
C2y, proposal N3722 - Generic replacement 1

Author: Javier A. Múgica

Purpose: Precise definition of concepts

Date: 2025 - september - 22

This paper intends to make clear the status of generic selections and parentheses sur-

rounding expressions of a certain kind, when at some points the standard mandates an ex-

pression of that kind.

This is N3605 with some editorial changes applied and a better analysis of attribute mes-

sages.

Analysis

A literal is a kind of token at translation phase 7, endowed with a type and a value. Its defi-

nition is very precise, so that when a literal ismandated it does not follow that a parenthesised

literal is allowed, neither a generic selection where the selected expression is a literal. How-

ever, it is tacitly agreed that these are allowed, unless the mandate comes from a syntax rule.

Here follow cases where one or the other happens.

Cases

Literals in constant expressions

Integer constant expressions allow literals of arithmetic type as operands to casts. The

following code is accepted by compilers without warnings:

enum A{a=(int)(_Generic(0, int: (2.5)))};

Here, parentheses surround the literal 2.5 and the generic selection.

More generally, constant expressions of different kinds allow only operands of certain

types, but any operand in Generic which is not the selected expressions is not considered

for this:

constexpr int a= _Generic((float*)0, default:0);

String literals as initializers

The definition for this is "a string literal, optionally enclosed in braces, or ..."

const char s[]= ("word");
const char s[]= _Generic(0, default: "word");

Gcc warns on "Array initialized from parenthesis", while the other compilers tested give

no warning (clang, MSVC and ICX). No compiler warns because of _Generic.

Null pointer constant

The standard currently defines

An integer constant expressionwith the value 0, such an expression cast to type void*,
or the predefined constant nullptr is called a null pointer constant.



C2y, proposal N3722 - Generic replacement 2

The following is accepted by compilers with no warning:

float (*f)(void) = (_Generic(1, default: (void*)0));

static assert

Here, neither parentheses nor Generic are allowed:

static_assert(1, ("Error message")); // Error

and similarly for _Generic.

attribute messages

[[nodiscard(
_Generic(1, default: "Do not discard this")

)]]
int important_func(void);

ICX accepts it (invoking it with the option -std=c2x). Gcc and Clang reject it.

[[nodiscard(("Do not discard this"))]] int important_func(void); // Error

ICX and Clang accept it; gcc rejects it. Gcc accepts it if the code is compiled as C++.

The divergence in the attribute case speaks for the need tomake explicit (here and elsewhere)

whether parentheses and generic selections are allowed or not.

In both attributes and static assert the string literal is part of the syntax of the feature.

We understand therefore that gcc is right in rejecting the parenthesised string in place of the

attribute message, and the behaviour of the other two compilers can be understood as an

extension (thought maybe it is an unintendedmistake, or a known “mistake” they don't intend

to fix).

Solutions considered

Quasi-literal

Our first choice was the definition of quasi-literal, to be placed in the section on primary

expressions:

The following are quasi-literals:

—A literal.

— A generic selection where the selected expression is a quasi-literal.

— A parenthesized quasi-literal.

A quasi-literal is of the same kind as the literal on which it is based: integer quasi-
literal, string quasi-literal, etc.

And use quasi-literal instead of literal in a few places.

Generic replacement

The term quasi-literal is of no use for null pointer constants. It is for this reason that the

concept generic replacement was conceived:



C2y, proposal N3722 - Generic replacement 3

Generic replacement refers to the process of replacing a generic selection by its result ex-
pression, enclosed in parentheses if the expression is not a primary expression. (There-
fore, the result of generic replacement is always a primary expression).

Using this term, the definition of null pointer constant would become

A null pointer constant is an expression that, after generic replacement and removal of
all surrounding parentheses, is an integer constant expression with the value 0 or such
an expression cast to type void *, or the predefined constant nullptr.

Immediate constant

While the term generic replacement serves well for null pointer constants and string liter-

als as initializers, the wording for floating operands in integer constant expressions remains

very verbose, in part because it is not only literals that are allowed, but “floating, named, or

compound literal constants of arithmetic type”. All this must be subject to generic replace-

ment and parentheses removal, resulting in the wording seen in the proposal.

