

Proposal for C2Y

WG14 n3538
Title: Static assertions in expressions

Author: Vincent Mailhol <mailhol.vincent@wanadoo.fr>

Date: 2025-04-24

Proposal category: Change

Target audience: Implementers, users

Abstract: Allow static_assert in expressions

Prior art: C23

mailto:mailhol.vincent@wanadoo.fr

Static assertions in expressions
Reply-to: Vincent Mailhol <mailhol.vincent@wanadoo.fr>

Document: n3538

Date: 2025-04-24

This proposal extends the semantic of static_assert and allows it to be used as an operator which
yields the integer constant expression 0 of type int. This way, static_assert can be used in
expressions, typically when defining a function-like macro. If used as a declaration, the behavior is
unchanged.

Change Log

: initial version 2025-04-24

Table of Contents
Proposal for C2Y 1
WG14 n3538 1

Change Log 2
Table of Contents 2

1 Problem Description 3
Create a constraint violation if the assertion fails 3
Encapsulate the static_assert in a structure 4
Use GNU’s compound statement expressions 4

2 Prior work 5
Linux kernel BUILD_BUG_ON_ZERO* function like macros 5
shadow-utils project 5
cmp_int project 5

3 Type and value 5
4 Proposal 6
5 Proposed text 7

Subclause 6.5.4.1, paragraph 1 7
Move subclause 6.7.12 to 6.5.4.6 8
Subclause 6.7.1, paragraph 1 9
Subclause 6.7.1, paragraph 14 10

6 Acknowledgements 10

mailto:mailhol.vincent@wanadoo.fr

1 Problem Description
When defining a function-like macro, it is sometimes useful to add compile time checks. For example,
when writing:

/* Number with the nth bit set, starting count at zero */

#define BIT(type, n) ((type)1 << (n))

you may want to implement a static check to assert that the argument n is within the range
[0; sizeof(type) * CHAR_BIT - 1]1.

Performing such a static check within a function is not possible because the argument n would no
longer be an integer constant expression. Even the as-yet-to-be-introduced constexpr functions
wouldn’t solve the issue entirely because these would not account for type polymorphism as a
function-like macro would.

Currently, C does not offer a straightforward way to add such checks to macro definitions. Indeed,
static_assert cannot be used in an expression because it can only be used as a declaration. Using
it in an expression is invalid.

A few workarounds exist which we briefly describe in the following sections.

Create a constraint violation if the assertion fails
It is possible to perform static assertions in expressions by creating a constraint violation if the
assertion fails and returning zero otherwise. The constraint violation can be, for example, an array or a
bit field with a negative size. For example:

#define static_assert_op(cond) (!sizeof(char[(cond) ? 1 : -1]))

#define BIT(type, n) (\

 static_assert_op(n >= 0 && n < sizeof(type) * CHAR_BIT) + \

 ((type)1 << (n)) \

)

If the condition is false, static_assert_op declares an array of negative size, thus breaking the
compilation. Otherwise, static_assert_op yields the integer constant expression zero of type int.

The diagnostic message will be unrelated to the actual check which is being performed.

1 Similar to clang or gcc’s -Wshift-count-negative and -Wshift-count-overflow diagnostics.
For this example, let’s assume that the compiler may not have those diagnostics and the user wants to
manually implement these.

Encapsulate the static_assert in a structure
While static_assert cannot be used in expressions, it can be used in structure declarations. Thus,
by wrapping static_assert in a structure, it becomes possible to build a function-like macro similar
to static_assert that can be used in expressions. For example:

#define static_assert_op(cond) \

 (!sizeof(struct {static_assert(cond); char a;}))

#define BIT(type, n) (\

 static_assert_op(n >= 0 && n < sizeof(type) * CHAR_BIT) + \

 ((type)1 << (n)) \

)

To avoid declaring a structure of size zero (which is a GNU extension), a dummy char attribute is
used. sizeof‘s value is then negated so that static_assert_op yields the integer constant
expression zero of type int.

The diagnostic message, while relevant, would be polluted by the wraparound logic.

Use GNU’s compound statement expressions
The compound statement expressions (GNU extension) are the only method which allows the direct
use of static_assert declarations. For example:

#define BIT(type, n) ({ \

 static_assert(n >= 0 && n < sizeof(type) * CHAR_BIT); \

 (type)1 << (n); \

})

The drawback is that the returned value is not an integer constant expression anymore and that this is
not portable.

Consequently, existing workarounds are either non-trivial or non standard. Also, the compiler
diagnostic message is polluted by all the wraparound logic and becomes less readable on some of
these workarounds .

The goal of this proposal is to provide a standard method to perform static assertions in expressions.

