

Integer Sets, v1.0.0

WG14 N 3592
Title:

Author, affiliation: Robert C. Seacord,
 Woven by Toyota,
 rcseacord@gmail.com

Date: 2025-6-16

Proposal category: Defect

Target audience: Implementers, users

Abstract: Reorganize integer sets

Prior art: C++

mailto:rcseacord@gmail.com

Integer Sets, v1.0.0
Reply-to: Robert C. Seacord (rcseacord@gmail.com)

Document No: N 3592

Reference Document: N 3467, P0586R2

Date: 2025-6-16

This proposal changes the rule for forming composite types

Change Log
2025-6-16:

● Initial version 1.0.0

Table of Contents
WG14 N 3592 1

Change Log 2
Table of Contents 2

1 Problem Description 3
1.1 C Integer Types 3
1.2 Bit-precise Integers 5
1.3 Misuse of terms describing integer sets 5

2 Proposal 7
3 Proposed Text 8
4 Prior Art 14
5 Acknowledgements 14

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0586r2.html

1 Problem Description

C++ groups integers into sets as follows:

There are five standard signed integer types: “signed char”, “short int”, “int”, “long int”, and “long long int”.

For each of the standard signed integer types, there exists a corresponding (but different) standard
unsigned integer type : “unsigned char”, “unsigned short int”, “unsigned int”, “unsigned long int”, and
“unsigned long long int”.

Type bool is a distinct type that has the same object representation, value representation, and
alignment requirements as an implementation-defined unsigned integer type.

C on the other hand groups integers into sets in “Subclause 6.2.5 Types” as:

There are five standard signed integer types, designated as signed char, short int, int, long int, and long
long int.

There may also be implementation-defined extended signed integer types.31) The standard signed

integer types, bit-precise signed integer types, and extended signed integer types are collectively

called signed integer types.32)

For each of the signed integer types, there is a corresponding (but different) unsigned integer type

The type bool and the unsigned integer types that correspond to the standard signed integer types are
the standard unsigned integer types.

This means that in C bool is a standard unsigned integer type while in C++ it is not. This is very confusing for
anyone including implementers, programmers, or educators when dealing with integer behavior where people
assume similar if not identical behaviors. Furthermore, calling bool an unsigned type is misleading because it
doesn't wrap around and has special conversion rules. For example, as an unsigned type you would expect
(bool)4 to be 0 not 1.

Another problem with the existing text is that the term “unsigned integer type(s)” is used before it is defined, and
when it is defined it has a different meaning.

Because this proposal addresses many defects where the term unsigned integer type was incorrectly used to
apply to the bool type, this proposal does change the semantics from C23.

1.1 C Integer Types

N3550 working draft subclause 6.2.5 Types paragraph 4 through 8 define the following terms and relationships:

https://eel.is/c++draft/basic.fundamental#def:type,standard_signed_integer

Paragraph 9 adds the following terms and relationships:

Paragraph 18 adds the following terms and relationships:

Paragraph 20 adds the following terms and relationships:

Paragraph 22 adds the following terms and relationships:

1.2 Bit-precise Integers

The user community has provided feedback that they would like signed _BitInt(1) to behave the
same way as struct S { signed int i : 1; }; works -- so it can hold the values 0 and -1. This is
a more feasible approach now that C23 only supports two's complement. In two's complement, the
most-significant bit (MSB) is a value bit with a negative weight, so an _BitInt(1) can have two
values: -1 and 0.

One example of an application is splitting a wide product as a sum of multiple subproducts.

If we take the example of a product between two 33 bits signed integers a and b, on an FPGA that has
DSP able to compute 32x32 products, the product can be computed as follows:

● Each input is split between its MSB (a_h and b_h), and the remaining 32 low bits (a_l
and b_l).

● The result is ((a_h x b_h) << 64) + ((a_h x b_l + b_h x a_l) << 32) + a_l x
b_l.

● This computation uses only one DSP for a_l x b_l, the three other products are done
inexpensively on fpga logic.

Both a_h and b_h are conceptually _BitInt(1) (one bit integers that can be either 0 or -1). There is no
difference with the unsigned case for the 1x1 product, but in the case of non-square products such as
a_h x b_l, it is important that the product gives -b_l when the a_h bit is set, otherwise the result is
false.

This example is in the case of a full square product and can look a bit artificial, but when computed
truncated product (which makes sense on FPGA, as it is less expensive than computing the full
product) the case of subproducts involving a 1-bit signed integer can also appear.

1.3 Preserve Existing Language with New Meaning
Generally speaking, the use of the term unsigned integer type used throughout the standard predates the
introduction of the bool type and is not meant to apply to the bool type.

