Minutes for Aug 25 - 29, 2025

MEETING OF ISO/IEC JTC 1/SC 22/WG 14
WG14 / N3684
Dates and Times

Each day will have a half-hour break from 15:00-15:30 UTC.

25 August, 2024 09:00 - 12:00 Lunch 13:30 —16:30
26 August, 2024 08:45-12:00 Lunch 13:30 —16:30
27 August, 2024 08:45-12:00 Lunch 13:30 - 16:30
28 August, 2024 08:45-12:00 Lunch 13:30 —16:30
29 August, 2024 08:45 — 10:45

Meeting Location

Faculty of Business Mendel University in Brno
Building Q, Deanery at Ground Floor
Zemédélska 1665

613 00 Brno-sever-Cernd Pole

Czechia

Meeting information

Venue information:
N3541: Brno August 2025 Venue

Meeting Scribe: David Svoboda

Local contact information

Hana Dusikova

1. Opening Activities
1.1 Opening Comments (Seacord)

Welcome to the 73rd meeting.
Seacord likes to keep everything on schedule. Leave time for straw polls - at least 5 minutes.
Wait until section of agenda to hear from national bodies.

1.2 Introduction of Participants/Roll Call

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3541.htm
mailto:svoboda@cert.org
mailto:hanicka@hanicka.net

Name Organization WG14 Country Notes
Aaron Bachmann Efkon GmbH Austria Austria NB
Aaron Ballman Intel USA
Alejandro Colomar Linux Spain Spain NB
Alex Celeste Perforce Software USA MISRA
Ash Chronister Apple USA
Aymeric Baud AFNOR France
Chris Bazley Arm UK
Clive Pygott LDRA Technology USA
Daniel Plakosh SEI/CERT/CMU USA
Dave Banham BlackBerry QNX UK MISRA Liaison
David Svoboda SEI/CERT/CMU USA Scribe, UB SG Chair
David Tarditi Apple USA
Eskil Steenberg Quel Solaar Sweden Sweden NB
Fred Tydeman Keaton Consulting USA INCITS/C Vice Chair
Freek Wiedijk Plum Hall USA
Glenn Coates Real Time Embedded Ltd UK
Hana Dusikova Czechia Host
Henry Kleynhans Bloomberg USA
Jakob Lukasiewicz ~ Motorola Solutions Systems Polska Poland Poland NB
JeanHeyd Meneide NEN Netherlands Neth. NB; C++ Comp. SG
Jens Gustedt INRIA/ICube France France NB
John McCall Apple USA
Joseph Myers Red Hat UK UK NB
Joshua Crammer Intel USA
Martin Uecker Graz University of Technology Austria
Maryam Karampour Aviar Inc. Canada Canada NB
Nevin Liber Argonne National Laboratory USA
Niall Douglas Ireland ned Productions Ltd Ireland Ireland NB
Omar Sandoval Meta USA
Patrizia Kaye Self UK
Paul McKenney Meta/Facebook USA

Name Organization WG14 Country Notes

Pavel Simerda Self Czechia

Philipp Krause SDCC Germany

Rajan Bhakta IBM USA, Canada USA NB; INCITS/C Chair
Robert Seacord Woven Planet North AmericaInc ~ USA

Thiago Adams ABNT Brazil Brazil NB

Vince Mailhol Woven Planet North America Inc ~ USA

Vlad Srebrennikov ~ Halpern USA

Yair Lenga Self Israel Guest

Yeoul Na Apple USA
1.4 Required Reading

e 1.4.1ISO Code of Ethics and Conduct

e 1.4.2 ISO Guidance and Process

e 1.4.3 IEC Code of Conduct

e 1.44JTC 1 Summary of Key Points N2613

1.5 Approval of Previous Minutes (Feb 2025) N3583
Bhakta moved. Ballman seconded. Objections? None
1.6 Review of Action Items and Resolutions

Ballman will update the retcon list with items from the document review (all handled during the session: nothing
outstanding).
Ballman: Done

1.7 Approval of Agenda: N3680 on Google Docs

Bhakta moved. Pygott seconded. Objections? None

1.8 Identify National Bodies Sending Experts

Person Nation

Eskil Steenberg Sweden
Hana Dusikova Czechia
Jakob Lukasiewicz Poland
JeanHeyd Meneide Netherlands
Jens Gustedt France

Joseph Myers UK

https://www.iso.org/publication/PUB100011.html
https://www.iso.org/sd/fetch/HNx71Y344QBo1dZzmthKIV6wM4_DyjxnU9o6JrDgfeYjoTmdGmQayF8NXXx3_FE8
https://www.iec.ch/basecamp/iec-code-conduct-technical-work
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2613.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3583.htm
https://docs.google.com/document/d/1Uhr8tVFl1HTR5ypqdWH0H8O2b38tMhBCdzInWo96aW0/edit?tab=t.0#heading=h.d3w7sbhjtjg6

Person Nation

Martin Uecker Austria

Niall Douglas Ireland
Philipp Krause Germany
Rajan Bhakta Canada & US

Thiago Adams Brazil

2. Reports on Liaison and Collaboration Activities
2.1 IS0, IEC, JTC 1,SC 22

Bhakta: The USA INCITS meeting is in two weeks, Monday. Please attend.
Seacord: I attended SC22 meeting in London last week remotely.

2.2 National bodies in WG 14
None
23 WG 21

Patricia: We have published a CD for NB comments.
C++26 will be based on C23.
Bazley: I emailed Nina and cc'd Meneide about his syntax extension for WG21. I have gotten no reply.

24 WG 23

None

2.5 MISRA C (straw poll on communique)

Celeste: There is no current interesting progress to report. MISRA is calling it "C24".
2.6 Austin Group

None

2.7 Unicode Consortium

None

2.8 Other Liaison or Collaboration Activities

None

3. Study Groups

3.1 C Floating Point Study Group activity report (Bhakta)

Bhakta: I am continuing to examine floating-point issues from the community, and fixed-point arithmetic, too.
CFP are interacting with the IEEE committee about floating-point issues. Jim Thomas is our editor and convener.
For issue 1014 (to be discussed under N3610), we need to decide what happens with regard to error handling.

3.2 C Memory Object Model Study Group activity report (Sewell)
Wiedijk: The reflector is not working for me right now.
3.3 C and C++ Compatibility Study Group activity report (Meneide, Nina)

Meneide: There were a couple of divergences in the preprocessor after C++26 was finalized. They have
questions about how certain directives are handled, as well as white-spacing issues. Many will be handled by the
"nvec-c" paper. There was a general motion on VLA parameters. They are mostly waiting for WG14 to figure
things out.

3.4 Undefined Behavior Study Group activity report (Svoboda)

Svoboda: There are several papers published: Earthly Demon papers. the Examples of Undefined Behavior
paper, and the Educational Undefined Behavior paper (actually on Github). The latter two should become white
papers. We need new work item proposals for both papers. Our next Undefined Behavior SG meeting is Friday,
Sep 5.

Uecker: Here is a paper showing our earthly demons effort. It includes a chart of which undefined behaviors
have been "slain".

3.5 defer (Meneide) TS (Committee Draft), r2 [N3589]

Bhakta: Has anyone asked if the floating-point TS supports exception handling? Part 5 of the TS has a floating-
point exception handling mechanism. Do we want to update the floating-point TS to handle "defer"?

Meneide: Nobody has raised concerns with me about it. We have answered all semantic questions. I would like
to go to SC22 for getting out a ballot for a comment period.

Bhakta: Can we add paragraph numbers? It makes it easier to comment.

Meneide: Sure, for the next N-document.

Seacord: We could do an offline vote for submitting.

3.6 Memory Safety (Uecker)
Uecker: The first meeting happened.
3.7 _Optional Study Group (Bazley), Dog-fooding the _Optional qualifier (v2) N3597

Bazley: Seacord informed me that I should be setting up a study group. I would like some help with supporting
_Optional.

3.8 Infrastructure Group (Meneide)

Ballman: Srebrennikov and Derek Jones and I worked on recovering documents. We got 300 old docs from
1994 and earlier; they have been added to the document log. And thanks go to Plakosh and Keld Simonsen for
backed work. A lot of the old documents are still relevant.

Gustedt: It is simple to set up another mailing list with more modern software. Each SG has their own.

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3610.htm
https://github.com/sei-dsvoboda/exub
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3589.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3597.pdf

Ballman: Simonsen is waiting for a request for updated mailing-list software. So we will have a simple way to
cite messages.

Myers: We still have message numbers for WG14 reflectors.

Meneide: I am working on a privacy policy; currently paused.

Action Item: Seacord: Work with Simonsen to update the WG 14 reflector.

Myers: There is a new system for assigning document numbers in the WG 14 document log. I am also adding
references for old meeting minutes for when documents are discussed.

3.9 New Study Group proposal (if applicable)

Bhakta: What happened with the "embed" TS? Is there a SG?
Seacord: You mean the embedded processor. I thought that an SG to update the embedded TR would help.

CRFI Study Group (Celeste)

Celeste: This ties into some things: We should learn from Myers' page about C documents. CRFI is a little like
Scheme, a request for implementations for list of extensions. You cannot extend C with cool features like you
can with Scheme. So there will be a repository for library API descriptions. It should be maximalist, allowing for
multiple ways to do the same thing. The strp_t implementation by Bazley has already been added. It also has
some things from Colomar. It has minimal gate-keeping, similar to asking Plakosh for document numbers.
Compilers can then indicate support for these extensions. So CRFI is a TS for "extended library features".
Bazley: Colomar and I have discussed several string proposals. I do not think our proposals are adversarial.
Bhakta: Do you see this in addition to what WG 14 does?

Celeste: WG14 has a reasonably flexible process. Perhaps we can relieve pressure on WG14 by providing an
alternative repository for library proposals.

Gustedt: Some features still make sense to handle directly in WG14.

Seacord: We need a new work item to publish a TS. I can approve a study group.

4. Future Meetings

4.1 Future Meeting Schedule

Spring, 2026 Part 1, February 2 - 6 Virtual
Spring, 2026 Part 2, March 9 - 13 Virtual
Fall, 2026 September 14-18 301 Moodie Drive, Ottawa ON, K2H 9C4

Candidate Host: Suan Sunandha Rajabhat University
Action Item: Celeste: Contact Bhakta about the Canada (Fall 2026) meeting.

4.2 Future Deadlines

Note: Please request document numbers at least one week before these dates.

Pre-Spring 2026 Part 1 2 January, 2026
Post-Spring 2026 Part 1 6 March, 2026
Pre-Spring 2026 Part 2 9 February, 2026
Post-Spring 2026 Part 2 13 April, 2026

https://ssru.ac.th/en/

5. Document Review
Monday, 25 August

e Celeste, Straw poll on TS 25007 "C Extensions to Support Generalized Function Calls", committee draft
[N3582] (5 minutes)

Bazley: "Function literals" in this TS it not normative. It may not be perceived that way by people reading
it.

Ballman: For implementers, are you going to implement this TS? Clang will not implement this, but we
are not opposed to it either.

Bhakta: We are unlikely to implement this.

Krause: At the end of a declaration, you could replace it with attributes.

Bhakta: I prefer to keep the text as non-normative. I would like to see this TS published.

Straw Poll: Would WG14 like to submit TS 25007 to SC22 for balloting? 13-0-8 + 0-3-4 = 13-3-11:
consensus

Morning break
e Uecker, Arrays (0.5 hours)

o Comments on Array Type [N3428]
o Matching of Multidimensional Arrays in Generic Selection Expressions (updates N3290) [N3348]

Celeste: In C11 one could match types that decay using compound literals. But this is convoluted.
Ballman proposed _Generic over types, which matches Uecker's proposal exactly.

Bazley: It is important that WG14 decisions should be based on real-world usage. I am Not sure that
"more precise" is necessarily "better". But I fully support this paper.

Bhakta: Is Meneide's paper still in play?

Mychal: How does this affect extended constant expressions?

Uecker: The other way around.

Meneide: I plan on bringing my paper back, but in modified form. It is not done for this meeting. I am not
really against Uecker's changes. You do not want to distinguish constant array vs. non-constant array in
_Generic. We distinguish the kind of undefined behavior you get from having a compile-time vs. runtime
size. This was previously a constraint violation. This paper pushes runtime size array with runtime size,
which is only caught by UBSan or something like that. By allowing variably-modified types here, you
increase undefined behavior when there is a mismatch of sizes.

Celeste: I am not convinced this is a new undefined behavior. It is fine to introduce this feature now and
fix it later.

Bazley: I know a lot of people do not like variable-length arrays. They would become useless if they could
not be used in place of a statically-sized array.

Ballman: If I have int[n] type, where n will never be evaluated, how do I match that at compile time? It is
still based off the regular type compatibility rules, right?

Uecker: I did not change the rules for _Generic. It is undefined behavior if array sizes do not match at
runtime.

Meneide: This is why I wanted more sophisticated rules about this. Two arrays are compatible until you
detect that their sizes differ.

Gustedt: Compatibility is a compile-time property. If one array is fixed and the other is a VLA, they can
match at compile time. It is unfortunate that the standard text also mentions runtime undefined behavior in
the same paragraph. _Generic originally was modeled around function calls. This proposal goes exactly in
that direction.

Bazley: I would like to see an operation that rebuts what Uecker has written.

Ballman: There is a lot of deficiency in this space. If we fix those, it surprises users. Do you share this
concern?

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3582.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3428.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3290.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3348.pdf

Uecker: Yes.
Ballman: Today here is what we need to fix: those cases would still be rejected because you have multiple
associations somewhere.
Uecker: If you have runtime sizes, there is no obvious static way to fix it. You can have runtime checking.
Ballman: In the future we could fix this with runtime type checking. For other cases, like static_assert, this
would be a constraint violation.
Mychal: If we did this variably-modified restriction, could we restrict variables with a VM descriptor?
Uecker: We could merely add the .
Meneide: This what I was trying to do in my paper. If we accept this, I can rework my paper.
Straw Poll: Would WG14 like to adopt N3348 as is into C2y? 13-6-6 + 3-0-2 = 16-6-8: consensus
e The __ COUNTER__ argument
o Gustedt, The __COUNTER__ predefined macro [N3457] (0.5 hours)

Celeste: I can think of a way in which requiring a suffix would actually break.

