
 N3567 - Additional String Comparison
 Functions to Complement ‘strcmp’ (V2)
 Author: Yair Lenga

 Contact: Yair.lenga@gmail.com

 Document Number: N3567

 Date: 2025-06-08

 Target: C2y

 Status: Proposal

 Abstract
 This paper proposes the addition of three simple and intuitive string comparison functions to the
 C standard library: compare(streq), prefix compare (strprefix) and suffix compare (strsuffix).
 These functions will provide boolean results for the most common use cases of strcmp: testing
 for exact equality, and for the most common uses of strncmp - prefix match and suffix match.

 Motivation: streq
 The standard function strcmp is widely used in C for comparing strings. However, its interface
 and semantics are often unnecessarily verbose and error-prone when used to test equality.
 Common idioms such as:

 if (strcmp(a, b) == 0) { ... }

 if (!strcmp(a, b)) { ... }

 are hard to read, easy to misuse (e.g. accidentally writing strcmp(a, b)), and impose
 unnecessary cognitive load.

 A scan of popular open-source C codebases shows that the vast majority of strcmp calls are
 used to test for equality, with occasional use for inequality, and only a small fraction for ordering
 comparisons (<, >, etc.).

 In addition, many codebases attempt to optimize multi-value check ‘S on of (“foo”, “bar”, “baz”)’
 with constructs like:

 if (!(strcmp(s, "foo") && strcmp(s, "bar") && strcmp(a, “baz”))

 which is much clearer written as:

 if (streq(s, "foo") || streq(s, "bar") || streq(s, “baz”))

 Motivation: strprefix & strsuffix
 Scan of popular open-source C codebases for strncmp shows similar findings. The function is
 mostly used for prefix and suffix match:

 // hardcoded 7 = strlen(“http://”)
 If(strncmp(url, “http://”, 7)) {}

 // Better solution is to avoid hard coding the length
 If (strncmp(url, http_prefix, strlen(http_prefix)) {}

 // hardcoded 4 = strlen(“.txt”)

 If (strncmp(filename + strlen(filename) - 4, “.txt”, 4) {}

 // Buggy: what happens if the suffix is longer than filename ?
 If (strncmp(

 filename + strlen(filename) - strlen(txt_suffix),
 Txt_suffix,
 strlen(txt_suffix)) {}

 Which will be clearer written as:
 If (strprefix(s, “http://”)) {}

 If (strsuffix(filename, “.txt”)) {}

 By non-scientific survey the prefix/suffix match represent > ⅔ of use cases for strncmp. In many
 cases, projects introduce their own wrappers, macros, static inline to avoid the potential errors
 from hard coding constants.

 Proposed Interfaces
 In <string.h>, the following two functions are added

 bool streq(const char *a, const char *b);
 bool strprefix(const char *s, const char *prefix);
 bool strsuffix(const char *s, const char *suffix).

 Semantics

 For streq
 Practically: streq(a, b) matches (strcmp(a, b) == 0)

 Expression Result Notes

 streq(“foo”, “foo”) True

 streq(“foo”, “bar”) True

 streq(“foo-bar-baz”, “foo”) False

 streq(“foo-bar-baz”, “baz”) False

 streq(“foo”, “”) False

 streq(“foo”, NULL) Exception A, B

 streq(NULL, “foo”) Exception A, B

 streq(NULL, NULL) Exception A, B

 For strprefix

 Expression Result

 strprefix(“foo”, “foo”) True

 strprefix(“foo”, “bar”) False

 strprefix(“foo-bar-baz”, “foo”) True

 strprefix(“foo-bar-baz”, “baz”) False

 strprefix(“foo”, “”) True

 strprefix(“foo”, NULL) Exception A, B

 strprefix(NULL, “foo”) Exception A, B

 strprefix(NULL, NULL) Exception A, B

 For strsuffix

 Expression Result

 strsuffix(“foo”, “foo”) True

 strsuffix(“foo”, “bar”) False

 strsuffix(“foo-bar-baz”, “foo”) False

 strsuffix(“foo-bar-baz”, “baz”) True

 strsuffix(“foo”, “”) True

 strsuffix(“foo”, NULL) Exception A, B

 strsuffix(NULL, “foo”) Exception A, B

 strsuffix(NULL, NULL) Exception A, B

 Notes
 A. Safe Handling of NULL: An alternative proposal will be to handle NULL values, similar to

 the way SQL handles them - the answer will always be “False”. However, this approach
 will be a big detour from “C” philosophy, and will be inconsistent with the behavior of
 many other “simple” string functions: strcmp, strcpy, … which will (usually) crash.