To simplify that wording, the use of the new term immediate constant is proposed. Its

definition is not placed under “primary expressions”, where we intended that of quasi-literals

to be, but in the section for constant expressions, because it is only applied there. We pro-

pose it separate from the main re-wording proposal. N3605 discusses the different names

considered for the term. The term immediate is only used by the standard in the construction

immediate operand, and only twice: once in an example and the other one precisely here, in

immediate operands of casts.

Not addressed

Thewording we propose for integer constant expressions takes care of generic selections

and surrounding parentheses for the literals and constants of arithmetic type that are allowed

as operands to casts. We do not take care of any operand that may be in that situation, for

integers or for arithmetic constant expressions, as for example

_Generic(sqrt(2.0), default: sizeof(float))

In order to handle this in the wording, an “after generic replacement” would have to be

inserted preceding the enumeration of all possible operands.

We do not do that because we believe that this is better achieved by a deeper change of

the wording for these two kinds of expressions, that would list the atomic ones and then a

point saying that an expression is an ICE if its operands are either discarded by the expression

or ICEs, and similarly for ACE. That change is the subject of another proposal.

This notwithstanding, the introduction of the term immediate constant, in addition of sim-

plifying the wording, handles generic selections for all cases when the result expression is a

constant or literal. If the complete rewriting of integer and arithmetic constant expressions

based on the discarded concept takes place, the term immediate constant could be put to

other use, but that is no reason for not adopting it now: if it need be changed in the future,

be it so.

Wording

Gray text is text to be removed; blue text it new text; green text is changed text.



C2y, proposal N3722 - Generic replacement 4

Main proposal

Add at the end of the semantics of generic selections, 6.5.2.1, the following:

Generic replacement is the process of replacing a generic selection by its result expression, en-
closed in parentheses if the expression is not a primary expression (therefore, the result of
generic replacement is always a primary expression). When the term is applied to an expres-
sion, it means the repeated application of generic replacement to the generic selections within
it until no generic selections remain.

Change also, in “6.3.3.3 Pointers”:

An integer constant expression with the value 0, such an expression cast to type void *, or
the predefined constant nullptr is called a null pointer constant. A null pointer constant is an
expression that, after generic replacement and removal of all surrounding parentheses, is an
integer constant expression with the value 0 or such an expression cast to type void *, or the
predefined constant nullptr.

And maybe add a forward reference to generic selection.

In 6.6 Constant expressions,

7 An integer constant expression has integer type and only has operands that are integer lit-
erals, named and compound literal constants of integer type, character literals, sizeof or
_Countof expressions which are integer constant expressions, alignof expressions, and float-
ing, named, or compound literal constants of arithmetic type that are the immediate operands
of casts.; when these operands have floating type, they only appear in cast expressions of inte-
ger type where the operand, after generic replacement, is such an operand optionally enclosed
in an arbitrary number of parentheses. Cast operators in an integer constant expression only
convert arithmetic types to integer types, except as part of an operand to the typeof operators,
sizeof operator, _Countof operator, or alignof operator.

In 6.7.11 Initialization,

7 The initializer for an array shall be either a string literal, optionally enclosed in braces,an ex-
pression that after generic replacement and removal of all surrounding parentheses is a string
literal, such an expression enclosed in braces, or a brace-enclosed list of initializers for the
elements.

Immediate constant

(Only if the previous proposal is accepted).

With the introduction of a term here, the text on integer and arithmetic constant expressions

reduces to the following:

7 An immediate constant is an expression that, after generic replacement and removal of sur-
rounding parentheses, is a literal, a compound literal constant or a named constant.

8 An integer constant expression has integer type and only has operands that are immediate con-
stants of integer type, sizeof or _Countof expressions which are integer constant expres-
sions, alignof expressions, and immediate constants of arithmetic type that are the immedi-
ate operands of casts. Cast operators in an integer constant expression only convert arithmetic
types to integer types, except as part of an operand to the typeof operators, sizeof operator,
_Countof operator, or alignof operator.



C2y, proposal N3722 - Generic replacement 5

10 An arithmetic constant expression has arithmetic type and only has operands that are immediate
constants of arithmetic type and integer constant expressions. Cast operators in an arithmetic
constant expression only convert arithmetic types to arithmetic types, except as part of an
operand to the typeof operators, sizeof operator, _Countof operator, or alignof operator.