Bazley: If this recommended practice is worthwhile, it should apply to __LINE__, which is the best
precedent for __COUNTER__. I would prefer not to have the suffix.

Gustedt: There is some room for improvement with regard to suffixes. For architectures with 17-bit
integers, I have no idea if it is worthwhile to require a suffix or not.

Ballman: The existing practice is that __COUNTER__ expands to an int. Most implementations are giving an
int today.

Gustedt: It uses int when it can represent all values, and logs when it can not.

Myers: The evaluation has an off-by-one error; it implies the largest value is 2/31-2.

Krause: I do not expect users of this to rely on the type.

Straw Poll: Would WG14 like to adopt N3457 into C2y without the recommended practice first line and
two bullets, and 2147483648 as the limit? 24-0-2 + 3-0-1 = 27-0-3: consensus

o Johnson, Counter Directive [N3636] (0 hours)
e Chronister, Initializing static and thread objects with compound literals [N3235] (0.5 hours)

Bazley: I spent hours reviewing this paper; I have to vote against it. The wording is wrong and the
footnote can be removed. I would like to see a revision of this paper. The standard already defines
"compound literal constant". I suggest revising the definitions of "named constant" and "compound literal
constant".

Myers: I agree with Bazley about the "constant" phrase.

Lunch Break

e Meneide, __self_func, 2 [N3486] (0.5 hours)

Bhakta: Are there any thoughts to add this to the generalized function calls TS?

Meneide: The TS would only use __self_func as an example, not a normative feature.

Celeste: We had a vote on clause 4 of the generalized TS.

Krause: There is no implementation experience; compilers never added this.

Bhakta: That is why I asked about this.

Ballman: Clang does not have a need for this. It is a feature for feature's sake.

Colomar: I could vote for this after we have function literals

Gustedt: I would use this in macro generations.

Meneide: There are three use cases: One is macros. One for va_args; you can use this to determine
properties of the function, blocks, and other existing practice of function types.

Bazley: This is not something I have ever wanted and yet I am tempted to vote in favor of it due to its
simplicity. If it is introduced, people would use it to be more explicit when doing recursion. But in reality,
recursion often goes through more than one function, so it is not as useful without further motivation.
Otherwise, I have no further problem with it.

Bhakta: If you do not see the need but it is simple, that is a sign it should not be added. It is

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3348.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3457.htm
https://www.open-std.org/JTC1/SC22/WG14/WWW/DOCS/N3457.HTM
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3636.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3235.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3486.htm

implementation experience that is needed. Once it is implemented, then we know it is going to be used.
McCall: The nested functions and blocks were brought up as a reason to have something like this. We do
have a use for that; it is something we have considered but it has not been sufficiently important to get it
implemented. It is not obviously the right design though. When you start talking about anonymous
functions and self-reference, you have a nesting issue. You can reasonably want to refer to your parent in
the same sort of self-reference way.
Colomar: A double underscore "__" usually indicates implementation namespace. Can we respect that
separation?
Celeste: This says "primary expression" but uses syntax of a postfix expression.
Meneide: That was a typo on my part; it should be "postfix".
Seacord: Does this mean a revision to the paper?
Meneide: Yes, I will revise it. We should wait for stronger motivation.
Bhakta: Moving this to primary would make it a different paper.
Seacord: I would prefer to see a quick revision and an offline vote.
Uecker: I like the paper, but prefer not to vote for it until we have a use case.
Forward declarations (0.5 hours)

o Na, Dependent attributes [N3656]

*Ballman: This is a complicated design space; everyone has opinions. This is so WG14 can endorse this
as perhaps a TS so that we can gain implementation experience.

Steenberg: Do we need a new language feature for this?

Na: We are looking for WG 14 guidance. If C adds forward declaration mechanisms, that is WG14
indicating how to solve a problem.

Gustedt: We do not have attributes in the standard which would use this pattern. These rules are
complicated. We did not intend to specify anything about what goes inside the braces of an attribute.
Celeste: If you have a working implementation, we do not forbid the lookup rules you are suggesting.
Bhakta: I do not see any way to prevent forward declarations.

Ballman: This is not just about attributes. We have constexpr variables.

Bachmann: From the user's pointer of view: top-down, left-to-right. We should not have provided only
one way of doing examples.

Na: These attributes will be useful for memory-safe mode.

Ballman: Struct members means we will have multiple ways to handle these.

Bazley: This could easily become a de-facto standard, adversarial to existing syntax, quietly forking the
language.

McCall: We are not proposing adding counted_by to the standard. But contracts would imply a new
lookup algorithm.

Tarditi: We have code where people declare the pointer first, and length argument second.

Bhakta: For my point regarding late parsing: In your paper, Proposal section, bullet 1: “for all other
identifiers, the dependent attribute scope is their ordinary scope.” This does not' seem to restrict any
dependent lookup to just members or prototypes. It later, via subsequent bullets, does prescribe the
behavior for members/prototypes, but does not seem to prohibit other uses.

Colomar: This is a violation of much of our charter. We need to count array parameters. We need complex
expressions for the size.

Bazley: The fundamental premise is wrong. You should be able to write C code in any arbitrary order. If
you want to attach invariants to a struct, put the constraints at the end of the struct.

Wiedijk: Perhaps we should move all invariants to the end. When putting function header in memory, we
have so much memory nowadays that this is not much of a limitation to developers. can we not just move
attributes around?

Ballman: If a function argument location can change the grammar, that will be unexpected. Clang does not
have consensus for any approach. We have no consensus on how to do this with attribute; we only have
consensus not to support GCC's forward-declared parameters.

Uecker: Who is exactly the Clang community? It does not include me.

Opinion Poll: Regarding N3656, is the committee in favor of proposed-name lookup behavior for
dependent attributes? 0-6-1 + 16-4-5 = 16-10-6

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3656.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3656.pdf

Opinion Poll: Regarding N3656, is the committee against diagnosing name conflicts in array size to catch
potential errors? 2-1-1 + 1-16-7 = 3-17-8

o Bazley, Alternative syntax for forward declaration of parameters [N3433]

Bhakta: We already had a strong opinion poll on this paper in Graz.

Bazley: This is the version that will go into the standard, with mixed blessing from Uecker because he
wanted the same thing with slightly different syntax.

Bhakta: Can you summarize what the needed changes are? Could you vote this in and then clean it up?
Bazley: It does not explicitly constrain against having un-named parameter declaration. The wording is not
tight enough.

Ballman: Putting in something to the standard that we intend to fix later is hostile to implementers. This is
something the Clang community has consensus against.

Na: This can be made compatible with our paper.

Opinion Poll: Would WG 14 like something along the lines of N3433 to be eventually adopted into C2y? 3-
2-0 + 10-12-4 = 13-14-4: no preference

Afternoon break

e Constant Expressions
o Gustedt, Chasing Ghosts I: constant expressions v2 [N3558] (0.5 hours)

Ballman: The term "description" is used with two meanings in the wording; it should be clarified.
Bhakta: Is Clause 1 one of those ISO things we have to do?

Ballman: Yes.

Myers: In reflector message 30480, is this wording you are going to put back?

Gustedt: I do not feel comfortable with floating-point changes.

Bhakta: If I did not get any mail, I did not plan any changes.

Gustedt: This could be done independently later.

Action Item: Bhakta: CFP to submit a paper as per reflector message 30480.

Straw Poll: Would WG14 like to adopt N3558 as is into C2y? 4-0-0 + 15-0-6 0 = 19-0-6: consensus

e Myers, Open Issue processing C23 issue log, r1 N3609] (1.5 hour
o Issue 1000 (FAM compatibility)

Celeste: This does change current actual behavior of GCC and Clang.
Myers: Right

o Issue 1002 (type qualifiers in [*])

Ballman: Our defects list will say "All issues in this list apply to previous versions of C unless
stated otherwise."

Bhakta: I did not see this as "only C23" because of my history with defect reports. For the poll,
given what we already have, we can just say "add to C2y".

Straw Poll: Would WG14 like to accept the suggested correction for issue 1002 from N3609 into
C2y and into previous versions of C? 4-0-0 + 14-0-3 = 17-0-3: consensus

o Issue 1003 (linkage between library functions)

Bhakta: The link for the C90 issue is broken. Also, no linkage does not mean they cannot be equal
pointer values. This is not totally correct, but it is progress, so I am OK with it.

Straw Poll: Would WG14 like to accept the suggested correction for issue 1003 from N3609 into
C2y and previous versions of C? 1-0-2 + 16-0-4 = 17-0-6: consensus

Bhakta: In this case "matching failure" would work.

Colomar: For the "like" family, I have similar issues.

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3656.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3433.pdf
https://www.open-std.org/JTC1/SC22/WG14/WWW/DOCS/N3433.PDF
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3558.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3558.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3609.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3609.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3609.htm

Bhakta: Yes, that is issue 1012.
Action Item: Douglas: Check with POSIX for direction for issue 1004 in N3609.
Bhakta; Just call it a matching failure. That is our way out.
Douglas: Could this report a compiler diagnostic?
Myers: Yes, if the code gets executed.
Ballman: No implementation is changing any behavior whatsoever, right? This is not a good use of
our time.
Colomar: In strtol(), the numbers depend on how much has been parsed. Could we do the same
here?
Bhakta: The return clause clearly states what would be returned.
Seacord: This error is a matching failure. It can return the number of items assigned.
Opinion Poll: Is there a third type of failure for issue 1004 in N3609? 2-1-2 + 1-7-9 = 3-8-11
o Issue 1005 (Annex D and UAX#31)

Seacord: The Unicode Study Group from WG21 had to rebase their standard to the Unicode
standard. I recommend this correction; it is a step in the right direction. We probably more work to
be done in the future.

Krause: Partial wording should not be accepted; it should only be applied to incomplete features.
We are taking out something, so this is good.

Straw Poll: Would WG14 like to accept the suggested correction for issue 1005 from N3609 into
C2y? 0-0-4 + 12-0-9 = 12-0-13: weak consensus, adopted

Tuesday, 26 August

e Myers, Open Issue processing C23 issue log, r1 [N3609] (1.5 hours)
o Issue 1006 (atomic_fetch operations and "address types")

Myers: Gustedt has a paper which addresses this as well as other things. So we skipped the topic
until we get to that paper.

o Issue 1007 (Implicitly unsigned bit-field ambiguity)

Myers: There is a weird thing where a bit-field is of type int but it may still be an unsigned type. For
C2y, do we want to follow C++14 and say that a bit-field has the same sign as its type? That requires
a paper for a future meeting. But we can figure out what we want to do for C23.

Seacord: The most interesting idea I have heard is to deprecate implicitly signed int to force people
to explicitly signed int, just for our bit-fields. That is consistent with the MISRA standard which
requires an explicit sign for bit-fields.

Myers: What counts as being explicitly or implicitly signed? Things like typeof, etc.?

Seacord: I think my take on the mailing list was that it should be what it is. If it is used as a bit-field,
we could deprecate that.

Celeste: I reiterate that if we force the spelling that will definitely break code for at least some users,
so I prefer deprecation. Typeof is not likely to break code for a lot of people. But I do know that
people would have silent changes if the behavior changed.

Gustedt: Typedef int to a bit-field then it is not clear if the field is signed or unsigned, but it is a
really weird specification. I do not know how we can get around this.

Liber: The spelling of the type changes the behavior, but it should not matter how the type is
spelled. Typedef should be the same as the underlying type. I think we have to bite the bullet and
change this. There was an objection in C++ from SUN because of their headers.

Bazley: I do not see the point in deprecating implicitly unsigned or implementation-defined unless a
diagnostic is issued. So I am inclined to just fix it. The people who need to change their code would
not know they need to update their code.

Bachmann: In the long run "int" should be "signed int" for consistency.

McCall: I think the C++ committee's philosophy on this was that there were not too many targets to

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3609.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3609.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3609.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3609.htm

do this, so non-conformance is not an issue. That may not match with WG14's philosophy.

Liber: This was changed in C++11

Ballman: Deprecation would be too noisy for implementations in practice; int is a very common bit-
field type.

Krause: I would still be in favor of allowing this to be unsigned because of efficiency. But with
typeof and Bitlnt issues, it does not feel like we can consistently argue for allowing it to be
unsigned. I do not know if this impacts our users. I would suggest that plain int is signed but I would
wait to hear if implementers are concerned.

Myers: The poll will be direction so we can write a paper.

Wiedijk: I would like int to be signed, so if the number of bits allows it we could allow the value to
be unsigned while the type is signed

Seacord: The other thing from deprecation is silently changing behavior, which is not a conservative
approach. Usually we deprecate this and then make a change in behavior.

Liber: But this is implementation-defined, which is a bit different.

Krause: We have these typeof cases and these _BitInt cases, so how do we know if it is an int or
not?

Seacord: Where there is ambiguity, I would say that is intended to be signed but make it deprecated
for where it is unambiguous

Bhakta: Clang has an option to select signed vs. unsigned. My preference is to make no change. But
I think the next step would be recommended practice, then deprecation, etc. A slow progression so
we do not break code. I do not expect people to change their code quickly.

McCall: Do we have any census of what platforms rely on this?

Seacord: We keep hearing about Solaris.

Krause: SDCC has unsigned and we do not even given an option to make ints signed, but I do not
know how much our users rely on this.

Bazley: Krause, do you supported signed bit-fields at all?

Krause: Only if you say "signed int" explicitly.

Bachmann: Bit-fields are used for packing data, so sign and unsigned uses are important.

Seacord: What is the room preference? Leave it the way it is, deprecate, diagnose, or silent behavior
change?

Celeste: Is there a meaningful distinction between diagnose and deprecate?

McCall: Diagnose would be "make it a constraint violation".

Gustedt: Diagnose only on targets where int would be unsigned.

Bhakta: I am not clear on whether we are answering the questions like, "What if it is typedef?" That
is the crux of a lot of questions.

Myers: We are figuring out what we want to do for C2y and then we can figure out what to do with
C23. The answers would most likely not be the same for C23 and C2y.

Opinion Poll: Would WG14 like to leave as-is in Issue 1007 in N3609? 10-11-2

Bazley: Is not this about portability? Whose problem are we trying to solve?

Celeste: The constraint violation only manifests on implementations which already are not going to
want to change their behavior because it breaks code?

McCall: Implementations become non-conforming.

Celeste: Silently.

