessing)
Audience: WG14
Reply-to: k@iczelia.net
License: CC BY 4.0
Abstract

This paper proposes two new predefined function-like macros for the C preprocessor:
e __VA_COUNT__C(...) expands to the number of macro arguments in its invocation,
including empty arguments, as a single decimal preprocessing-number token.

e __VA_SLICE__(start, len, ...) expands to a comma-separated subsequence of
the variadic argument list, preserving empty arguments, suitable for forwarding as
__VA_ARGS__.

Together these features provide direct, portable support for common “variadic macro
metaprogramming” patterns (counting, selection, head/tail, forwarding) without the com-
plexity and fixed maximum arity typical of macro-library workarounds.

Contents

1 Introduction
1.1 Previous work

2 Motivation
2.1 Portability and simplicity oo o
2.2 Preserving empty argumentso

3 Proposed features
3.0 VA COUNT__(oul) oo oo e e e
3.2 __VA SLICE__(start, lem, ...) v i ittt
3.3 Derived operations e

4 Design considerations
4.1 One-based indexing e e
4.2 Empty arguments and commas e e
4.3 Expression evaluation for start and len

5 Suggested wording 5

5.1 Clause 6.10.5.1 e e 5
5.2 New clause 6.10.5.x — The __VA_COUNT__ predefined macro 5
5.3 New clause 6.10.5.y — The __VA_SLICE__ predefined macro 6
5.4 Clause 7.1.3, Reserved identifiers (optional editorial note) 6

1 Introduction

C23 standardized __VA_OPT__ to improve usability of variadic macros with zero arguments.
However, the standard still provides no direct facility to (1) determine the number of arguments
in a variadic macro invocation, or (2) forward a subsequence of a variadic list while preserving
empty arguments.

These capabilities are routinely emulated in macro libraries using intricate techniques with
hard-coded maximum arities, and are widely regarded as “nasty to program” despite being
straightforward for an implementation. [2]

This paper proposes two predefined function-like macros to address these needs.

1.1 Previous work

o N3190 (Eztensions to the preprocessor for C2Y') discusses several candidate predefined
function-like macros, including two argument-counting facilities, __COMMAS__ and __NARGS__.

2]

o Deniau (comp.std.c, 2006): a long-cited posting titled __VA_NARG__ argues that counting
the number of arguments in __VA_ARGS__ is “rather easy to compute for cpp” and that the
standard should provide such a facility; it also archives a representative macro workaround
with an explicit maximum arity. [4]

« GCC PR33877 (2007—2008): a GCC enhancement request asks for a predefined
__VA_ARGC__ to expose the number of variadic arguments, citing difficulty of doing so
portably without double-evaluating arguments; follow-up discussion notes this avoids “busy-
work clutter prone to unchecked error” when forwarding to real variadic functions. [5, 6]

o N3307 (Tuil recursion for preprocessor macros) motivates further variadic-list processing
following standardization of __VA_OPT__ and uses an operation named __VA_TAIL__ in
examples of scalable list processing. [7]

2 Motivation

2.1 Portability and simplicity

Many macro packages need the arity of __VA_ARGS__ to:
« select among overload-like macro definitions (arity dispatch);
e provide a count argument to a varargs function wrapper.
Extracting the n-th element or taking the tail of a variadic list is similarly common. Both
operations are feasible for a preprocessor implementation once arguments are parsed, yet are
difficult to express portably in standard macro language without imposing a fixed maximum.

2.2 Preserving empty arguments

C macro argument parsing permits empty arguments. For forwarding and transformation, it is
often necessary to preserve empties rather than “compress” them away. A slicing primitive that
preserves empty arguments is a direct building block for such forwarding.

3 Proposed features

3.1 __VA_COUNT__(...)
Synopsis

__VA_COUNT__(/* zero or more arguments */)

Semantics

Let the invocation be:
__VA_COUNT__(Ay, A, ..., Am)

where m is the number of arguments as determined by the preprocessor’s function-like macro
argument parsing rules (top-level commas separate arguments; parentheses nesting is respected;
empty arguments are permitted).

The expansion of __VA_COUNT__ is a single preprocessing-number token denoting the decimal
integer value m.

Notable cases

e __VA_COUNT__() expands to 0.

e __VA_COUNT__(x) expands to 1.

o Empty arguments count: __VA_COUNT__(x, , y) expands to 3.

o Parenthesized commas do not split arguments: __VA_COUNT__((a,b), c) expands to 2.
Suggested Constraints

e The value m shall be representable as signed long.

e The expansion shall not contain digit separators.
3.2 __VA_SLICE__(start, len, ...)
Synopsis

__VA_SLICE__(start, len, /* zero or more arguments */)

Intended use

Produces a comma-separated subsequence of the variadic argument list, preserving empty
arguments, suitable for forwarding as __VA_ARGS__ to another macro.