In subclause “5.3.5.3.2 Characteristics of integer types <limits.h> and <stdint.h>” paragraph 2, the bool
type is included:

For all unsigned integer types for which <limits.h> or <stdint.h> define a macro with suffix

_WIDTH holding its width N, there is a macro with suffix _MAX holding the maximal value 2N − 1 that

is representable by the type and that has the same type as would an expression that is an object of

the corresponding type converted according to the integer promotions.

Subclause 6.2.6.2 paragraph 2 states that “The type bool has one value bit and (sizeof(bool)*CHAR_BIT)
- 1 padding bits. The width of an unsigned type is the number of value bits. For the bool type, this is
always one. Consequently, the specification of a _WIDTH for the bool type has dubious value, but is not wrong.
Conceptually, a Boolean does not have a maximal value as it only stores the values false and true. The
specification of a _MAX macro for the bool type is conceptually incorrect.

Removing bool from the set of unsigned integer types eliminates the requirement to provide both these macros
without changing this subclause. To retain this requirement, bool will need to be explicitly added. I think the right
thing to do here is to keep the requirement for _WIDTH but eliminate the requirement for _MAX.

Subclause 6.7.3.3 Enumeration specifiers allows the underlying type for an enumeration to be a bool in
paragraph 2:

If it is not explicitly specified, the underlying type is the enumeration’s compatible type, which is either
char or a standard or extended signed or unsigned integer type.

And again in paragraph 4:

For all the integer constant expressions which make up the values of the enumeration constants, there
shall be a type capable of representing all the values that is a standard or extended signed or unsigned
integer type, or char.

And again in paragraph 12:

— a suitably sized unsigned integer type, excluding the bit-precise unsigned integer types,
capable of representing the value of the previous enumeration constant plus one.

A signed integer type is chosen if the previous enumeration constant being added is of signed
integer type. An unsigned integer type is chosen if the previous enumeration constant is of
unsigned integer type.

In subclause “7.18.3 Count Leading Zeros” paragraph 2, the bool type is included:

The generic_return_type type shall be a suitably large unsigned integer type capable of
representing the computed result.

However, because the input type has at least width 8, the return type can never be bool. Consequently,
removing bool from the set of unsigned integer types does not alter the semantics and the text can remain
unchanged.

In subclause “7.33.1 Introduction” paragraph 4, the bool type is included in the two highlighted locations:

The macros defined are NULL (described in 7.22); WCHAR_MIN, WCHAR_MAX, and WCHAR_WIDTH
(described in 7.23);

WCHAR_UTF8
WCHAR_UTF16
WCHAR_UTF32
which expand to an expression of signed or unsigned integer type (that is potentially not an integer
constant expression) whose value is nonzero if:

— the wide execution encoding (6.2.9) is capable of representing every character in the required

Unicode set;

— the width of wchar_t is at least 8, 16, or 32 for UTF-8, UTF-16, or UTF-32, respectively;

— and, the values of a sequence of wchar_t objects consumed and produced by related character

functions have a values consistent with a sequence of code units of the UTF-8, UTF-16, or

UTF-32 encodings, respectively;

MB_UTF8
MB_UTF16
MB_UTF32

which expand to an expression of signed or unsigned integer type (that is potentially not an integer
constant expression) whose value is nonzero if:

2 Proposal
This paper proposes removing the type bool from the set of unsigned integer types and from the set of standard
unsigned integer types and adding the type bool to the set of basic types and the set of integer types.

The type unsigned _BitInt(1) is eliminated as a separate type and is now simply treated as one of the
bit-precise unsigned integer types.

The relationship between signed and unsigned integer types is therefore greatly simplified:

The type bool is added to the set of basic types.

The type bool is added to the set of integer types.

We could also say that integer types consist of enumerated types and basic types.

3 Proposed Text
Text in green is added to the C2Y working draft n3467. Text in red that has been struck through is
removed from the C2Y working draft n3467.

Modify subclause “6.2.5 Types”, paragraph 5:

A bit-precise signed integer type is designated as _BitInt(N) where N is an integer constant
expression that specifies the number of bits that are used to represent the type, including the
sign bit with the same object representation as a signed integer type of width N. Each value of
N designates a distinct type.

Modify subclause “6.2.5 Types”, paragraph 8:

For each of the signed integer types, there is a corresponding (but different) unsigned integer type

(designated with the keyword unsigned) that uses the same amount of storage (including sign

information) and has the same alignment requirements. The type bool and the unsigned integer
types that correspond to the standard signed integer types are the standard unsigned integer types.