Krause: The problem we are solving is the confusion among users, particularly with typedef. It is a
signed type in some places, but they use it as a bit-field and then it acts unsigned.

McCall: Do we know whether we know what existing implementations actually do for typedefs?
Krause: In SDCC it depends on whether the keyword "signed" is in the typedef.

Opinion Poll: Would WG14 like to make a constraint violation in Issue 1007 in N3609? 9-11-5
Opinion Poll: Would WG14 like to make a silent behavior change to match C++ in Issue 1007 in
N3609? 9-9-7

Seacord: No consensus, so we are at status quo which means the first option wins despite the vote.
Myers: Do we want to take votes for what to do in C23?

Seacord: Do we know what our direction is now? I suppose it is to leave it unchanged.

Myers: I am not clear what the direction is for C2y but C23 can be different.

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3609.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3609.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3609.htm

Bhakta: I believe whoever asked the questions is looking for clarity on C23, regardless of C2y.
Bazley: Why don't we just ask Krause what SDCC does, because the answers to these questions
may be divorced from reality?
Bhakta: No offense to Krause, but there is plenty of other implementers.
Liber: Typeof(1 + 1) is not spelled "int" so it is unclear what this means.
Seacord: Maybe we need another paper?
Bhakta: That is why I asked where this came from. Was it us navel gazing or did a user ask for it?
Myers: It is one of the many issues I accumulated since 2017.
Gustedt: we added typeof in C23 so we made the problem worse because that has no answer at all.
McCall: Maybe there is an implementation consensus on typedef? Everyone seems to look through
typedefs, at least from the implementations we know of.
Colomar: I think what matters are the type specifiers within the bit-field. If you did not spell it "int"
the rule does not trigger.
Liber: And the behavior is?
Colomar: The same as everywhere else, it is not implementation-defined; it is just the type you got
from elsewhere. So it is "signed".
Gustedt: Integer literals have the type signed int, I think.
Myers: It does not say signed in the table.
Dusikova: If you do anything different from C++, it makes shared headers really painful.
Bazley: The only way I see this resolved it to take a census of compilers to see what behaviors are
and write a table saying what the behavior is in each case. But who is going to do this work?
Without having done that work, the answers are somewhat meaningless.
Celeste: My company has done that work, I just do not know who in the company to ask to get that
table. We have done that work because it is part of our compatibility setup for the compilers we
support. I have asked internally.
Seacord: We are now moving on to Issue 1008 because we need more information to resolve this.
Straw Poll: Would WG14 like to leave the standard as is in issue 1007 from N3609? 2-0-2 + 8-11-0
= 10-11-2: no consensus
Celeste: We might want a constraint violation, but only for the case where the spelling is
problematic.
McCall: Do we know what the existing implementations for typedefs actually do?
Krause: We just carry over if the signed keyword was in the typedef.
Straw Poll: Would WG14 like to have a constraint violation in issue 1007 from N3609? 1-1-2 + 8-
10-3 = 9-11-5: no consensus
Straw Poll: Would WG14 like to change the behavior to reflect C++ in issue 1007 from N3609? 3-0-
1 + 6-9-6 = 9-9-7: no consensus
Myers: Do we want to answer the specific questions for C23?
Bhakta: Whoever asked these questions is looking for clarity for C23, so we should answer them
regardless of C2y.
Bazley: Should we ask Krause what SDCC does?
Bhakta: Krause is not the only implementer.
Seacord: In cases where there are no expectations for what the behavior is, we define the types to be
the same as outside the bit-fields.
Bazley: To resolve this, someone needs to survey a bunch of compilers and create a table of current
compiler behavior. Who does this benefit?
Celeste: I know my company has done this work, for compatibility with every compiler we know
about. I have requested that info but would not get it soon.

o Issue 1008 (attributes with tags)

Straw Poll: Would WG14 like to accept the suggested correction to Issue 1008 in N3609? Adopted
by unanimous consent

o Issue 1009 (extern thread_local)

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3609.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3609.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3609.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3609.htm

Celeste: I would be surprised if this changes any implementations.
Straw Poll: Would WG14 like to accept the suggested correction to Issue 1009 in N3609? Adopted
by unanimous consent

o Issue 1010

McCall: The wording needs to be specific about what is being described. What is the "last thread"?
Bazley: Also, "is called" is misplaced in the wording.

o Issue 1011 (powr(-ve,gNaN))

Straw Poll: Would WG14 like to accept the suggested correction to Issue 1011 in N3609? Adopted
by unanimous consent

o Issue 1012

Colomar: Since printf() only returns an error, you do not need to return a count. They should
simplify the language to say "it fails".
Bhakta: I prefer the proposed suggestion.

o Issue 1013

Bachmann: For Question 1, I disagree, we cannot say that it is a bug.
Ballman: We should have never specified these function type attributes. There is a reason C++ does
not standardize type attributes.
Krause: But "Attributes are ignore-able" does not capture reality.
Bazley: If you apply the same concepts to type qualifiers, you get nonsense. If you have an attribute
on one thing and not on another, you form a composite type. I was using composite type in GCC.
Ballman: The standard talks about attributes in a vague way. We never say if we have scoped vs.
non-scoped. Some decisions we make can apply to vendor attributes.
Bhakta: For all the questions, they should all be the same type. Clang considers questions 1-3 as
different types.
McCall: With regard to vendor attributes, we have to have different rules from how we treat
attributes formally in the standard. We should fix this in the long term, understanding that these
things introduce actual complexity.
Bazley: By definition, an attribute is ignore-able. The way they should be expressed should be very
regular.
Colomar: Things like the GNU path attribute are not really ignore-able.
Ballman: Standard vs. vendor attributes are different beasts. We must be careful about how to deal
with this. Clang has 400-500 nonstandard attributes. We should clarify the rules for standard
attributes.

¢ Gustedt, Another daemon: waiting for condition variables [N3559] (0.5 hours)

Svoboda: We could always state that if a mutex passed to cnd_wait() is previously unlocked, it remains
unlocked until the condition is satisfied. Thus requiring that other threads not be blocked when the
condition is satisfied should explicitly be undefined behavior. as suggested.

Gustedt: No, it is still undefined behavior. Something destroyed by cond_destroy() means no one else can
do anything on that variable.

Bazley: Descriptions of mutex are always tricky. Should it say "shall have been locked"? Do you need to
add "and not yet unlocked"?

Gustedt: Yes, this is an ambiguity.

Straw Poll: Would WG14 like to adopt N3559 as is into C2y? 2-0-1 + 15-0-5 = 17-0-6: consensus
Seacord: Can we vote on adding this to obsolete versions of C?

Straw Poll: Would WG14 like to adopt N3559 to obsolete versions of C? 2-0-3 + 17-1-3 = 19-1-6:
consensus

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3609.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3609.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3559.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3559.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3559.htm

Morning break

e Migica, Phrase semantic boolean operators as if bool, v. 1.1 [N3602] (0.5 hours)

Douglas: How much code would this paper break?

Ballman: It should not break any code; the semantics should be the same. It changes semantics, and might
break some Clang-tidy checkers.

Bhakta: The section 6.10.2, paragraph 15 change needs to be reworded. For example, "convert their
operands, or some of them, ..." should be "convert some or all of their operands ...".

Bazley: If this has no semantic difference, the as-if rule should apply.

Douglas: This paper proposes a bunch of stuff, but addresses no breakage. C++ does use bool for logical
operators, why doesn't this paper compare its proposals to what C++ does? I would like to see more meat
on the bones. I would feel much more comfortable if this was known to match C++.

Celeste: If you are changing result types, that is observable, although changing operand types is not.
Overall, this is still a good thing, as using ints instead of bools is now a thing of mockery.

Colomar: The result type is in, covered by the as-if rule.

Ballman: We would have to consider breaking code by changing the result type.

Gustedt: The first paragraph is clear on semantics. We should first do a cleanup and then have a paper
which changes semantics.

Seacord: This talks about the conversion rules, which is unusual for operator descriptors. It is also
Inconsistent with other operator descriptors in the standard.

Straw Poll: Would WG14 like to adopt N3602 as is into C2y? 2-3-1 + 7-7-11 = 9-10-12: no consensus

e Miugica, Floating literals converted to bool [N3545] (0.5 hours)

Douglas: It would be extremely wise to opt in explicitly. Implicit opt-in would be dangerous.

Bazley: I am puzzled by the motivation. Presumably you could cast these expressions to int, not just bool,
right? no I would expect that when casting a floating-point constant to int, you could then use it as shown
in the paper.

Celeste: 0.1 !=0 so conversion to bool is not obvious.

Svoboda: The dialect makes code harder to read. Also newer languages like Java require explicit typing,
going the other direction.

Liber: Floating-point has different properties than integers. 0.0 and 1.0 do not represent true and false like
0 and 1 do. These are error-prone.

Celeste: Since the restriction against floating-point-to-bool exists, we should keep it.

Bazley: I loathe irregularity. I wish the motivation had been better explained.

Straw Poll: Would WG14 like to adopt N3545 as is into C2y? 1-1-2 + 2-15-9 = 3-16-11: no consensus

e Myers Floating-point TS 18661 (C23 version, 2025) issue log, r1 [N3610]

Straw Poll: Would WG14 like to accept the wording in reflector message 30750 for future editions of TS
18661-47 1-0-2 + 13-0-9 = 14-0-11: strong consensus

e Colomar, Relax restrictions on standard attributes [N3631] (0.5 hours)

Bazley: Different implementers are free to lay out structs in memory however they like. It all depends on
the compiler and ABI and platform. So this path attribute is a hint to the compiler to do something
differently.

Bachmann: Split the standard for small platforms.

Ballman: The assertion in the paper that these attributes can not be standardized, but that is not true. For
example, see clang::requires_constant_initialization. WG21 liked this attribute and standardized it. My
bigger concern is that this does not leave a good path for standardizing attributes in C and then C++. We
intended attributes to be identical in C and C++, which this paper would discourage.

Colomar: I dislike this for keywords.

Celeste: If I understand correctly, the proposal is not to add attributes that can be ignored unless the

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3602.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3602.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3545.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3545.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3610.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3631.txt

platform explicitly supports the attribute.

Bazley: Attributes that do not look like attributes are confusing.

Krause: I like the diagnostic requirement.

Bhakta: One thing missing is the "vendor" namespace attribute. That should be added.

Steenberg: I have seen reasonable speedup when serializing packed structures. That should not sway
whether this is right for the standard.

Liber: Are there any issues with pointers in packed data structures with this document? No, this is not
about the "packed" attribute.

Colomar: Existing implementations are allowed to ignore existing attributes and new attributes.
Ballman: A correct program with attribute remains correct if the attribute is removed. I am wary of going
back on this without a lot of motivation.

Gustedt: If you remove "packed" in all your sources, the program is still correct.

*Ballman: It depends on pointer arithmetic.

Bhakta: We cannot vote this directly in anyway.

Opinion Poll: Would WG14 like to accept something along the lines of N3631 into C2y? 1-1-1 + 5-8-10 =
6-9-11: no preference

Bachmann: I do not want to have the standard split for features and I prefer proper serialization.
Celeste: Something does not have to be standardized to be useful.

Bazley: I do not like diluting the notion that attributes are ignore-able.

Lukasiewicz: I would prefer "packed" as a keyword rather than an attribute at all

Gustedt, Function call without decay [N3557] (0.5 hours)

Krause: This paper has the same spirit as the other paper that was accepted. This one makes more sense.
Bhakta: Does this mean you can pass functions to other functions, rather than function pointers?

Gustedt: This is a rewrite of function prototypes rather than function calls.

Ballman: I note the lack of implementation experience. Clang models all function calls as calls to function
pointers.

Gustedt: I disagree. You have a name for a function pointer, which is really a function. This is not support
to change anything on the user's side.

Ballman: OK, but this is work for no benefit. Clang's AST has function pointers, an implementation detail.
Changing that would be expensive, and we probably do not need to change it even if this passes.

Krause: You have decay in your AST and would not change it unless this goes into the standard. SDCC
does not decay.

Bazley: I worry that the language risks getting frozen because of the Clang AST.

Gustedt: We never expect that Clang internals, including the AST never change between versions of
Clang/LLVM.

Ballman: Yes, you should assume that clang will change internals between versions. This invalidates a lot
of function calls; it is more a matter of scale. Clang does not have any control of who uses the AST, but
AST changes require maintenance of that code.

Straw Poll: Would WG14 like to accept N3557 as is into C2y? 2-0-2 4+ 11-6-7 = 13-6-9: not strong
consensus, not adopted.

Ballman: What would make me change my vote from no to yes is stronger motivation in the paper.

Colomar, Rename s/uimaxabs/umaxabs/ [N3577] (0.25 hours)

Douglas: I think the new name "umaxabs" is prettier than the current name "uimaxabs".

Ballman: Why do we keep adding things to the standard and then changing them later? This punishes
early implementers. If anyone has released it, it is problematic.

Bazley: It is already in glibc but people should be warned about changes like this.

Ballman: They are warned, but this is an ABI-breaking change.

Douglas: I could avoid breaking the ABI by aliasing the function.

Colomar: This requires strong consensus. Glibc has not released this, it is just in the mater branch.
Liber: I sympathize with Ballman, but that means we cannot put things in the standard until they are
perfect.

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3631.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3557.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3557.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3577.txt

Bazley: I do not think anyone voted against this based on the name. But requiring strong consensus will
ossify the language.
Celeste: It is the difference between changing our minds and fixing a mistake.
Straw Poll: Would WG14 like to adopt N3577 as is into C2y? 3-0-0 + 21-1-5 = 24-1-5: strong consensus,
adopted

e Colomar, Adopt qualifier conversion rules from C++ [N3629] (0.5 hours)

Bazley: This is an interesting academic example, and relatively trivial. I do support it.

Krause: Which qualifiers? Can I add atomic or not? No, C++ lacks atomic qualifiers It might also cause
alignment issues. I would like a solution including "access qualifiers", perhaps for const, restrict, and
volatile.

Bazley: Calling a new term to replace "qualifiers" is a good idea. We should not block this. Currently C is
a simple and regular language; it treats "restrict" like the other qualifiers. But this makes no sense for
"restrict".

Celeste: "Restrict" is a qualifier but not an access qualifier.

?: There are some wording issues to be resolved. It would be helpful for people if there were a few more
examples.