Parsing and evaluation of start and len

After macro expansion, each of start and len is evaluated as if it were the controlling expression
of a #if group (i.e., with preprocessing-expression evaluation rules). The resulting integer values
are:

s = start and ¢ = len.

(Equivalently: __VA_SLICE__ accepts arithmetic expressions for start and len as in #if
contexts, and uses the resulting integer values.)

Constraints

o s shall satisfy s > 1.
e /¢ shall satisfy £ > 0.
e s and / shall be representable as signed long.

Semantics

Let the invocation be:
__VA_SLICE_ (s, ¢, Ay, Ay, ..., Ay)

where m is the number of variadic arguments following the first two arguments, determined by
ordinary macro-argument parsing rules (including empty arguments). Define:
e If /=0 or s > m, the expansion is the empty preprocessing-token sequence.
o Otherwise let t = min(m, s+ ¢ — 1).
Then the expansion is:

As, AS+1’ L] At

with a comma preprocessing-token between each adjacent pair. Each Ay is the original
preprocessing-token sequence of that argument (including the possibility that it is empty).
Selected arguments are macro-expanded as ordinary macro arguments are expanded when
substituted (i.e., fully macro replaced prior to emission), while unselected arguments are not
required to be macro-expanded.

Examples
__VA_SLICE_ (1, 3, a, b, c, d) // => a, b, c
__VA_SLICE__(8, 99, a, b, c, d) // =>c, d
__VA_SLICE__ (2, 2, a, , c, d) // >, c (first selected argument is empty)
__VA_SLICE__(5, 1, a, b, ¢) /] > (empty)
__VA_SLICE__(1, 0, a, b) /] => (empty)

3.3 Derived operations

Using __VA_SLICE__ and __VA_COUNT__:

#define __VA_PICK__(n, ...) __VA SLICE__(n, 1, __VA_ARGS_.)

#define _ VA HEAD _(...) __VA_SLICE_ (1, 1, __VA_ARGS_)

#define _ VA _TATL_ (...) __VA_SLICE_ (2, __VA_COUNT__(__VA _ARGS_) - 1,
__VA_ARGS_)

4 Design considerations

4.1 One-based indexing

__VA_SLICE__ indexes the variadic list with s > 1 to align with typical “first argument is 1”
conventions for macro-argument selection and to avoid ambiguity with “no selection” in the
presence of £ = 0.

4.2 Empty arguments and commas

Because empty arguments are preserved and commas are inserted between selected elements, the
expansion of __VA_SLICE__ may begin with a comma (if the first selected argument is empty
and at least one additional argument is selected) or may end with a comma (if the last selected
argument is empty and at least one preceding argument is selected). This is intentional and
matches the semantics of forwarding empty macro arguments.

4.3 Expression evaluation for start and len

Allowing start and len to be preprocessing expressions (as in #if) enables idioms such as:

#define DROP1(...) _ VA SLICE_ (2, __VA COUNT__(__VA_ARGS_) - 1, __VA_ARGS_))

without requiring users to precompute lengths through additional macro layers.

5 Suggested wording

This wording is presented in terms of C23 clause numbering for the preprocessor (Clause 6.10).
Editors may need to adjust numbering for the target working draft.

5.1 Clause 6.10.5.1
Suggested new wording of Paragraph 5:

5 The identifiers __VA_ARGS__, __VA_COUNT__, __VA_SLICE__ and __VA_OPT__ shall
occur only in the replacement-list of a function-like macro that uses the ellipsis
notation in the parameters

5.2 New clause 6.10.5.x — The __VA_COUNT__ predefined macro

Add a new subclause:

6.10.5.x The __VA_COUNT__ predefined macro
Description

1 The expansion of the function-like macro __VA_COUNT__(...) produces a single
preprocessing-number token not containing any digit separators. When interpreted
in translation phase 7, its value is the number of arguments in the macro invocation
(including empty arguments), as determined by the macro argument parsing rules of
6.10.5, and is representable with type signed long.

Constraints
2 The number of arguments shall be representable as signed long.
Semantics

3 Let the invocation be __VA_COUNT__(A1, A2, \dots , Am), where m is the num-
ber of arguments determined by function-like macro argument parsing. The result of
macro expansion is a single preprocessing-number token denoting the decimal integer
value m.

4 The preprocessing tokens of the arguments are not required to be macro-expanded
in order to determine m.

5 Example 1

__VA_COUNT__(Q) // -> 0
__VA_COUNT__(x) /] > 1
__VA_COUNT__(x, , y) /] -> 3

2

__VA_COUNT__((a,b), ¢c) // —>

5.3 New clause 6.10.5.y — The __VA_SLICE__ predefined macro

Add a new subclause:

6.10.5.y The __VA_SLICE__ predefined macro
Description

1 The expansion of the function-like macro __VA_SLICE__(start, len, ...) pro-
duces a (possibly empty) preprocessing-token sequence consisting of selected macro
arguments, separated by comma preprocessing-tokens. The selection is from the
variadic argument list (the arguments following the first two).