The unsigned integer types that correspond to the extended signed integer types are the extended

unsigned integer types. In addition to the unsigned integer types that correspond to the bit-precise

signed integer types there is the type unsigned _BitInt(1), which uses one bit to represent the

type. Collectively, unsigned _BitInt(1) and t The unsigned integer types that correspond to the bit-precise

signed integer types are the bit-precise unsigned integer types. The standard unsigned integer

types, bit-precise unsigned integer types, and extended unsigned integer types are collectively called

unsigned integer types.34)

The type bool and the unsigned integer types that correspond to the standard signed integer types are the
standard unsigned integer types.

Modify subclause “6.2.5 Types”, paragraph 11:

The range of nonnegative values of a signed integer type is a subrange of the corresponding unsigned

integer type, and the representation of the same value in each type is the same.35) The range of

representable values for the unsigned integer types is 0 to 2N − 1 (inclusive). A computation involving

unsigned operands can never produce an overflow, because arithmetic for the unsigned integer types is

performed modulo 2N.

Modify subclause “6.2.5 Types”, paragraph 18:

The type bool, the type char, the signed and unsigned integer types, and the floating types are collectively
called the basic types. The basic types are complete object types. Even if the implementation defines two or

more basic types to have the same representation, they are nevertheless distinct types.

Add the following paragraph and footnote after subclause “6.2.5 Types”, paragraph 20:

Type bool is a distinct type that has the same object representation, value representation, and alignment
requirements as an implementation-defined unsigned integer type.nn) The values of type bool are true and false.

nn) There are no signed, unsigned, short, or long bool types or values.

Modify subclause “6.2.5 Types”, paragraph 22:

The type bool, the type char, the signed and unsigned integer types, and the enumerated types are collectively

called integer types. The integer and real floating types are collectively called real types.

Modify subclause “6.3.2.1 Boolean, characters, and integers”, paragraph 1:

— The rank of any unsigned integer type shall equal the rank of the corresponding signed integer type,
if any.

— The rank of type bool shall be less than the rank of all other standard integer types.

Modify subclause “6.7.3.3 Enumeration specifiers”, paragraph 13:

For all enumerations without a fixed underlying type, each enumerated type shall be compatible with
char or a signed or an unsigned integer type that is not bool or a bit-precise integer type. The choice of
type is implementation-defined,142) but shall be capable of representing the values of all the members
of the enumeration.143)

Modify subclause “7.18.3 Count Leading Zeros”, paragraph 2:

The type-generic function (marked by its generic_value_type argument) returns the appropriate value
based on the type of the input value, so long as provided that it is a:

— a standard unsigned integer type, excluding bool;

— an extended unsigned integer type;

— or, bit-precise unsigned integer type whose width matches a standard or extended integer type,
excluding bool.

Modify subclause “7.18.5 Count Trailing Zeros”, paragraph 2:

The type-generic function (marked by its generic_value_type argument) returns the appropriate value
based on the type of the input value, so long as provided that it is a:

— a standard unsigned integer type, excluding bool;

— an extended unsigned integer type;

— or, bit-precise unsigned integer type whose width matches a standard or extended integer type,
excluding bool.

Modify subclause “7.18.6 Count Trailing Ones”, paragraph 2:

The type-generic function (marked by its generic_value_type argument) returns the appropriate value
based on the type of the input value, so long as provided that it is a:

— a standard unsigned integer type, excluding bool;

— an extended unsigned integer type;

— or, bit-precise unsigned integer type whose width matches a standard or extended integer type,
excluding bool.

Modify subclause “7.18.7 First Leading Zero”, paragraph 2:

The type-generic function (marked by its generic_value_type argument) returns the appropriate value
based on the type of the input value, so long as provided that it is a:

— a standard unsigned integer type, excluding bool;

— an extended unsigned integer type;

— or, bit-precise unsigned integer type whose width matches a standard or extended integer type,
excluding bool.

Modify subclause “7.18.8 First Leading One”, paragraph 2:

The type-generic function (marked by its generic_value_type argument) returns the appropriate value
based on the type of the input value, so long as provided that it is a:

— a standard unsigned integer type, excluding bool;

— an extended unsigned integer type;

— or, bit-precise unsigned integer type whose width matches a standard or extended integer type,
excluding bool.

Modify subclause “7.18.9 First Trailing Zero”, paragraph 2:

The type-generic function (marked by its generic_value_type argument) returns the appropriate value
based on the type of the input value, so long as provided that it is a:

— a standard unsigned integer type, excluding bool;

— an extended unsigned integer type;

— or, bit-precise unsigned integer type whose width matches a standard or extended integer type,
excluding bool.

Modify subclause “7.18.10 First Trailing One”, paragraph 2:

The type-generic function (marked by its generic_value_type argument) returns the appropriate value
based on the type of the input value, so long as provided that it is a:

— a standard unsigned integer type, excluding bool;

— an extended unsigned integer type;

— or, bit-precise unsigned integer type whose width matches a standard or extended integer type,
excluding bool.