Opinion Poll: Would WG14 like to adopt something along the lines of N3629 into C2y? 3-0-1 + 18-0-5 =
23-0-6

Lunch Break

e Bazley, Type qualifiers do not apply to type categories [N3511] (0.25 hours)

Straw Poll: Would WG14 like to accept the suggested correction in N3511? Adopted by unanimous
consent

e Colomar, add streq() [N3611]

Krause: New implementation details implies a cost, which may be small.

Bazley: The strcmp() function's return value is not self-explanatory, unlike streq() and strne().

Celeste: This is what I would like the CRFI process for. I would like to see a new section for utilities like
this.

Bhakta: If we move forward, I would like words that show how this compares to strcmp().

Pygott: I can see why streq(NULL, NULL) should return True.

Colomar: My paper is just a wrapper around strcmp().

Douglas: How many github codebases use streq()? Apparently a lot of code does define it, with not
necessarily the same semantics.

Ballman: Not defining in terms of strcmp() actually makes this harder. A SourceGraph search yields
705,000 hits on streq(). While "str" is a reserved identifier, that has not prevented all these hits and code
breaking if we adopt this.

McCall: Many strcmp() implementations vectorize, which is likely to be more efficient.

Bachmann: The compiler can decide whether to optimize via vectorization.

?: Might it be worthwhile to add an uglified version of this function name?

Svoboda: Perhaps we need a subcommittee to settle on which string functions we should use?
Ballman: I have seen at least 5 function signatures in the streq() hits.

Colomar: Everyone uses the library in string.h. Some use wrappers around these functions. Wrapping
around the standard string library does not generate conflicts.

Gustedt: We should cease to add to Clause 7. We need a space for these proposed header files.

Myers: It is more reasonable adding these to Clause 7.

Bazley: My library does not wrap the standard string functions, except perhaps sprintf().

Seacord: I count 4 string API's so far: string.h, Annex K, strv, and Douglas's version. What is your API
for?

Bazley: String buffers.

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3577.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3629.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3629.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3511.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3511.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3611.txt

Myers: I was for eliminating Annex K.

Ballman: I would like to see a study group.

Patricia: This feels small enough that we should not reject it because there are others in the queue.
Lukasiewicz: Before we add many new API's, we should look at the array types first.

Svoboda: Bazley has good motives for his designs for a string library. We need a subcommittee to help
resolve these directions.

Bazley: I spent weeks studying these issues., there might be many directions to go.

Straw Poll: Would WG14 like to adopt N3611 as is into C2y? 2-1-1 + 8-15-6 = 10-16-7: no consensus
Opinion Poll: Would WG 14 like to adopt something along the lines of N3611 but using underscore-
uppercase versions into C2y? 8-14-9: no preference

Seacord, generic_count_type, v1.0.0 [N3593] (0.5 hours)

Gustedt: I dislike this. Achievement with type-generic argument means there is no type conversion. It is
an error that shifting by negative numbers is undefined behavior.

Krause: Just get rid of the undefined behavior. I do not see any motivation to make the argument a specific
type.

Bachmann: It does not change much by itself. If you make it unsigned, this does reduce undefined
behavior. Using "-1u" is the conventional way to set on all bits in a word.

Bazley: No one would ever want to rotate more than UINT16_MAX. I prefer size_t in this place.
Douglas: They all take unsigned int at the end. Should they not all just match?

Myers: The idea of having a fixed parameter to a type-generic function fa poor design. Introducing
unsigned int might risk introducing rather than removing undefined behavior.

Krause: We have similar cases for functions that are already in C23.

Bhakta: The type-generic function rules would have to be modified if this was a generic function with a
fixed argument.

Ballman: Do we know if anyone has implemented or deployed this? I do not.

Gustedt: Meneide has implemented it, but I do not know any details.

Seacord: I think we should just put options on the table and get directions about which options WG14
likes.

Opinion Poll: How would WG14 like to address N3593?

1: No change: 1+3=4

2: Same signature as in C2y, undefined behavior becomes modulo: 0+12=12

3: Fixed unsigned type: 2+5=7

Meneide, Thread Attributes, r1 [N3627] (0.5 hours)

Gustedt: I like the idea of having these features. Much of it is not novel, due to pthreads. I am nervous
about the size of the API. I would be more comfortable if we can split out basic things like detach, and
have a "thread attributes" section.

Meneide: I did ask for CRFI.

Douglas: All of the items we agreed

Banham; Are we in danger of creating a new threading API a la POSIX? How does this help us write
portable code?

Meneide: I built this on top of pthreads. It also builds on Windows.

Ballman: Are these locale-sensitive? I hate locales. It is a big ask to have that much complexity. I would
prefer to have only the native name functionalities.

Meneide: The wchar_t and char are locale-sensitive. The native strings are locale-insensitive.

Myers: I have two main design points: One is over-specifying things in giving enumeration values for the
aligned types. The other concern is the interface.

Bazley: It is a good design but over-engineered.

Steenberg: You cannot actually use POSIX because POSIX's thread libraries are not compatible. Mixing
them would be very dangerous.

Bachmann: It is valuable to print the thread ID. But the name has no need to be internationalized.

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3611.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3611.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3593.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3593.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3627.htm

Gustedt: It is difficult for us to agree on the thread-naming part. Having one simple naming function for
strings would be good. Then come back with more detailed things.

Afternoon break

¢ Meneide, Transparent Aliases, r5 [N3487] (0.5 hours)

Douglas: What happens with linkers that cannot do this?

Meneide: Linkers do not have to do anything. This paper works entirely as a translation-time, runtime
feature. It requires no extra memory or extra storage.

Colomar: This does not really fix the linker issue. It does the same thing as #define already does. I do not
see the reason for this.

Meneide: Macros are nuclear weapons. Problems with macros immediately come to light when you use
them this way.

Bazley: In Graz, there was a poll that favored a typedef-style syntax. I hoped the next version of this paper
would have presented that as an option. I still have misgivings about the syntax. D used to provide a
typedef-like syntax, but now it looks more like this syntax. There was a third syntax involving "alias".
Krause: This is a problem implementations need to deal with. We do not need to put this tool into the
standard and expose it to users. I do not see sufficient motivation.

Gustedt: This changes the grammar of the language in that we have special rules for typedefs, because the
grammar is different if an identifier is a type or not.

Bazley: This does set a precedent. This alias declaration looks like a declaration and initialization of an
object. This is another way of hiding indirection or aliasing.

Ballman: There are constraints that forbid one from transparently aliasing types.

Meneide: It does not work for types because that is what typedef is for.

Colomar: You can do that with _Generic today. Can you show an example of something that is not safe
with a macro?

Seacord: Everything is in the global namespace. You had an example: #define free(). Even inside a
structure with a member called free, it would replace .free with .__free.

Bazley: I want to believe macros are the solution, but I cannot.

Uecker: I do not hate this paper, but it does not make sense to me.

Celeste: The direction indicates pretty much for other languages with macros is that integration into
namespaces is better than a separate preprocessing pass.

¢ Meneide, embed Synchronization, r1 [N3490] (0.5 hours)

Ballman: I support adding the offset parameter. I also do not want to see C vs. C++ divergence in the
preprocesor.

Banham: Should we be using the term "byte" here? For files we could use "optics" or "characters"?
Meneide: The wording says it behaves if it skips ahead a fixed amount of fgetc() calls.

Vlad: Do you have plans to bring C++ recent changes in as well?

Meneide: There are several CWE's, they changed the wording for how sequences are handled.
Bhakta: Can you summarize if the changes here are minor?

Meneide: Yes. They do not change how things work.

Ballman: One thing WG21 did: they fixed the order of some of these parameters, right?

Meneide: That did not get enough traction in WG21.

e Myers, Open Issue processing C23 issue log, r1 [N3609] (1.5 hours)
o Issue 1016 (digit separators in __LINE_)

Bhakta: Should we do this for other macros as well?

Meneide: Have we considered a preprocessor link step that blows up all digit separators from
numbers?

Ballman: Do we even need to solve this problem?

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3487.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3490.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3609.htm

Straw Poll: Are there any objections to adopt the suggested wording in issue 1016 from N3609 for
C2y? none
Straw Poll: Are there any objections to adopt the suggested wording in issue 1016 from N3609 for
obsolete versions of the C standard? none
Banham: A note to the editor:
Note to the editor: In N3550, issue 1016 uses the phrase "excluding any digit separators (6.4.5.2)".
Please replace "excluding" with "not containing".
Seacord: Also note to the editor:
Note to the editor: Consider removing the parentheses.

o Issue 1018

Celeste: I do not believe that is what they actually are in C.

McCall: We should change compatibility rules to just consider the underlying type. People still use
enums in ABI interfaces.

Myers: I am not sure this is guaranteed across different translation units.

Bhakta: Out of the alternatives here, the first one seems to be the most obvious, and the last one is
the most useful ad flexible. The second one seems to be not useful or understandable and probably
hard to implement as well. I would prefer 1 or 3.

Gustedt: I am not sure the proposed solution is one we want. This is too strong.

Ballman: It would be weird if enumerations behaved drastically different than anything else. I
struggle to accept this, but I am sympathetic to it.

Bazley: The first solution seems tautological to me.

Krause: For a struct you do not know the members; you do not know how much space to allocate.
But you know how much to allocate for enums.

Bazley: Do we really pool enumerations as numbers? They do not behave like numbers.

Wednesday, 27 August

e Seacord, Integer Sets, v2 [N3644] (0.5 hours)

Svoboda: Is the point to adopt C++ terminology for bool?

Seacord: The point is to move closer to C++'s way of doing things.

Ballman: We had made Bitlnt signed, but BitInt did not have a sign of 1 because there are no value bits; it
only supports O and -1. However, I am in full support of the current terminology which adds BitInt<1>.
Myers: It is not a good idea to rewrite paragraphs about bit-fields. Some of the confusion is because we
have signed and unsigned referring to types that do not behave like signed and unsigned. They are subsets
of the types whose behavior is signed or unsigned.

Bazley: The taxonomy should clarify the standard. I am in favor of this change.

Ballman: We could bring the paper to SG22, the C/C++ compatibility study group.

Bhakta: In the section 6.2.6.2, paragraph 1 change, why have "least significant bit"?

Seacord: I agree; it is been removed in a newer version.

Bhakta: Why the 6.2.5p20 addition?

Seacord: I defer to the committee for consensus on this paragraph.

Kaye: This is a sensible change.

McCall: I like this paragraph, I think we need it.

Uecker: It is important to say something about bool.

Gustedt: This is in paragraph 1.

Seacord: It feels like consensus is to eliminate this paragraph.

Svoboda: I sure would like to see those graph partitions in the standard text.

e Uecker, Earthly Demon XV: Definition of Main (Updates N3562) [N3623] (0.25 hours)

Krause: It is common that a user supplies a little code that passes control to a startup function. The
compiler does not know anything about the startup function. I do not want this for freestanding

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3609.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3609.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3550.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3644.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3562.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3623.pdf

implementations.

Ballman: Overall, I am in favor of the intent. But it is moving farther from existing practice. "main()" is
not the way that everyone defines their startup function. I would like to see us admitting real-world
practice. The new constraint is correct, but also weird when it is an implementation-defined type.
Bhakta: I care about obscure platforms. This is too specified, there are many ways to enter a program.
Bachmann: There should be no restrictions for freestanding platforms. We often have a "pre-main" to
switch clocks.

Krause: Often our platform will write an assembly function and call it from C. It would be ridiculous to
have every assembly function with a command-line parameter. It provides no additional safety, because it
is only added to this one function.

Ballman: Currently, the type is implementation-defined. The name should be implementation-defined as
well.

Celeste: We wasted many hours on this in MISRA. Striking this entire section from the C standard would
be appropriate.

Bazley: Failure to standardize makes this committee pointless. Any compiler that does not let you run a
"hello, world!" program with main() should be nonconforming.

Ballman: Celeste, that is an interesting way to think about this.

Uecker: The other ways of naming main() are out of scope of my paper. It constrains the type.
Bachmann: This does not describe embedded systems appropriately.

Gustedt: I propose a compromise: It wraps up things for hosted implementations, and makes a new claim
for freestanding implementations. The freestanding is not complete, and needs a new paper. We can add
the constraint for hosted implementation. Add "for hosted".

Uecker: I am fine with this wording change: "Change paragraph 1 to "For hosted implementations, the
function called at program startup shall have one of the function types specified in 5.2.2. There shall be a
definition of this function with external linkage."

Straw Poll: Would WG14 like to adopt N3623 with the wording change into C2y? 2-0-1 + 15-3-6 = 17-3-
7: strong consensus

Uecker, Representation of Pointers and nullptr_t [N3563] (0.25 hours)

Gustedt: I am in favor of this. Now is the time to clean this up.
Celeste: This is a great usability change.
Straw Poll: Would WG14 like to accept N3563 into C2y? Adopted by unanimous consent

Ballman, Member access of an incomplete object [N3532] (0.25 hours)

Douglas: It gave me funny vibes that there may be a use case we have not thought of.

Ballman: Struct members used to be globally available. So this was a holdover.

Celeste: I asked someone on my team; I do not require this to be supported by the standard.
Straw Poll: Would WG14 like to accept N3532 into C2y? Adopted by unanimous consent

Straw Poll: Any objection to adopting N3532 into previous versions of the standard? Adopted by
unanimous consent

Coates, Slaying some earthy demons - remove UB 28, 29 [N3565] (0.25 hours)

Svoboda: If this is a "ghost" undefined behavior as Myers suggests, how does the paper change?

Myers: Some sentences go away.

Svoboda: But that could be a future paper. We can still vote on this paper.

Gustedt: We still have numeric indexes that are not allowed in identifiers, but some implementations, such
as Clang, allow them, and we allow an extension paper. I prefer these to be implementation-defined rather
than constraints.

Krause: It is common for implementations to allow extra characters, such as $.

McCall: The sentence about $ could go into the Constraints section.

Ballman: Have you verified this does not make some odd incompatibility with C++. I can connect you
with someone in SG16 who can answer.

Banham: I am confused by Gustedt wanting Unicode characters outside this set. But Coates is moving

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3623.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3563.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3563.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3532.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3532.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3532.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3565.pdf

towards constraint violation; noncompliant compilers will not abide by it anyway. The Unicode standard is
evolving.

Gustedt: And the C standard is not pinned to any particular version of Unicode.