 B. Defined behavior for NULL: Worth noting few str functions are capable of handling
 NULL. For example, snprintf with NULL can be use to “introspect” expected result
 length, free(NULL), realloc(NULL) have defined behavior. If/When “C” will add “null-safe”
 string functions (e.g. by suffix, etc) - it can also apply to those functions.

 Naming
 Almost all modern programming languages offer built in functions for equality, prefix match and
 suffix match. Common naming are “equals”, “starts with” and “end with”, adopted to the
 language naming conventions.:

 Language Equality Prefix match Suffix match

 Proposal streq(a, b) strprefix(s, prefix) strsuffix(s, suffix)

 C++ a == b s.start_with(prefix) s.ends_with(suffix)

 Java a.equals(b) s.startWith(prefix) s.endWith(suffix)

 Python a == b s.startWith(prefix) s.endWith(suffix)

 Rust a == b s.start_with(prefix) s.ends_with(suffix)

 C# a == b s.StartWith(prefix) s.EndWith(suffix)

 Common Libraries Equality Prefix Match Suffix Match

 glib g_str_equals g_str_has_prefix g_str_has_suffix

 Misc name used str_eq strstarts strends

 One of the natural choices can be: “str_equals”, “str_starts_with” and “str_end_with” - very
 common. This proposal suggest using the shorter names “streq”, “strprefix” and “strsuffix” for
 few reasons:

 1. The proposed names streq, strprefix and strsuffix fall within the reserved namespace for
 string-related functions (prefix str[a-z]) (POSIX.1), which aligns with standard naming
 conventions in <string.h>.

 2. No other string.h function is currently using snake case names like the stdc_* functions.
 3. Some libraries/projects have added similar functions - usually using ‘str_’ name space

 (or the str[A-Z] namespace) - to avoid potential conflict with potential lib c functions.

 Alternative Naming

 If the committee believe benefits from using function names similar to other languages
 (especially C++) - outweigh the potential conflict with existing libraries, the following is
 suggested .

 Proposed Name Alternative Name

 streq str_equals

 strprefix str_starts_with

 strsuffix str_ends_with

 Rationale
 ● Clarity: streq(a, b) expresses the programmer’s intent more clearly than strcmp(a, b) ==

 0. Likewise for strprefix and strsuffix.

 ● Safety: Built-in null-pointer checks reduce the risk of undefined behavior.
 ● Performance: These functions return boolean directly, simplifying branching.
 ● Maintainability: Multi-string comparisons and negated logic become simpler.
 ● Portability: Efficient and portable on all platforms.
 ● Helper introducing new programmers into the language - avoid common pitfalls.

 Implementation
 Example portable implementation. Performance can be much better by customizing to specific
 processor, as done in many implementation - GLIBC, MUSL, …

 #include <stdbool.h>
 #include <string.h>

 bool streq(const char *a, const char *b) {
 return strcmp(a, b) == 0;

 }

 bool strprefix(const char *s, const char *prefix)
 {

 size_t prefix_len = strlen(prefix) ;
 Return strncmp(s, prefix, prefix_len) ;

 }

 Bool strsuffix(const char *s, const char *suffix)
 {

 size_t s_len = strlen(s) ;
 size_t suffix_len = strlen(suffix) ;
 If (s_len < suffix_len) return false ;
 return strncmp(s+s_len-suffix_len, suffix) ;

 }

 Alternatives Considered
 ● Macros: Lack type safety, may evaluate arguments multiple times.
 ● Inline user functions: Duplicated across projects, lack standardization.
 ● Pointer returning functions - like strstr - I did not find significant use in existing code

 bases. It will add complexity (to handle char *, vs const char *).

 Compatibility Note
 The proposed names streq/strprefix/strsuffix fall within the reserved namespace for
 string-related functions (prefix str[a-z]*), which aligns with standard naming conventions in

 <string.h>. This deliberate choice ensures minimal conflict with existing symbols and allows
 projects that have already defined similar utilities to adopt the standard versions quickly.

 Summary
 This proposal introduces three intuitive and expressive functions for the most common use
 cases of string comparison in C. It aligns with modern programming practices while preserving
 C’s philosophy of minimalism and efficiency.