Constraints

2 After macro expansion, the preprocessing-token sequences of start and len shall
be valid preprocessing expressions as in 6.10.1 and shall evaluate to integer values
s and £ representable as signed long. The value s shall satisfy s > 1 and ¢ shall
satisfy £ > 0.

Semantics

3 Let the invocation be __VA_SLICE__ (s, ¢, A1, A2, ..., Am), where m is the
number of variadic arguments following the first two arguments, determined by
function-like macro argument parsing rules, including empty arguments.

4 If £ = 0 or s > m, the result of macro expansion is the empty preprocessing-token
sequence.

5 Otherwise, let ¢ = min(m,s + ¢ — 1). The result of macro expansion is the
token sequence As, As+1, ..., At with a comma preprocessing-token between
each adjacent pair.

6 For each selected argument Ak (for s < k < t), the preprocessing tokens emitted for
Ak are the preprocessing tokens of that argument after all macros contained therein
have been expanded as in 6.10.5.2 for an ordinary macro argument substitution not
involving # or ##. Unselected arguments are not required to be macro-expanded.

7 Example 1
__VA SLICE__(1, 3, a, b, c, d) // => a, b, ¢
__VA_SLICE__(3, 99, a, b, c, d) // > c, d
__VA_SLICE__(2, 2, a, , c, d) // ->, c (first selected

argument is empty)

__VA_SLICE__(5, 1, a, b,) /] > (empty)
__VA_SLICE__(1, 0, a, b) // -> (empty)
__VA_SLICE__(1, 1+1+1, x, y, 2) // =>x, 9, 2
__VA_SLICE__(2, 2, a, , c+1, 4) // —> , c+1

5.4 Clause 7.1.3, Reserved identifiers (optional editorial note)

No additional wording is required beyond the existing rules for reserved identifiers and predefined
macro names; __VA_COUNT__ and __VA_SLICE__ are reserved by virtue of being predefined
macros.

Acknowledgments

Thanks to reviewers and WG14 participants for discussion of preprocessing facilities.

References

[1] J. Gustedt, J. Rifkin. The __COUNTER__ predefined macro. WG14 N3457, 2025-01-25.
https://www.open-std.org/jtcl/sc22/wgld/www/docs/n3457 .htm

[2] J. Gustedt. Extensions to the preprocessor for C2Y. WGI14 N3190, 2023-12-13. https:
//www.open-std.org/jtcl/sc22/wgld/www/docs/n3190.htm

[3] ISO/IEC JTC1/SC22/WG14. N841 (public comments archive). (Contains: “Add a

__VA_COUNT__ facility for varargs macros”). https://www.open-std.org/jtcl/sc22/wgld/
www/docs/n841.htm

[4] L. Deniau. __VA_NARG__ (comp.std.c posting). 2006-01-16. https://groups.google.com/
g/comp.std.c/c/d-6MjbLko_s

[5] GCC Bugs mailing list archive. [Bug ¢/33877] New: Request for __VA_ARGC__. 2007-10-24.
https://gcc.gnu.org/legacy-ml/gcc-bugs/2007-10/msg02127 . html

[6] GCC Bugs mailing list archive. [Bug ¢/33877] Request for __VA_ARGC__ (comment empha-
sizing elimination of “busywork” count arguments). 2008-07-23. https://gcc.gnu.org/
pipermail/gcc-bugs/2008-July/277400.html

[7] J. Gustedt. Tail recursion for preprocessor macros. WG14 N3307, 2024-08-05. https:
//www.open-std.org/jtcl/sc22/wgld/www/docs/n3307 . htm

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3457.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3190.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3190.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n841.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n841.htm
https://groups.google.com/g/comp.std.c/c/d-6Mj5Lko_s
https://groups.google.com/g/comp.std.c/c/d-6Mj5Lko_s
https://gcc.gnu.org/legacy-ml/gcc-bugs/2007-10/msg02127.html
https://gcc.gnu.org/pipermail/gcc-bugs/2008-July/277400.html
https://gcc.gnu.org/pipermail/gcc-bugs/2008-July/277400.html
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3307.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3307.htm

	Introduction
	Previous work

	Motivation
	Portability and simplicity
	Preserving empty arguments

	Proposed features
	VACOUNT(...)
	VASLICE(start, len, ...)
	Derived operations

	Design considerations
	One-based indexing
	Empty arguments and commas
	Expression evaluation for start and len

	Suggested wording
	Clause 6.10.5.1
	New clause 6.10.5.x — The VACOUNT predefined macro
	New clause 6.10.5.y — The VASLICE predefined macro
	Clause 7.1.3, Reserved identifiers (optional editorial note)