Bhakta: It is not the compiler that chooses. The standard indicates 10646 (Unicode).

Ballman: We cannot use the Unicode definition of what are valid chars in an identifier. We have made
some explicit exceptions, including $.

Celeste: I am not convinced we need undefined behavior for the extension point. It is necessary to make
this undefined behavior for the extension.

McCall: Implementations need to add to the set of identifiers. Any implementations want to maintain
different sets of Unicode tables, which would be required if each standard encodes a particular version of
Unicode. That would be a huge amount of work for compiler vendors.

Seacord: We have changed Annex D, eliminating section 2.2 during defect reports. Our change was a
band-aid before a complete rewrite. It was trying to follow C++. Things are in transition, and it is unlikely
for this to survive without changes to C2y.

?: The keyword is "profile". Make it implementation-defined. There is a medical profile for people who
like subscripts.

Opinion Poll: Would WG 14 like to adopt something along the lines of N3565 but using implementation-
defined behavior rather than constraint violation into C2y? 1-0-3 + 13-1-9 = 14-1-12: strong direction

Morning break

e Coates, Slaying Some Earthly Demons - remove UB 30 (0.25 hours)
o approach 1 [N3603]
o approach 2 [N3604]

Celeste: I prefer approach 2 (that eliminates "significant characters")

McCall: We do not meaningfully define what happens when you exceed the limit of significant characters.
Krause: I disagree that every program that would be broken is already wrong. But I do not control my
linkers; we use third-party linkers. Either two identifiers will be different or the same. I could work with
"implementation-defined".

Bhakta: I prefer approach 2. It does remove the implementation documentation burden.

Ballman: I prefer approach 2. It would be the linker that would document this stuff.

Bachmann: Is there code with such large identifiers?

Gusted: Yes, if you use UTFS, perhaps also auto-generated code.

Bazley: I prefer if programs that could be linked wrongly be diagnosed. I would expect the constraint to be
the object file format. It seems strange that a linker can ignore some "non-significant" identifier characters.
Douglas: Do we not feel that 63 significant characters is too short?

Uecker: The linker is part of the implementation. We need some better solution, perhaps working with
linker developers.

Colomar: I would change from undefined behavior to a constraint violation.

Bachmann: We have heard that these limits cannot be changed. But they have been changed in the past.
Celeste: Is 63 characters exceeded? Yes, easily by auto-generated code. Right now, this does not need to
be diagnosed.

Ballman: I am sympathetic to Uecker's point. Unlike compilers, linkers can be dumb, so they require little
maintenance. I do not know how to resolve this. Undefined behavior might be the most reasonable choice
if we cannot guarantee how the linker will behave. Are there CVE's with this?

Uecker: What does Rust do?

Lukasiewicz: If the name exceeds the limit, the significant bit of length exceeds the limit. I favor option 2.
Bazley: I can talk to some linker people and see what they think. We may need to establish a linker
standard.

Krause: Do users really use long identifiers? I know two projects who used long interfaces to make them
restrictive but made sure to keep the beginnings distinct.

McCall: The common linkers really do not have identifier limits.

Bhakta: There are many limited linkers out there. Some pick the first identifier without further checks. So

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3565.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3603.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3604.pdf

you cannot force compilers or linkers to diagnose this.

Bazley: The thread is being lost. If linkers have limits beyond the standard, they should produce
diagnostics.

Tarditi: You cannot tell people their conforming implementation is no longer conforming. You can have
8,000 identifier lengths. We do not control linkers, and no one wants to retrofit their linker.

Wiedijk: There is a file system that still has 11-char limits. C is still good for quick and dirty things.
Raising the requirements on ISO C feels like ignoring the little guy, especially compared to C++. I prefer
option 1.

McCall: There are implementation techniques that does not run into significant limits. You hash the
symbol name, which has problems but does not break code.

Liber: I do not like arbitrary limits. We should not be dictating what those limits are.

Opinion Poll: Regarding N3604, which approach does WG14 prefer?

Do nothing: 1+6=7

Implementation-defined: 0+4=4

Remove significant characters: 4+13=17

Gustedt, static_assert without UB [N3525] (0.5 hours)

Ballman: An implementation is allowed to extend what an integer constant expression actually is, right?
Gustedt: You are not internally consistent if you do that.

Douglas: How does this compare with C++'s static_assert? Would C code with static_assert() blow up in a
C++ compiler?

Gustedt: I do not know.

Ballman: C++ gets contextually converted to bool, but you can have a constant expression that is not an
integer constant expression. As we continue to expand constexpr, if I have a pointer that can be NULL that
is not an integer constant expression.

Straw Poll: Would WG14 like to adopt N3525 as is into C2y? 2-0-2 + 16-3-4 = 18-3-6: adopted

Mailhol, Static assertions in expressions, v2 (updates N3538) [N3637] (0.5 hours)

Krause: This is a niche use case. For lambdas we would not need this. You could use a normal statement. I
do not want this in. If something like lambda goes in, perhaps we can reconsider this proposal.

Bazley: I like this proposal.

Celeste: I do not think should depend on a more complicated feature. It is almost like an arbitrary missing
feature to static_assert().

Colomar: I have a use case. I wrap string functions in macros. I need static assertions to assert that an
expression is an array (not a ptr). So I need this.

Ballman: Is C++ taking a similar feature? No

Uecker: Would the block actually break something? Yes

Fukasiewicz: This brings static_assert() closer to normal assert(), so I like it.

Omar: This version would not be usable in an integer const expression because it has void type, right?
Mailhol: I wanted to keep it simple. If accepted, my next paper would be to propose this.

Opinion Poll: Would WG14 like to adopt something along the lines of N3637 into C2y? 2-0-1 + 18-4-5 =
20-4-6: strong direction

Douglas, Standard secure networking [N3533] (0.5 hours)

Kaye: Would this be mandatory or optional?

Douglas: Optional. Some C implementations would have no network.

Myers: This should go to CRFI, it is more appropriate there. It also needs normative references, and a lot
of other new concepts.

Krause: Networking is important but not trivial. The WG14 committee needs experience with networking,
or else offload this proposal to a subcommittee.

Wiedijk: It should be a TS first.

Bhakta: C++ did try the TS route. Did it get adoption in the C++ community?

Douglas: This is the post-TS implementation, after the TS was killed.

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3604.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3525.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3525.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3538.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3637.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3637.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3533.pdf

Liber: Are there dependencies in your library?

Douglas: I think not. All I/O go through struct io_vec.

McCall: Is there any platform API author feedback?

Douglas: That was not necessary; this is as ABI-tight as you can imagine.

Krause: It might bring in many identifiers, many prefixed with "tls". Internally, I would like a prefix to
avoid namespace pollution.

Ballman: I am concerned in that secure networking API's have changed a lot in the last 20 years. What
chances are there of us standardizing this, and then discover that implementations have moved on?
Douglas: We are only supporting TLS, no other protocols. I think it will be around forever. I claim that
they have fully debugged SSL by the time TLS 1.3 came out.

Krause: Is TLS ready for quantum crypto?

Douglas: In TLS you list which crypto algorithms you support in the protocol. If both endpoints agree on a
crypto algorithm, they use it So TLS is future-proof with regard to crypto.

Colomar: I do not think we should have secure networking before we have regular networking.
Dusikova: You want secure networking by default.

Bazley: I am tempted to say it is too low-level. One part of ISO C I most value is strings. If this were more
well-integrated with files it would be compelling to me.

Lunch Break

¢ Douglas, Standard secure networking [N3533] (0.5 hours) (cont)

Seacord: This is a strong candidate for CRFI, but it is not right for anything else. That is the obvious route
for this.

Celeste: CRFI has a proposed extended library section, for things not quite suitable for a TS. So this is
very permissive for CRFI.

Bazley: Why use function pointers? It is not like any interface in our standard library.

e Meneide, Integer Constant Expression-Initialized const Integer Declarations are Implicitly constexpr, rl
[N3600] (0.5 hours)

Ballman: Overall I am in favor of this.

Celeste: I am wary of block D3, it is not obvious whether it is going to be one or not. Where it is not
explicitly static, it depends on what it is initialized with.

Uecker: I also support this paper; it constraints things that should be constrained. I am concerned about
the case of propagating const from the initializer.

Bhakta: This broke some users' code. Have you heard the other way around?

Ballman: My mental model is that literal and constexpr when properly initialized are interchangeable.
Bazley: C++ is discussing if they should deprecate this. Why?

Dusikova: There is a draft in the C++ library group, but it is only for analysts and integers.

Gustedt: I think C++ has different semantics here. At file scope, it is automatically static.

Opinion Poll: Would WG14 like to adopt something along the lines of N3600 into C2y? 1-1-1 + 22-1-7 =
23-2-8: clear direction

e Meneide, Additional Half-Open case Range Syntax, r1 [N3601] (0.5 hours)

Bazley: This is an excellent proposal. But I am ambivalent about it; it feels redundant. You do not get
errors about incorrect bounds statements in C, why get them here?

Krause: Imagine that you have an if condition that cannot be taken because you swapped your bounds. We
already have if and switch, now you want half-open on the right side. Why not half-open on the left side?
We do not need every detail to formulate a switch statement or if/else chain.

Liber: It is all throughout the C++ library. I might want ranges from something high to something low.
But that is a violation here.

Colomar: It is more of a footgun than what we have now. A user would expect the same behavior from a

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3533.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3600.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3600.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3601.htm

half-open range vs. a closed range.
Bhakta: Is there any C experience with this?
Meneide: No
McCall: In Swift, half-open ranges are more important than closed.
Coates: The history seems to be that closed ranges were used extensively and automatically generated. Is
this intended to sidestep that issue to have tighter diagnostics now?
Meneide: The proposal that added closed ranges to C did tend to use this. The reason we decided not to
use constraint violations was configurability / code generators.
Myers: This is a somewhat marginal feature.
Ballman: I agree with the importance of half-open ranges, but it does not need new syntax. Ranges inside
cases are a small subset of what people are using. I do not think we need it yet.
Colomar: I am not opposed to the idea that they are more common than closed ranges. But I would like to
see a proof first. We should have the same constraint violations as closed range.
Wiedijk: I agree that the constraints should be same for open vs. closed ranges.
Simerda: In the editorial, why not include the range type from Python library?
Bazley: Later we will want initializer ranges, which will be influenced by this paper.
Opinion Poll: Would WG14 like to adopt something along the lines of N3601 into C2y? 0-2-1 + 12-12-6 =
12-14-7: no direction
e Meneide, Literal Suffixes for size_t, r2 [N3485] (0.5 hours)

Myers: I have a problem with using "may not" in a note due to its grammatical ambiguity.

Bachmann: Size_t is a typedef name for another type, and we do not have literals for other non-types.
This is inconsistent.

Krause: Only 10% of the C++ paper applies to C.

Celeste: I am surprised by its absence in C.

Colomar: I am also surprised. I think I do not see any use for it.

Bazley: "Ease of library independence" is in the C charter. I do not care deeply about it. It seemed weird to
have a suffix for literals that have a type only available as a typedef.

Bhakta: Is there implementation experience?

Meneide: Except for Clang and some that have an extension, no.

Ballman: In Clang, we do not expose it as an extension, but as a C++23 feature. Types are either important
or not, and users like literals for their types. There are users who want their types to match because
conversions are complicated.

Liber: The language returns size_t so people are surprised when the feature is not already there.

Gustedt: size_t is a typedef of a type that exists. I would be more in favor if this were consistent with
printf specifiers. Having more cases is just more to learn.

Celeste: Users do not want to do conversions if they can avoid it. Rust does not allow conversions at all.
.Colomar: I see why you want this for size_t but I also see why you might want this for time_t. Why
size_t and not time_t?

Ballman: Size_t is used much more than the other extended type. So it is more special.

Seacord: "The corresponding signed integer type for size_t": that type does not exist in the standard. I
would prefer that that line said "a nonstandard integer type of size_t".

Colomar: You can define a signed version of size_t using _Generic.

Bachmann: One of our jobs is to say "no".

Douglas: I am strongly in favor. I cannot write a size_t literal without a cast. Not having a size_t literal in
braced initializer list, you need size_t casts.

Straw Poll: Would WG14 like to adopt N3485 with the editorial correction into C2y? 1-2-0 + 18-5-5 = 19-
7-5: weak consensus, not adopted

Seacord: Reflector message 25775 has Bhakta's task and script for determining consensus

Afternoon break

¢ Douglas, Lingua franca Results [N3599] (0.5 hours)

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3601.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3485.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3485.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3599.pdf

Celeste: I strongly support this. It is great to start with C90 first.

Bhakta: Why did C++ reject this?

Douglas: When Herb Sutter's paper was not going to happen, this got de-prioritized.

Krause: I do not want this in the language. I want it in the standard library. Go all the way and use the
"std" prefix on everything in the paper.

Bachmann: The paper is a bit sparse. [am curious how this works in Fortran and other languages?
Svoboda: What about the C standard library. Are there return values?

Douglas: This is not planned for the C standard library, but it is easy to do for interoperability with other
languages.

Svoboda: Java and Python have Option and Result types and no one uses them.

Bachmann: On POSIX I can augment errno with, say, a file descriptor. Can I include that in the error?
Bazley: Any largish type-safe program needs an error type. For C should be a struct. Large projects are
troubled by having a single list of errors. Also, where does the unique ID come from?

Douglas: We want to not destroy any error info, but encapsulate it.

Colomar: This looks like an XKCD standard problem. I do not see how this makes my life easier.
Lukasiewicz: I like the idea of the Result type. Making it a library will make it cuambersome to use. This
requires more typing and attention.

Ballman: It seems like the lingua franca are centered around modern languages. Is there any experience
with Fortran or Cobol or older languages?

Douglas: If it can work with C, it is good. No one has reported issues. There was one person who was
using it with Fortran.

McCall: The representation of error values is always type-erased.

Douglas: It can go into erased form if it will fit in memory. The C++ paper has full wording for C++.
There is also a reference implementation.

Bazley: Yes, std::result_destroy. I prefer to avoid memory management when possible. Is there any
cleanup? I do not want an English message, I prefer a token that works in any language.

