
Ghost: Lvalues that do not designate an object

Document: N3701
Author: Martin Uecker
Date: 2025-09-07

We have the following undefined behavior (J.2 item 18 in C23).

6.3.3.1 Lvalues, arrays, and function designators

1 An lvalue is an expression (with an object type other than void) that potentially
designates an object; 55) if an lvalue does not designate an object when it is
evaluated, the behavior is undefined.

But this appears to be a ghost, as there does not seem to be any possible way to construct an lvalue
that does not designate an object in the first place without either violating a constraint or invoking
undefined behavior already before. To see this, we consider all expressions that can be lvalues.
Other types of expressions can not be lvalues. In particular, cast, comma, conditional, assignment
expressions are not lvalues.

1. Identifier

foo

There needs to be a visible declaration when an identifier is used in an expression (6.5.2 Primary
expressions, §2). For non-external definitions there are no forward declarations possible, so the
declaration is always also the definition for the object. If an external declaration where there is no
definition, then this is either a constraint violation (6.9 External definitions, 6.9.1 General, §3) or
undefined behavior (6.9 External definitions, 6.9.1 General, §5).

2. String literal

“foo”

A string literal is an lvalue, but it is obvious that the object must exist.

3. Generic

_Generic(x, int *: *x)

The expression is an lvalue if the result expression is an lvalue (6.5.2.1 Generic selection, §4), so
assuming that other types of lvalue must always designate an object, this is then also true for
generic expressions.

4. Pointer

(*p)

If the pointer p does not point to an object, then there is undefined behavior (6.5.4.3 Address and
indirection operators, §4).

5. Compound literal

(int[3]){ 0, 1, 2 }

A compound literal is an lvalue (6.5.3.6 Compound literals, §8), but here it is obvious that the
object exists.

6. Structure of union members (.)

s.x

The expression is an lvalue when the first operand is an lvalue (6.5.3.4 Structure and union
members, §3). Hence, the first operand designates an object when evaluated, and so does the result.

7. Structure of union members (→)

p→x

The phrasing “The value is that of the named member of the object to which the first expression
points, and is an lvalue.” implies that there must a structure or union object the pointer points to. If
no such object exists, there must be implicit undefined behavior.

Suggested Change: It is suggested to remove the vacuous undefined behavior in 6.3.3.1 and to
make the undefined behavior in 6.5.3.4 explicit. Regarding the second change, one can argue that
“shall point to an object” is still vague and that further conditions for undefined behavior as spelled
out for the unary * operator are needed. As this is unrelated to the main topic of this paper and
similar wording is already used elsewhere in the standard, this is left for future improvement.

Wording Change 1 (relative to N3550)

6.3.3.1 Lvalues, arrays, and function designators

1 An lvalue is an expression (with an object type other than void) that potentially designates an
object. 55) if an lvalue does not designate an object when it is evaluated, the behavior is
undefined.

Annex J.2
(15) An lvalue does not designate an object when evaluated (6.3.3.1).

Wording Change 2 (relative to N3550)

6.5.3.4 Semantics

4 A postfix expression followed by the -> operator and an identifier designates a member of a
structure or union object. If the first expression does not point to a structure or union object,
the behavior is undefined. The value is that of the named member of the object to which the first
expression points, and is an lvalue.95) If the first expression is a pointer to a qualified type, the
result has the so-qualified version of the type of the designated member.

Annex J.2
(XX) In a postfix expression followed by the -> operator, the first expression does not point to
a structure or union object.