2 Prior work

Linux kernel BUILD_BUG_ON_ZERO* function like macros
Workarounds are commonly used, for example, in the Linux kernel to declare function-like macros
which can be used to perform static assertions in expressions. For example:

● The BUILD_BUG_ON_ZERO function-like macro declares a bit field of negative size:

https://elixir.bootlin.com/linux/v6.13/source/include/linux/build_bug.h#L16

● The __BUILD_BUG_ON_ZERO_MSG function-like macro wraps static_assert in a structure
declaration:

https://elixir.bootlin.com/linux/v6.13/source/include/linux/compiler.h#L260

Here, the current state of the art consists of having the macro yield the constant expression 0 of type
int so that the result can then be added to another expression.

shadow-utils project
In the shadow-utils project, Alejandro Colomar declares the must_be function-like macro by wrapping
static_assert in a structure declaration:
https://github.com/shadow-maint/shadow/commit/10f31a97e2b2.

Here also, the must_be function-like macro yields the integer constant expression 0 of type int.

cmp_int project
The cmp_int project by Robert C.Seacord and Aaron Ballman also relies on encapsulating the
static_assert in a structure to do static assertion in a function-like macro, but, unlike this proposal,
the value is casted to void and is then used as the left hand operand of the comma operator:

https://github.com/rcseacord/cmp_int/blob/f6a757b67e9958da08f21297835bfc45fbe1716a/include/cm
p_int.h#L98-L103

3 Type and value
As described in the previous section, the type of static assertions is inconsistent: some
implementations yield the integer zero while some yield void.

Yielding void has a big drawback; if one of the operands in an expression is void, that expression
can no longer be an integer constant expression. For example:

#define static_assert_op(cond) \

 ((void)sizeof(struct {static_assert(cond); char a;}))

#define BIT(type, n) (\

https://elixir.bootlin.com/linux/v6.13/source/include/linux/build_bug.h#L16
https://elixir.bootlin.com/linux/v6.13/source/include/linux/compiler.h#L260
https://github.com/shadow-maint/shadow
https://github.com/shadow-maint/shadow/commit/10f31a97e2b2
https://github.com/rcseacord/cmp_int
https://github.com/rcseacord/cmp_int/blob/f6a757b67e9958da08f21297835bfc45fbe1716a/include/cmp_int.h#L98-L103
https://github.com/rcseacord/cmp_int/blob/f6a757b67e9958da08f21297835bfc45fbe1716a/include/cmp_int.h#L98-L103

 static_assert_op(n >= 0 && n < sizeof(type) * CHAR_BIT), \

 (type)1 << (n) \

)

int arr[BIT(unsigned int, 2)];

Because static_assert_op yields void, BIT no longer returns an integer expression as arr is now
a variable length array. For this reason, having static_assert yielding void is out of consideration.

A final option is to have static_assert yield the integer constant expression 1. For example:

#define static_assert_op(cond) \

 (!!sizeof(struct {static_assert(cond); char a;}))

#define BIT(type, n) (\

 static_assert_op(n >= 0 && n < sizeof(type) * CHAR_BIT) ? \

 (type)1 << (n) : 0 \

)

This last option has not been encountered in any prior art. For this reason, this proposal follows the
current practice and makes static_assert return 0 so that the result can easily be discarded by
adding it to another expression (which may also be a constant expression).

Note that having static_assert yield an int does not prevent the use of the comma operator. So
users who do not need an integer constant expression may still prefer to use static_assert in
conjunction with the comma operator.

4 Proposal
This proposal extends the semantics of static_assert by allowing it to be used as an operator and
return the constant expression zero of type int. This way, static_assert can be used directly in
expressions without the need for any of the previously described workarounds. For example:

#define BIT(type, n) (\

 static_assert(n >= 0 && n < sizeof(type) * CHAR_BIT) + \

 ((type)1 << (n)) \

)

This proposal simplifies the use of static assertions in function-like macros. This is one step closer to
making C a safe language.

This solution may overlap with the as-yet-to-be-introduced constexpr functions. constexpr functions
would indeed at least solve the issue for when the argument type is known. To work with multiple types

(typically scalar types), function-like macro remains useful (unless an equivalent to C++ template is
introduced). So, unless function-like macros are fully obsoleted by a new construct, the
static_assert operator remains complementary with other future directions of C.

A block item containing only a static_assert directly followed by a semicolon is explicitly defined as
being a declaration. Thus, below construct, which otherwise would be ambiguous:

void func() {

 static_assert(1);

}

must be interpreted as being a static_assert declaration. Otherwise, static_assert is an
operator. For example:

void func() {

 static_assert(1) + 0;

}

Prior to this change, static_assert could only be used as a declaration. The above disambiguation
makes sure that this behavior is unchanged. The semantic is only changed for constructs which were
previously invalid. Preserving the existing behavior guarantees that this is not a breaking change.