Opinion Poll: Would WG 14 like something along the lines of N35997? 5-1-0 + 15-3-4 = 20-4-4: strong
direction

Colomar, Restore the traditional realloc(3) specification [N3621] (0.5 hours)

Seacord: We could not tighten up the language because of OS implementation divergence, so we loosened
the standard, and eventually gave up and made it undefined behavior. I am thinking of proposing a new
realloc() function with the original intended behavior: realloc() returns NULL for error and for size=0, it
return a 0-byte block. If the block fails, it returns NULL. We cannot change the existing behavior of
realloc() because that breaks lots of user code. I prefer deprecating realloc() in favor of this
"new_realloc()" function.

Colomar: I was careful not to break any existing code. BSD's realloc() is not broken, so they will not
change.

Ballman: It is incorrect to say this change does not break code. It does not change the semantics of code,
but small memory leaks constitute breakage.

Steenberg: A lot of people depend on using realloc() as free() so they expect it to return NULL. Changing
this will break their code.. And a new_realloc() function is a big ask.

Colomar: Code that hard-codes with free() but returns NULL is broken today.

Bazley: I strongly support this paper. I do not think we can replace realloc() any more than we can replace
atoi().

Celeste: It is community-knowledge that we need to un-teach that realloc(0)==free(). Making it undefined
behavior made some people angry. My constituents see undefined behavior and think "error". We could
use this anger as leverage.

Colomar: Memory leaks only happen if realloc() can fail for a size of 0.

Bhakta: I am strongly against this. I like the idea of a new function.

Colomar: If you take BSD code and run it with glibc, that is remote code execution.

Svoboda: I detest code that uses realloc() in place of malloc() or free(); it makes the code impossible to
static-analyze for memory leaks, or audit.

Douglas: POSIX for realloc() says "Ignore what we say, do what the C standard says". I now think we

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3599.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3621.txt

should put this back the way it used to be, and mark it deprecated ASAP. It feels solvable, but I suspect it
1s not.

Steenberg: If this was in the standard, many implementations would not implement it. That is why we
took the decision last time.

McCall: I do not find the argument that compilers can reliably catch this convincing. If we want to make
this change, the less problematic approach is to return something that does not need to be freed.

Celeste: I suggest we used a giant hammer to undefined behavior, we can do another one in obsolescent
functions.

Eric: If we do a replacement interface for realloc(), you could choose at compilation time which realloc()
you want. Portable code avoids realloc(0); they replace realloc(0) with realloc(1).

Ballman: The one thing that concerns me about having realloc(0) that does not require freeing is in getting
a unique pointer value.

Krause: We will also follow the standard if this goes in, because we have very few users that use realloc()
anyway.

Bazley: People who are against this paper should reply to the research that Colomar has done. He has
engaged with the specific use cases.

Svoboda: Do not use realloc(0) or realloc(NULL).

Straw Poll: Would WG14 like to adopt N3621 into C2y? 3-2-0 + 6-11-6 = 9-13-6: no consensus

Opinion Poll: Would WG14 like to adopt something along the lines of N3621 into C2y, replacing realloc()
with a new function name? 4-1-0 + 17-0-5 = 21-1-5: strong support

Thursday, 28 August

e Gustedt, Add type-safe minimum and maximum type-generic macros [N3543] (0.5 hours)

Krause: I like it. But I prefer the name stdc_min()

Colomar: Would this surprise anyone? Maybe we should recommend that implementations should
diagnose if arguments are not literals and have different signs.

Gustedt: We often do min with integer literals.

Svoboda: Why is min/max insufficient?

Gustedt: ISO C has min/max for floating-point, not for integers.

Bazley: What is worse than the standard C promotion rules is inventing new promotion rules. I like the
design. The "ckd_" prefix could be misleading. I prefer "std_" or "stdc_".

Ballman: Let us not use the "ckd_" prefix. For integer types, there is no error. For floating-point types you
could lack a type to represent all values if the arguments are different types. But we do not cover floating-
point types yet. There may be error cases for implementation-defined integer types.

Gustedt: I get big compilation types trying this on BitInt types.

Myers: NaN's would be handled differently than IEEE 754. Also positive vs. negative 0. It is a bad idea
for the proposal to address floating-point differently than IEEE 754.

Gustedt: This is more a language feature than a macro. For floating-point integration I agree, we should
remove it for now. For constexpr we can do constexpr in library macros.

Tarditi: 1 support this, it is easy for people to make mistakes. If possible, let us keep floating-point out.
Floating-point-to-integer conversion is tricky.

McCall: You do not specify what types this works over. Since you store the result in one parameter, that
means you must be explicit about the result type. If this in the ckd_ space, it should fail if the answer
cannot be stored in the result type, like the other "ckd_" functions.

Gustedt: For now we should constrain to integer types.

Colomar: If this were in signed integers with infinite ranges, it would still work.

Bachmann: Does this also support BitInts?

Gustedt: Yes. There is a hard limit of 512 bits because Clang cannot see that the result will be small. That
is an implementation problem.

Kaye: Not doing error checking is more ergonomic.

Seacord: I would prefer to see this not defined for bool types. I prefer bool not having mathematical
relationships, outside of logic. Before C23, this would fit in with our proposed "cmp" prefix.

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3621.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3621.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3543.htm

Uecker: Myers has an example with float vs. int64 error in the chat.
Bachmann: We cannot change integer promotion rules; they are deeply baked in. Changing them would
be a complete mess.
Tarditi: 1 did not understand typeof<a+b> in the paper.
Gustedt: That was informal, not official C code.
Colomar: If you return the value and it is not returned by a pointer, what type will store it?
Gustedt: I expect the user will not need to store an error. In other places you could use auto.
Ballman: If a+b fails, then would not min(a,b) also fail?
Wiedijk: It should just be called min and max.
Gustedt: No, max is too often a variable name or macro.
Opinion Poll: Would WG14 like to adopt something along the lines of N3543 for integer types into C2y?
3-0-1 + 19-0-5 = 22-0-6: clear direction
¢ Gustedt, Clean up atomics, non-normative changes v4 [N3606] (0.5 hours)

Myers: This is very close to being ready but there are a few places where wording is not quite right. There
was an issue with prefix_increment wording. And one of the comments in an example was incorrect.
Ballman: Have you talked with anyone in SG21 in WG21 to make sure we are in agreement?

Gustedt: The specifications are on different levels.

Opinion Poll: Would WG14 like to adopt something along the lines of N3606 into C2y? 4-0-1 + 14-0-4 =
18-0-5: clear direction

¢ Douglas, Modern signals handling [N3540] (0.5 hours)

Colomar: What did POSIX think?

Douglas: They loved it.

Bhakta: Why did C++ not want this?

Douglas: There was major opposition from one senior member.

Ballman: Is the big problem to make signals and threads play well together?

Douglas: Yes, there were problems with threading. It is now guaranteed thread-safe. It also lets you do
thread-local signal handling.

Svoboda: Windows signals can be re-sent, overriding your handler. This makes signals unworkable on
Windows.

Douglas: This is disabled on Windows; it does nothing. They are badly emulating POSIX, signals work
poorly, which they have done since win32. That is why Microsoft loves the proposal.

Bhakta: Has this been considered for a TS or CRFI?

Colomar: Part of this comes from POSIX, and part is an extension. Could we split the POSIX paper from
the extension paper?

Douglas: Yes, we are adding sigset() from POSIX,

Krause: Thanks for reusing thrd_ prefixes. Can you add a brief reserve prefix to the namespace?
Gustedt: What platforms does the reference implementation run on?

Douglas: POSIX, Windows, MacOS

McCall: Minor, but in your thread_race, you have several void pointers with OS-specific definitions.
Could those be more specific?

Bazley: Could you not hide function pointer types behind typedef? It obfuscates the fact that it is a pointer.
If a library maintainer ever wants to make this self-documenting, they might want to qualify that type as
optional.

Douglas: Do others agree? divided reaction

Seacord: I asked Bill Plauger his greatest regret a long time ago, and he said "Adding signals to the C
standard".

Opinion Poll: Would WG14 like to adopt something along the lines of N3540 into C2y? 6-0-0 + 13-2-4 =
19-2-4: clear direction

Morning break

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3543.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3606.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3609.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3540.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3540.pdf

e Migica, Classification of the register storage-class specifier [N3544] (0.25 hours)

Kaye: "auto" is still in the storage durations.
Seacord" That is for C++. We kept and extended the meaning for auto.
Straw Poll: Would WG14 like to accept N3544 into C2y? Adopted by unanimous consent

e Steenberg, Effective Type in C [N3519] (0.5 hours)

Seacord: The paper is OK. I have previously communicated some things that are incorrect. If there is an
ambiguity, I would love to see a paper that resolves it, and an ambiguity would not surprise me. It is not
obvious what the purpose of this paper?

Steenberg: The first goal was to understand effective types. I shared the paper by request. There are three
possible resolutions: 1. if you write using a member of a struct, you set the struct. 2. If you write to
memory with a member of the struct, all the members get the effective type of the respective members.
Does anyone argue that the type is the structure type?

Wiedijk: I am trying to revive the Memory Object Model SG. I would love to discuss this in the SG.
There is a mailing list.

Uecker: I agree. The old SG started to discuss these topics. There are existing defect reports, but they were
never fixed. But we have not even fixed provenance.

Ballman: I am still struggling to understand why this is unclear. You get the effective type of whatever you
are assigning from.

Gustedt: The problem is that people tend to declare variables of struct type, then initialize members
individually. At which point does this become the struct type?

McCall: I do not know if it is supported, but it would be useful to say that an access to a struct member is
also an access to a struct object for aliasing purposes.

OPpinion Poll: Are there any objections to clarifying N35197 Adopted by unanimous consent

e Celeste, Simplified lexical scope for labels, v2 [N3658] (0.5 hours)

Myers: I am not convinced the complexity is worth it.

Celeste: It was intended to reduce complexity.

Gustedt: I agree, this is simpler. If you use such a label in a goto, the label must be uniquely in that same
function.

Ballman: The Clang implementer also thought this was simpler.

Bhakta: This is great for understanding. It may cause implementation issues. The use case matters more
than the implementation.

Bazley: Implementations aside, this complicates anything that complicates C code. It makes a simple
Python-esque dictionary of goto labels insufficient.

McCall: Is there a constraint about multiple loops in a hierarchy?

Celeste: This does not enable that.

Colomar: The only use for this is named loops. It is inconsistent that I can repeat names. I want to kill
named loops. Functions are the names of loops.

Opinion Poll: Would WG14 like to adopt something along the lines of N3658 into C2y? 1-1-0 + 17-6-1 =
18-7-1: strong direction

e Thomas, frexp and double-double (updates N3357) [N3535] (0.25 hours)

Banham: Is floating-point not defined by the IEC standard?
Bhakta: Not necessarily. You do not have to follow that to comply with ISO C.
Straw Poll: Would WG14 like to accept N3535? Adopted by unanimous consent

e Lenga, Adding struct enum: Strongly-Typed Enumerations for C [N3568] (0.5 hours)

Krause: Namespace pollution is the problem, but I do not think this solves the problem. Constants are the
only motivation for me. And C++ compatibility.

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3544.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3544.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3519.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3519.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3658.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3658.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3357.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3535.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3535.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3568.pdf

Celeste: I do not like that you are using a different member access operator. The constexpr struct
workaround is adequate.
Ash: I like the idea. If it is intended to be compatible with C++ it should go the whole way.
Kaye: I second Celeste. I see no mention of specifying underlying type, which we can do now in normal
enums.
Vlad: Without specifying an underlying type, this looks like C++.
Lukasiewicz: What was the design for making it enum struct or class?
Gustedt: This paper does three things: It puts named scope around constraints, enhances the . operator to
do something where the first thing is a type, and finally, it provides a new memory model for a new kind of
enumeration type. I am opposed to that third thing. For the second thing, we should use a general new
operator, like "::". I would be in favor of the second thing.
Coates: I like the idea, but not in its current form. I wonder if enum structs would get the type specifier
Kaye suggests. I also wonder if you would end up with codebases with two forms of enums. If I want
scoping control, and want to specify underlying type, I would have to do it manually.
Colomar: In C++, the enum class is a different type that cannot be mixed with integers. It does not look
like C enum types. It would be surprising for C++ programmers, so it is a footgun.
Bazley: I should be in favor of this, but if I want enums to be strongly typed, I would wrap an enum in a
struct. In C++ struct types are not separate namespace, what about struct-enum types?
Ballman: C++ enum structs evolved from putting an enum into a struct. We do have a little precedent in C
for using :: with attributes. There is no name mangling involved; it is just a lookup operation.
Tarditi: I am in favor of this proposal; it cuts down errors. We should make sure it is compatible with
C++. I know the wrapping-in-a-struct trick, but that breaks ABI's. Structs have different calling
conventions than ints.
Bhakta: I disagree with the :: operator. I think users are more used to the . operator.
Svoboda: Does this make obsolete current enums?
Opinion Poll: Would WG14 like something along the lines of strongly-scoped enumerations similar to
what is in N35687? 0-3-0 + 14-6-7= 14-9-7: weak direction
Opinion Poll: Would WG 14 like to see something along the lines of N3568 into C2y? 0-3-1 + 9-5-11=9-8-
12: neutral divided response

e Lenga, Additional String comparison functions to complement strcmp() [N3455]

Krause: We have seen an streq() function before. You added a performance argument. strcmp() could be
optimized by compilers to match your streq() performance.

Ballman: I did a global search for these interfaces. "str" prefix has 9,000 uses.

Celeste: We can later handle questions about adding this to a CRFI library.

Seacord: Earlier we had a streq() paper (N3611). Please work with Colomar about producing a common
paper.

Bazley: The motivation for adding functions to detect prefixes and suffixes is stronger than the equality
functions. I propose shorter names for prefixes and suffixes: "pfx" and "sfx". The names should be
mnemonic, rather than long. Also, if you add functions to work with char strings, you should add
analogous wchar_t versions.

Colomar: About "wcs" functions, I have the paper and can add those as a separate paper. We have OS
matches with less conflicts.

Seacord: If there is a paper for a narrow string version but not a wide string version, I would not vote for it
in the hopes that the wide string version comes in later.

Ballman: I did a quick search for Bazley's suggestions: I have 800 hits for strprefix and 100 for strsuffix.
Kaye: I disagree, if something stands out be being able to be read, that is good.