Modify subclause “7.18.11 Count Zeros”, paragraph 2:

The type-generic function (marked by its generic_value_type argument) returns the previously
described result for a given input value so long as provided that the generic_value_type is a:

— a standard unsigned integer type, excluding bool;

— an extended unsigned integer type;

— or, bit-precise unsigned integer type whose width matches a standard or extended integer type,
excluding bool.

Modify subclause “7.18.12 Count Ones”, paragraph 2:

The type-generic function (marked by its generic_value_type argument) returns the previously
described result for a given input value so long as provided that the generic_value_type is a:

— a standard unsigned integer type, excluding bool;

— an extended unsigned integer type;

— or, bit-precise unsigned integer type whose width matches a standard or extended integer type,
excluding bool.

Modify subclause “7.18.13 Single-bit Check”, paragraph 2:

The type-generic function (marked by its generic_value_type argument) returns the previously
described result for a given input value so long as provided that the generic_value_type is a:

— a standard unsigned integer type, excluding bool;

— an extended unsigned integer type;

— or, bit-precise unsigned integer type whose width matches a standard or extended integer type,
excluding bool.

Modify subclause “7.18.14 Bit Width”, paragraph 2:

The type-generic function (marked by its generic_value_type argument) returns the previously
described result for a given input value so long as provided that the generic_value_type is a:

— a standard unsigned integer type, excluding bool;

— an extended unsigned integer type;

— or, bit-precise unsigned integer type whose width matches a standard or extended integer type,
excluding bool.

Modify subclause “7.18.15 Bit Floor”, paragraph 2:

The type-generic function (marked by its generic_value_type argument) returns the previously
described result for a given input value so long as provided that the generic_value_type is a:

— a standard unsigned integer type, excluding bool;

— an extended unsigned integer type;

— or, bit-precise unsigned integer type whose width matches a standard or extended integer type,
excluding bool.

Modify subclause “7.18.16 Bit Ceiling”, paragraph 2:

The type-generic function (marked by its generic_value_type argument) returns the previously
described result for a given input value so long as provided that the generic_value_type is a:

— a standard unsigned integer type, excluding bool;

— an extended unsigned integer type;

— or, bit-precise unsigned integer type whose width matches a standard or extended integer type,
excluding bool.

Modify subclause “7.18.17 Rotate Left”, paragraph 4:

The type-generic function (marked by its generic_value_type argument) returns the previously above
described result for a given input value so long as provided that the generic_value_type is:

— a standard unsigned integer type, excluding bool;

— an extended unsigned integer type;

— or, a bit-precise unsigned integer type whose width matches any standard or extended integer type,
excluding bool.

The generic_count_type count argument shall be a non-negative value of signed or unsigned
integer type, or char.

Modify subclause “7.18.18 Rotate Right”, paragraph 4:

The type-generic function (marked by its generic_value_type argument) returns the previously above
described result for a given input value so long as provided that the generic_value_type is:

— a standard unsigned integer type, excluding bool;

— an extended unsigned integer type;

— or, a bit-precise unsigned integer type whose width matches any standard or extended integer type,
excluding bool.

The generic_count_type count argument shall be a non-negative value of signed or unsigned
integer type, or char.

Modify subclause “7.25.2.8 The strtol, strtoll, strtoul, and strtoull functions”, paragraph 5:

If the subject sequence begins with a minus sign, the resulting value is the negative of the converted
value; for the strtoul and strtoull functions whose return type is an unsigned integer type this action is
performed in the return type.

Modify subclause “7.33.4.2.4 The wcstol, wcstoll, wcstoul, and wcstoull functions”, paragraph
5:

If the subject sequence begins with a minus sign, the resulting value is the negative of the converted
value; for the wcstoul and wcstoull functions whose return type is an unsigned integer type this action
is performed in the return type.

4 Prior Art
These definitions more closely align the integer type system in C with C++.

5 Acknowledgements
We would like to recognize the following people for their help with this work: Aaron Ballman, Joseph
Myers, JeanHeyd Meneide, Carlos Ramirez, Charles Hussong, Karsten Fischer, Vincent Mahihol, and Jens
Gustedt.

	Integer Sets, v1.0.0
	WG14 N 3592
	
	Integer Sets, v1.0.0
	Change Log
	Table of Contents

	
	1 Problem Description
	1.1 C Integer Types
	1.2 Bit-precise Integers
	1.3 Preserve Existing Language with New Meaning

	2 Proposal
	3 Proposed Text
	4 Prior Art
	5 Acknowledgements