5 Proposed text
Proposed wording changes are against C2Y working draft n3525.

Subclause 6.5.4.1, paragraph 1

Replace n3525 subclause 6.5.4.1, paragraph 1 with the following text. The text in green contains
changes while the text in black does not.

6.5.4 Unary operators
6.5.4.1 General
Syntax
1 unary-expression:

postfix-expression

++ unary-expression

-- unary-expression

unary-operator cast-expression

_Lengthof unary-expression

_Lengthof (type-name)

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3525.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3525.htm

sizeof unary-expression

sizeof (type-name)

alignof (type-name)

static-assertion

unary-expression: one of

& * + - ~ !

Move subclause 6.7.12 to 6.5.4.6

In n35252, move subclause 6.7.12 to 6.5.4.6. The Syntax and the Semantics paragraphs are
modified, the Constraints and Recommended practice paragraphs are left untouched. A new
EXAMPLE paragraph is added to illustrate the use of static assertions in expressions. The text in
green contains additions while the strikeout text in red contains deletions.

6.5.4.6 Static assertions
Syntax
1 static-assertion:

static_assert (constant-expression , string-literal)

static_assert (constant-expression)
Constraints
2 The constant expression shall be an integer constant expression with a nonzero value.

Semantics
3 A static assertion has no effect. If used in an expression statement, it yields the integer constant
expression zero of type int.

Forward references: static_assert declaration (6.7.1).

Recommended practice

4 If the constraint is violated with an integer constant expression of value zero, the diagnostic message
should include the text of the string literal, if present.

5 EXAMPLE When combined with the addition operator, static assertions can be used in expressions,
typically in function-like macros.

#include <limits.h>

#define BIT(n) (\

 static_assert(n >= 0) + \

 static_assert(n < sizeof(unsigned int) * CHAR_BIT) + \

2 If n3525 is superseded, modifications shall be reflected accordingly.

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3525.htm

 (1U << (n)) \

)

(...)

6.7.12 Static assertions
Syntax
1 static_assert-declaration:

static_assert (constant-expression , string-literal) ;

static_assert (constant-expression) ;
Constraints
2 The constant expression shall be an integer constant expression with a nonzero value.

Semantics
3 A static assertion has no effect.

Recommended practice

4 If the constraint is violated with an integer constant expression of value zero, the diagnostic message
should include the text of the string literal, if present.

Subclause 6.7.1, paragraph 1

Replace n3525 subclause 6.7.1, paragraph 1 with the following text.

Syntax
1 declaration:

declaration-specifiers init-declarator-listopt ;

attribute-specifier-sequence declaration-specifiers init-declarator-list ;

static_assert-declaration

attribute-declaration

declaration-specifiers:

declaration-specifier attribute-specifier-sequenceopt

declaration-specifier declaration-specifiers

declaration-specifier:

storage-class-specifier

type-specifier-qualifier

function-specifier

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3525.htm

init-declarator-list:

init-declarator

init-declarator-list , init-declarator

init-declarator:

declarator

declarator = initializer

static_assert-declaration:

static-assertion ;

attribute-declaration:

attribute-specifier-sequence ;

simple-declaration:

attribute-specifier-sequenceopt declaration-specifiers declarator = initializer

Subclause 6.7.1, paragraph 14

In n3525 subclause 6.7.1, insert a new paragraph 14 with the following text.

14 Aside from not having a value, static_assert declarations have the same semantic as the
static_assert expressions. A block item of the form

 static-assertion ;

shall be interpreted as a static_assert-declaration.

6 Acknowledgements
We would like to recognize the following people for their help reviewing this work: Robert C. Seacord,
Aaron Ballman, Joseph Myers, Jens Gustedt, and Alejandro Colomar.

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3525.htm

	Proposal for C2Y
	WG14 n3538
	Static assertions in expressions
	Change Log
	Table of Contents

	1 Problem Description
	Create a constraint violation if the assertion fails
	Encapsulate the static_assert in a structure
	Use GNU’s compound statement expressions

	2 Prior work
	Linux kernel BUILD_BUG_ON_ZERO* function like macros
	shadow-utils project
	cmp_int project

	3 Type and value
	4 Proposal
	5 Proposed text
	Subclause 6.5.4.1, paragraph 1
	Move subclause 6.7.12 to 6.5.4.6
	Subclause 6.7.1, paragraph 1
	Subclause 6.7.1, paragraph 14

	6 Acknowledgements