Opinion Poll: Would WG14 like to see something along the lines of N3455 into C2y? 2-2-0 + 8-4-12 = 10-
6-12: weak direction to proceed

Opinion Poll: Would WG14 prefer to see "sfx" instead of "suffix" in N3455 and the same for "pfx" instead
of "prefix"? 1-0-1 + 8-7-7= 9-7-8: split, no direction

Lunch Break

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3568.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3568.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3455.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3611.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3455.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3455.pdf

Thomas, Clarify wording for 7.3.9.5 - cproj [N3536] (0.25 hours)

Krause: We do not capture the topological properties of the Riemann sphere, but we also do not do this in
floating point. I still like the change, I would add a footnote to explain how to model this on the Riemann
sphere.

Wiedijk: The Riemann sphere is one infinite point.

Straw Poll: Any objection to adopting N3536 into the standard? Adopted by unanimous consent

Thomas, Correct and clarify 7.3.1 Introduction of Complex arithmetic [N3537] (0.25 hours)
Straw Poll: Any objection to adopting N3537 into the standard? Adopted by unanimous consent
Thomas, Clarification for complex suffix specification [N3500] (0.25 hours)

Straw Poll: Any objection to adopting N3500 into the standard? Adopted by unanimous consent
Thomas, Make text consistent between creal & cimag [N3598] (0.25 hours)

Straw Poll: Any objection to adopting N3598 into the standard? Adopted by unanimous consent
Gustedt, Retire the concept of consume operations [N3607] (0.5 hours)

Wiedijk: The rule "a synchronizes with b" sounds similar to me but it really is not.

Bhakta: I did not see what C++ did with carries_dependency. Did they remove it?

Gustedt: I think they kept it for backwards compatibility.

Ballman: The latest working draft for C++ no longer has carries_dependency.

Bhakta: If we could have in the agenda 4-5 papers that we would prioritize if we have more time, that
would be great.

Seacord: Who has not read this paper?: 8+4 Myers says: Once the agenda is full, there is 10 "if-time"
papers, hold off on the fire hose.

Bazley: I second Bachmann. I do not appreciate breaking earlier than Friday.

Liber: There were more "in-time" papers than agenda papers.

Uecker: Now it is a good use of time for paper feedback even if we do not vote on it.

Straw Poll: Would WG14 like to adopt N3607 into C2y subject to possible objections before the next
meeting? 1-0-1 + 23-0-3 = 24-0-4: strong consensus

Douglas, Variable length prefixed length strings [N3608] (0.5 hours)

Krause: This looks like a cool hack, like the whole UTF encoding. Have you considered language-
independent representation of these strings?

Douglas: That would suffer from the XKCD n+1 problem.

Kaye: The length encoding is clever. Being invalid UTFS8 is important.

Colomar: This proposal can only get accepted over my dead body. System calls to the kernel take NTBS.
It is standardized in C and POSIX. NginX had strong memory consumption requirements and never
worried that size_t bytes were a problem. This is invalid UTF8, but there is existing code that assumes a
string is valid UTFS8.

Douglas: You would have to cast. Not all OS's use NTBS's.

Liber: Has this been adopted anywhere?

Douglas: No, it is very much my invention.

Bazley: You said my paper is orthogonal to your proposal, but that misses the point of my proposal. The
real issue of C strings is a failure to extract the irrelevant.

McCall: I am curious as to why you did not use a pointer indicator?

Douglas: I refer you to the way LLVM stores things internally.

Crammer: In other languages you have to deal with the C ABI; you must convert those strings to C
NTBS's. What is your take on how that API problem should be handled for these types of strings?

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3536.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3536.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3537.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3537.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3500.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3500.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3598.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3598.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3607.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3607.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3608.pdf

Douglas: Everyone does strings slightly differently. My answer is yes, this would make it worse. But we
are at the base of the tree and we can strengthen the whole tree.
Myers: This could be a self-contained API for CRFI.
Bachmann: This is very much special-purpose and not generally usable. We should not vote it in because
there is almost no prior use of something out of the mainline.
Tarditi: Some people conjecture that size_t is too expensive. I do not agree. Systems with huge amounts
of string processing, like Java or C# are fine. With regard to the fact that NTBS's keep biting people, we
should upgrade the type system specifically for NTBS.
Kaye: What do you think of making these strings null-terminated for compatibility?
Douglas: I am not opposed to the idea. I would generalize treatment of arrays in general. The next thing
would be string support.
Bazley: I agree. If we adopt a new string type, it should be opaque.
Celeste: You could always vote this in to CRFI.

e Colomar, Add operators _Minof and _Maxof [N3628] (0.5 hours)

Celeste: The prefix operators seems wrong. I prefer library functions. The problem with a library function
is that these take a type operand like sizeof() does.

Colomar: That is done mainly for consistency with sizeof(). Also these are constant expressions, they
return the same type as the input and you cannot do that with functions.

Krause: The natural thing to do is macros in the standard library. Or you can use _Generic. The macro can
evaluate to a builtin.

Myers: I believe this should be a language feature, not a library feature. The same goes for offsetof().
Ballman: As a language feature, this is expensive. I am not sure this is worth the case.

Mailhol: I support this. I prefer names of type_max/type_min.

Gustedt: I agree with Ballman that more interesting primitives would be to get the widths of the type. But
the return type here is simple.

Celeste: That is what I would like to see. My one concern is that these types of operators sort of preclude a
general type traits library.

Colomar: I have several use cases such as a strtol() variant. Also, the operators all end in "of", so you
know _minof() is an operator.

Bazley: I support this paper.

Lukasiewicz: I support this paper. The library may be independent of the compiler.

Straw Poll: Would WG14 like to adopt N3628 into C2y subject to possible objections before the next
meeting? 3-1-0 + 10-4-7 = 13-5-7: do not have consensus

Afternoon break

e Colomar, Allow calling static inline within extern inline [N3622] (0.5 hours)

Ballman: The compiler can see all definitions so it should have no troubles. But calls to calls to calls
should require some static analysis. As a constraint we must issue a diagnostic. Removing the constraint
requires quality of implementation to catch issues.

Colomar: If your function calls some other function, it should know where it is from.

Myers: If you remove constraints, you also need to remove the example 2 in section 6.7.5, paragraph 13.
Bazley: I do not believe any developer would thank us for putting this constraint in place. This is an
artificial unnecessary barrier between two camps of C developers. The constraint is not sufficiently
motivated.

Celeste: From implementation experience, it was not reasonable to expect static analysis.

McCall: I am confused between extern and inline.

Gustedt: I am in favor of that, because Clang repeatedly warns me about functions in their header file;
they have inline substituted.

Straw Poll: Would WG14 like to adopt N3622 into C2y subject to removing the second example in
6.7.5p13 and subject to possible objections before the next meeting? 2-0-0 + 16-1-4 = 18-1-4: strong
consensus

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3628.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3628.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3622.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3622.txt

e Colomar, Refactor syntax of directives [N3632] (0.5 hours)

Kaye: I find this format difficult to read.

Colomar: "def" is a multi-line macro definition. If we make this change, it should be conditional on WG21
also making this change.

Celeste: This cleanup makes the document more useful. The preprocessing is ad hoc. Cleanups need great
care to make sure they break nothing.

Dusikova: I like the changes.

Gustedt: I cannot vote for this paper, because it is in a preliminary state. The rationale says nothing about
what it does. The proposal is wording that is difficult to parse. It needs examples of old vs. new syntax.
McCall: This is too technical a paper to be viewing in this section.

Uecker: How does the preprocessors in C and C++ on semantics? Is there already a lot of divergence?
Ballman: Not identical but pretty close to it. Usually WG21 adopts changes applied by WG14.

Gusted: I have a project for a language-independent preprocessor.

Celeste: Preprocessors do have slight different wording, mainly due to other differences in the standards.
Opinion Poll: Would WG14 like to adopt something along the lines of N3632 into C2y? 2-0-0 + 7-3-14 =
9-3-14: no direction.

Svoboda: I could not read the normative text or understand the rationale, so I could not vote yes or no.
Bhakta: I am abstaining from all these "Other Business" papers because I did not prepare for them.

e Colomar, (potentially) reserve stp*(), wep*(), memp*(), wmemp*() [N3614] (0.5 hours)

Kaye: Are these names not being standardized by POSIX?

Krause: [am skeptical about the proposals that these prefixes appear in. "stp" and "wcp" are prefixes not
traditionally reserved. Do we have statistics on how common they are?

Ballman: They should be zero. At some point we might use these prefixes.

Bazley: These API's are not necessary yet, they do not yet exist in ISO C. The motivation is weak; based
just on functions Colomar uses. I would not assume "stp" is a string-based prefix.

Liber: I am wholly against reserving names in advance. The public does not care.

Kaye: There are other functions that return a pointer to a string that do not use any of these prefixes.
Banham: I do not see the point of reserving stuff that is not in the standard.

Svoboda: I suggest reviewing this document after we review and accept the other documents that define
functions with these prefixes.

Colomar: I would suggest voting on two papers at once.

e Colomar, add stpcpy(3), wepepy(3), mempcepy(3), wmempepy(3) [N3662] (0.5 hours)

Krause: This provides very little new functionality. They only differ in return values. I am opposed.
Gustedt: If you want to introduce functions, please describe what they do, and motivate us as to why you
want them in.

Myers: This was submitted after the deadline, so I object to voting on it but we can discuss it.

Bazley: I like that you base things on the charter, but I disagree with the reasoning. I am not convinced
these functions enable secure programming. If we are going to put new functions in, they should be more
useful than these.

Seacord: Could we do a directional poll?

Colomar: The only change in mempcpy() is the return value, but stpcpy() is not a drop-in replacement.
Opinion Poll: Would WG14 like something along the lines N3662 and N3661 into C2y? 2-1-2 + 3-13-8 =
5-14-10: clear direction not to do this

e Colomar, add memeq(), wmemeq() [N3617] (0.5 hours)

Krause: It is too close to memcmp(), and not a sufficient improvement.
Bazley: I was in favor of streq(), but not in favor of this, because I do not use memcmp().

e Colomar, add [w]memzero(), [w]memzero_explicit() [N3619] (0.5 hours)

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3632.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3632.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3614.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3662.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3662.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3661.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3617.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3619.txt

Seacord: One of our principles is not to duplicate mechanisms. I like a CRFI library especially if there are
multiple overlapping string or memory functions.

Douglas: There was memset_explicit().

Bazley: I feel similar for multi-line macros. But I recognize that is a bad thought. I try not to use memset(),
I prefer assignment.

Crammer: These are nice features we might want to use, but they are never justified. Why does the
standard library need it?

Kaye: I am guessing that there would be minimal implementation effort. It makes intent explicit and
makes it harder to misuse.

Celeste: Why are these const pointers?

Colomar: We need memcpy() and memset_explicit(). The rest of the string library is superfluous.
Ballman: This has the exact same interface as bzero(), which was deprecated and removed.

Colomar: They are not the same; this returns a pointer. I do not know why bzero() was deprecated. 30
years ago many bzero() implementations were wrong.

Krause: We have memset(), it provides more functionality than memzero(), and one less character in the
function name, and it is commonly used. I do not think memzero() provides enough additional benefit.
Bazley: You do not need to use memset(). Compiler authors started recognizing loops and replaced them
with memset(). There are arguments that memset() are too simplistic.

Crammer: One reason to have things in the standard library is compiler primitives which do not need to
be language-level features, memset() being one such example. Other examples include popcount().
Opinion Poll: Would WG 14 like something along the lines of N3619 with all the "const"s removed? 2-2-2
+ 3-14-7 = 5-16-9: clear direction not to do this

Friday, 29 August

e Migica, Discarded, IV [N3549] (0.5 hours)

Krause: The wording is based on N3546 rather than the latest C2y draft. Only proposal 2 is based on the
bool paper, proposal 1 is not.

Bhakta: The first proposal takes the premise that some expressions are constant expressions. This premise
is used throughout the proposal.

Myers: This is an example, the wording is wrong. This is what you get if you take a literal but nonsensical
reading of the standard.

Bhakta: In the section 6.5.4, paragraph 3 change, the change seems to imply that there is no integer
constant expression for alignof. This is not what it should be.

Opinion Poll: Would WG14 like something along the lines of Proposal 1 of N3549? 4-0-1 + 7-1-5 = 11-1-
6: direction in favor

Krause: Proposal 2 looks too permissive.

Bhakta: If this depends on a paper that did not make it, should we still consider this?

Seacord: We are just getting feedback.

Banham: [am puzzled by statements that arrays cannot have negative indices.

Bhakta: We made that a constraint violation.

McCall: I like the C++ approach that constant expressions cannot have undefined behavior. This feels
redundant.

Bazley: A paper that proposes two alternatives is not sufficient.

Bhakta: Regarding his two final questions, my answers are: No, no, because the as-if rule already allows
it.

Celeste: This ties in to what is and is not an integer constant expression.

Opinion Poll: Does WG14 wish to allow implementations to make the Il, && and conditional operators
discard the second (or third) operand when the first one is a constant expression other than an integer
constant expression? 1-4-0 + 2-6-7 = 3-10-7: direction against

Opinion Poll: Does WG14 wish to allow implementations to make some operators discard an operand
when it can be determined that the operand will never be executed in the abstract machine? 0-4-0 + 0-11-4
= 0-15-4: clear direction against

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3619.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3549.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3546.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3549.pdf

e Migica, What does “to evaluate a type name” mean? [N3548] (0.5 hours)

Seacord: "Disappears" is not a standard term.

Bhakta: It does not seem like anyone gets this wrong. I'm not sure there is a problem here.

Svoboda: Is the type name evaluated at runtime? The "at runtime" phrase is confusing, it raises more
questions than it answers.

Uecker: It can be, though not for types in sizeof expressions.

Bhakta: People are ignoring the fact that adding text adds cost.

Kaye: Is there consent about adding something to the standard? Could we discuss this at the start of the
next meeting?

Opinion Poll: Would WG14 like something along the lines of N3548? 4-0-0 + 5-4-7 = 9-4-7: direction

e Miugica, Generic replacement (v. 2 of quasi-literals) [N3605] (0.5 hours)

Myers: Is this more about comparing literal constants of a type?

Celeste: I like the direction. The parentheses is a bigger motivator. I prefer this to be defined as locally to
_Generic expressions.

Bhakta: The nodiscard case is accepted by Clang without issue, in contrast to the static_assert case.

Straw Poll: Would WG14 like to adopt N3605 into C2y? 3-0-1 + 7-0-8 = 10-0-9: strong consensus to
accept while requesting editorial changes

Seacord: Some people thought this was an along-the-lines-of poll. We will re-poll.

Straw Poll: Would WG14 like to adopt N3605 with editorial changes in reflector message 33542 into C2y?
2-0-1 + 7-1-8 = 9-1-9: not strong consensus.

e Migica, What are the operands of Generic [N3561] (0.5 hours)

Svoboda: I prefer alternative 2, since _Generic expressions depend on both the type name.
Celeste: ...if the intro suggests no difference.

Ballman: Does this change any behavior?

Uecker: No, it just clarifies wording.

Bazley: Uecker, which alternative do you prefer?

Uecker: I prefer alternative 2, but for no particular reason.

McCall: Did we not accept some of the discarded changes?

Uecker: It is related because the discarded changes use the term "operand".

Bhakta: Did we decide to create a Description section or keep it under Semantics?
Opinion Poll: Would WG 14 prefer Alternative 2 over Alternative 1 in N35617? 2-0-1 + 5-5-2 = 7-5-3: weak
preference for Alternative 2

e Revisit Lenga, Additional String comparison functions to complement strcmp() V2 [N3567] (0.5 hours)

Seacord: I agree with that.

Bazley: I agree. The design for Optional is based on the premise that most C pointers should not be
NULL. NULL has two meanings: 1. Something went wrong. 2. I am not providing an object.

Celeste: I have no strong feeling on the prefix. We want to bring in a minimum of undefined behavior.
Allowing new string functions to have undefined behavior on NULL introduces a new demon.
Krause: I agree. It does make a performance difference to handle NULLs.

Bazley: I am sympathetic to defensive programming. But it does not scale.

Colomar: My feelings on this mirror my feelings on Annex K. In theory it removes undefined behavior.
But it introduces second-order bugs that trigger more undefined behavior. I prefer having undefined
behavior as early as possible.

Myers: This is not a new undefined behavior.

7. Other Business

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3548.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3548.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3605.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3605.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3605.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3561.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3561.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3567.pdf

Time permitting:

Celeste, “auto™ as a placeholder type specifier, v3 [N3579] (0.5 hours)

Johnson, Namespaces Without Name Mangling [N3491] (0.5 hours)

Johnson, Generic Data Structures Without Name Mangling [N3520] (0.5 hours)

Lenga, Additional String comparison functions to complement strcmp() V2 [N3567] (0.5 hours)
Colomar, add strpfx(), stppfx(), wespfx(), and weppfx() [N3612] (0.5 hours)

Colomar, add strsfx(), stpsfx(), wessfx(), wepsfx() [N3613] (0.5 hours)

Celeste, Remove the imaginary I, v2 [N3581] (0.5 hours)

Celeste, "if* declarations, v5.1, wording improvements [N3580] (0.5 hours)

Ornato, Declaration-level static assertions [N3641] (0.5 hours)

Lukasiewicz, Clarify terminology for obsolete features [N3642] (0.5 hours)

Adams, Literal functions [N3645] (0.5 hours)

Thomas, Clarification of range error condition for atan2v [N3646] (0.25 hours)

Thomas, Semantic rules for constant evaluation [N3647] (0.25 hours)

Thomas, Improved language for return type vs. return value [N3648] (0.25 hours)

Krause, Named Address Space Type Qualifiers for C2y [N3651] (0.5 hours)

Uecker, Accessing the Context of Nested Functions [N3654] (0.5 hours)

Banham, Make implicit undefined behavior in mtx_destroy() explicit [N3655] (0.5 hours)
Meneide, Functions with Data: Closures in C [N3657] (0.5 hours)

Celeste, Simplified lexical scope for labels, v2 [N3658] (0.5 hours)

Belov, Considering expressions based on restrict pointers as pure rvalue expressions [N3659] (0.5 hours)
Colomar, add a malloc(3)-based sprintf(3) variant [N3660] (0.5 hours)

Colomar, Standard prefixed attributes [N3661] (0.5 hours)

Colomar, add stpspn(), stpcspn(), wepspn(), wepespn() [N3663] (0.5 hours)

Colomar, add strchrent(), strchrsent(), weschrent(), weschrsent() [N3664] (0.5 hours)
Colomar, add st*rspn(), st*rcspn(), wc*rspn(), we*rcspn() [N3665] (0.5 hours)

Colomar, add stpsep(), wepsep() [N3666] (0.5 hours)

Colomar, add strsep(), wessep() [N3667] (0.5 hours)

Colomar, Split formatted 1/O sections (Editorial) [N3668] (0.5 hours)

Colomar, Split memory management section (Editorial) [N3669] (0.5 hours)

Colomar, Rename s/strpbrk/strchrs/ [N3670] (0.5 hours)

Colomar, Subdivide string API sections [N3671] (0.5 hours)

Gustedt, Properly specify the interaction of library calls for mutexes [N3672] (0.5 hours)
Gustedt, Properly specify the interaction of library calls for condition variables [N3673] (0.5 hours)
Svoboda, WG14's C indentation and brace styles [N3650] (0.5 hours)

Svoboda, Educational Undefined Behavior [N3534] (0.5 hours)

Bazley, Enhanced type variance (v2) [N3674] (0.5 hours)

Uecker, Earthly Demon: Accessing a Member of an Atomic Structure or Union (Updates N3564) [N3624]
(0.5 hours)

Scheduled for Spring 2026:

¢ Colomar, Add directives #def and #enddef (updates N3524) [N3531] (0.5 hours)
¢ Colomar, sizeof(void) == 1 [N3522] (0.5 hours)
e Garcia, typeof(return) [N3454] (0.5 hours)

Old papers that haven’t been scheduled yet pending request from the author:

e Bachmann, Make pointer type casting useful without negatively impacting performance - updates n2484
[N2658]
e Griininger, Add min, max for integers to C [N3160]

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3579.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3491.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3520.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3567.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3612.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3613.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3581.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3580.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3641.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3642.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3645.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3646.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3647.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3648.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3651.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3654.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3655.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3657.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3658.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3659.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3660.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3661.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3663.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3664.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3665.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3666.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3667.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3668.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3669.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3670.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3671.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3672.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3673.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3650.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3534.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3674.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3564.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3624.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3524.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3531.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3522.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3454.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2658.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3160.pdf

8. Recommendations and Decisions Reached
8.1 Review of Decisions Reached

Straw Poll: Would WG14 like to submit TS 25007 to SC22 for balloting? 13-0-8 + 0-3-4 = 13-3-11: consensus
Straw Poll: Would WG14 like to adopt N3348 as is into C2y? 13-6-6 + 3-0-2 = 16-6-8: consensus

Straw Poll: Would WG14 like to adopt N3457 into C2y without the recommended practice first line and two
bullets, and 2147483648 as the limit? 24-0-2 + 3-0-1 = 27-0-3: consensus

Straw Poll: Would WG14 like to adopt N3558 as is into C2y? 4-0-0 + 15-0-6 0 = 19-0-6: consensus

Straw Poll: Would WG14 like to accept the suggested correction for issue 1002 from N3609 into C2y and into
previous versions of C? 4-0-0 + 14-0-3 = 17-0-3: consensus

Straw Poll: Would WG14 like to accept the suggested correction for issue 1003 from N3609 into C2y and
previous versions of C? 1-0-2 + 16-0-4 = 17-0-6: consensus

Straw Poll: Would WG14 like to accept the suggested correction for issue 1005 from N3609 into C2y? 0-0-4 +
12-0-9 = 12-0-13: weak consensus, adopted

Straw Poll: Would WG14 like to leave the standard as is in issue 1007 from N3609? 2-0-2 + 8-11-0 = 10-11-2:
no consensus

Straw Poll: Would WG14 like to have a constraint violation in issue 1007 from N3609? 1-1-2 + 8-10-3 = 9-11-5:
no consensus

Straw Poll: Would WG14 like to change the behavior to reflect C++ in issue 1007 from N3609? 3-0-1 + 6-9-6 =
9-9-7: no consensus

Straw Poll: Would WG14 like to accept the suggested correction to Issue 1008 in N3609? Adopted by unanimous
consent

Straw Poll: Would WG14 like to accept the suggested correction to Issue 1009 in N3609? Adopted by unanimous
consent

Straw Poll: Would WG14 like to accept the suggested correction to Issue 1011 in N3609? Adopted by unanimous
consent

Straw Poll: Would WG14 like to adopt N3559 as is into C2y? 2-0-1 15-0-5 = 17-0-6: consensus

Straw Poll: Would WG14 like to adopt N3559 to obsolete versions of C? 2-0-3 + 17-1-3 = 19-1-6: consensus
Straw Poll: Would WG14 like to adopt N3602 as is into C2y? 2-3-1 + 7-7-11 = 9-10-12: no consensus

Straw Poll: Would WG14 like to adopt N3545 as is into C2y? 1-1-2 + 2-15-9 = 3-16-11: no consensus

Straw Poll: Would WG14 like to accept the wording in reflector message 30750 for future editions of TS 18661-
47 1-0-2 + 13-0-9 = 14-0-11: strong consensus

Straw Poll: Would WG14 like to accept N3557 as is into C2y? 2-0-2 + 11-6-7 = 13-6-9: not strong consensus,
not adopted.

Straw Poll: Would WG14 like to adopt N3577 as is into C2y? 3-0-0 + 21-1-5 = 24-1-5: strong consensus,
adopted

Straw Poll: Would WG14 like to accept the suggested correction in N3511? Adopted by unanimous consent
Straw Poll: Would WG14 like to adopt N3611 as is into C2y? 2-1-1 + 8-15-6 = 10-16-7: no consensus

Straw Poll: Are there any objections to adopt the suggested wording in issue 1016 from N3609 for C2y? none
Straw Poll: Are there any objections to adopt the suggested wording in issue 1016 from N3609 for obsolete
versions of the C standard? none

Straw Poll: Would WG14 like to adopt N3623 with the wording change into C2y? 2-0-1 + 15-3-6 = 17-3-7:
strong consensus

Straw Poll: Would WG14 like to accept N3563 into C2y? Adopted by unanimous consent

Straw Poll: Would WG14 like to accept N3532 into C2y? Adopted by unanimous consent

Straw Poll: Any objection to adopting N3532 into previous versions of the standard? Adopted by unanimous
consent

Straw Poll: Would WG14 like to adopt N3525 as is into C2y? 2-0-2 + 16-3-4 = 18-3-6: adopted

Straw Poll: Would WG14 like to adopt N3485 with the editorial correction into C2y? 1-2-0 + 18-5-5 = 19-7-5:
weak consensus, not adopted

Straw Poll: Would WG14 like to adopt N3621 into C2y? 3-2-0 + 6-11-6 = 9-13-6: no consensus

Straw Poll: Would WG14 like to accept N3544 into C2y? Adopted by unanimous consent

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3348.pdf
https://www.open-std.org/JTC1/SC22/WG14/WWW/DOCS/N3457.HTM
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3558.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3609.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3609.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3609.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3609.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3609.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3609.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3609.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3609.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3609.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3559.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3559.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3602.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3545.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3557.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3577.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3511.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3611.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3609.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3609.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3623.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3563.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3532.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3532.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3525.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3485.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3621.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3544.txt

Straw Poll: Would WG14 like to accept N3535? Adopted by unanimous consent

Straw Poll: Any objection to adopting N3536 into the standard? Adopted by unanimous consent

Straw Poll: Any objection to adopting N3537 into the standard? Adopted by unanimous consent

Straw Poll: Any objection to adopting N3500 into the standard? Adopted by unanimous consent

Straw Poll: Any objection to adopting N3598 into the standard? Adopted by unanimous consent

Straw Poll: Would WG14 like to adopt N3607 into C2y subject to possible objections before the next meeting?
1-0-1 + 23-0-3 = 24-0-4: strong consensus

Straw Poll: Would WG14 like to adopt N3628 into C2y subject to possible objections before the next meeting?
3-1-0 + 10-4-7 = 13-5-7: do not have consensus

Straw Poll: Would WG14 like to adopt N3622 into C2y subject to removing the second example in 6.7.5p13 and
subject to possible objections before the next meeting? 2-0-0 + 16-1-4 = 18-1-4: strong consensus

Straw Poll: Would WG14 like to adopt N3561 into C2y? 3-0-1 + 7-0-8 = 10-0-9: strong consensus to accept
while requesting editorial changes

Straw Poll: Would WG14 like to adopt N3605 with editorial changes in reflector message 33542 into C2y? 2-0-1
+ 7-1-8 = 9-1-9: not strong consensus.

8.2 Review of Action Items

Action Item: Seacord: Submit TS 25007 to SC22 for balloting.

Action Item: Ballman: Apply N3532 to the obsolete versions of the standard.
Action Item: Seacord: Work with Simonsen to update the WG14 reflector.
Action Item: Celeste: Contact Bhakta about the Canada (Fall 2026) meeting.
Action Item: Douglas: Check with POSIX for direction for issue 1004 in N3609.
Action Item: Bhakta: CFP to submit a paper as per reflector message 30480.

8.3 Review of Online Votes

Does WG14 want to add N3411 to obsolete versions of C? 14-1-3: adopted
Does WG14 want to add N3517 into C2y? 13-0-5: consensus adopted
Does WG14 want to add N3652 into C2y? 19-0-2: consensus adopted

8.4 Re-approve Agenda

Motion to approve the agenda (N3680). Celeste moves. Svoboda seconds.

Mailhol: Do we have a list of papers to vote online?

Seacord: N3581 and N3580 will be voted online.

Banham: Can we keep the ISO invitations more up-to-date?

Seacord: I did notify the reflector.

Svoboda: The agenda has evolved since the meeting started. Do we approve the original agenda or the current
agenda (what we actually did)? In my opinion, the latter agenda is redundant, it is just the outline of the minutes.
Objections to approving the agenda? None

9. Thanks to Host

10. Adjournment

Svoboda motions to adjourn. Uecker seconds. Objections? None

End

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3535.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3536.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3537.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3500.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3598.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3607.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3628.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3622.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3561.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3605.pdf
https://www.open-std.org/JTC1/SC22/WG14/WWW/DOCS/N3532.PDF
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3609.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3411.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3517.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3652.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3581.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3580.htm

