=Gy l,//,/ 1 0

Y2r/ /Gy-030

ALEF Language Reference Manual

Phil Winterbottom
philw@research.att.com

Introduction

Alef is a concurrent programming language designed for systems programming. Exception handling,
process management and synchronisation primitives are implemented by the language. Programs can be
written using both shared variable and message passing paradigms. Expressions use the same syntax as C,
but the type system is substantially different. The language does not provide garbage collection, so pro-
grams are expected to manage their own memory. This manual provides a bare description of the syntax
and semantics of the current implementation.

Much of the terminology used in this manual is borrowed from the C language reference manual and
the Plan 9 manual. The manual expects familiarity with both.

1. Lexical

Compilation starts with a preprocessing phase. An ANSI C preprocessor is used. The preprocessor
performs file inclusion and macro substitution. Comments and lines beginning with the # character are con-
sumed by the preprocessor. The preprocessor produces a sequence of tokens for the compiler. A token isa
sequence of characters separated by white space. The white space characters are space, new line, tab, form
feed and vertical tab.

1.1. Tokens

The lexical analyser classifies tokens as: identifiers, typenames, keywords, constants and operators.
Tokens are separated by white space. White space is ignored in the source except as needed to separate
sequences of tokens which would otherwise be ambiguous. The lexical analyser is greedy: if tokens have
been consumed up to a given character, then the next token will be the longest string of characters which
forms a legal token.

1.2. Reserved Words
The following keywords are reserved by the language and may not be used as identifiers:

adt aggr alloc
alt become break
byte case chan
check continue default
do else enum
extern float for
goto if int
intern lint nil
par proc raise
rescue return sint
sizeof switch task
tuple typedef uint
ulint unalloc union
usint void while

The following symbols are used as separators and operators in the language:

X



*— = RV +

et e A

—_~ ) =
1]

~e

The following multi-character sequences are used as operators:

+= -= /= *=
%= &= |= ot
<<= >>= == 1=
- <- -> ++

1.3. Comments

Comments are removed by the preprocessor. A comment starts with the characters /* and finishes at
the characters */. A comment may include any sequence of characters including /*. Comments do not
nest. )

1.4. Identifiers

An identifier is any sequence of alpha-numeric characters and the character _. Identifiers may not
start with a digit. Identifiers are case sensitive. All characters are significant. Identifier names prefixed by
ALEF are reserved for use by the runtime system.

1.5. Constants
There are five types of constant:

constant:
integer-const
character-const
floating-const
string-const
rune-string-const

An integer constant is a sequence of digits. A prefix may be used to modify the base of a number. Defined
prefixes, bases and digit sets are:

none decimal 0-9
0x hexadecimal 0-9 a-f A-F
0 octal 0-7

A character constant may contain one or more characters surrounded by the single quote mark ‘. If the
constant contains two or more characters the first must be the escape character \. The following table
shows valid characters after an escape and the value of the constant:

0 NUL Null character
n NL Newline

r CR Carriage return
t HT Horizontal tab
b BS Backspace

£ FF Form feed

a BEL Buzz

v vT Vertical tab

N\ \ Backslash

o ' Double quote

Character constants have the type int. If the character is a unicode rune (see Rune(2) in the Plan9 manual)
the value of the integer will be the 16-bit unicode representation of the rune.

A floating point constant consists of an integer part, a period, a fractional part, the letter e and an

378



&8

exponent part. The integer, fraction and exponent parts must consist of decimal digits. Either the integer or
fractional parts may be omitted. Either the decimal point or the letter e and the exponent may be omitted.
The integer part or period and the exponent part may be preceded by the unary + or - operators. Floating
point constants have the type £loat.

A string constant is a sequence of characters between the double quote marks ". A string has the
type ’static array of byte’. The NUL character is automatically appended to the string by the compiler. The

effect of modifying a string constant is implementation dependent. The sizeof operator applied to a -

string constant yields the number of bytes including the appended NUL.

A rune string constant is a sequence of unicode characters introduced by $" and terminated by ". A
rune string has the type ’static array of usint’. A zero rune character is automatically appended to the string
by the compiler. The sizeof operator applied to a rune string constant yields the number of runes includ-
ing the appended zero.

1.6. Programs

An ALEF program is a list of declarations. The declarations introduce identifiers. Identifiers may
define variables, types, functions, function prototypes or enumerators. Identifiers have storage classes that
define their scope. A storage class applied to a complex type controls the scope of the members. For func-
tions and variables declared at the file scope the storage class determines if a definition can be accessed
from another file.

1.7. Processes and Tasks

The term process is used to refer to a preemptively scheduled thread of execution. A process may
contain several tasks. A fask is a non-preemptively scheduled coroutine within a process. The memory
model does not define the sharing of memory between processes. On a shared memory computer processes
will typically share the same address space. On a multicomputer processes may be located on physically
distant nodes with access only to local memory. In such a system processes would not share the same
address space, and must communicate using message passing.

A group of tasks executing within the context of a process are defined to be in the same address
space. Tasks are scheduled during communication and synchronisation operations. The term thread is used
wherever the distinction between a process and task is unimportant.

2. Definitions and Declarations

A declaration introduces an identifier and specifies its type. A definition is a declaration that also
reserves storage for an identifier. An object is an area of memory of known type produced by a definition.
Function prototypes, variable declarations preceded by extern, and type specifiers are declarations.
Function declarations with bodies and variable declarations are examples of definitions.

2.1. Scope
Identifiers within a program have scope. There are four levels of scope: file, type, function and local.

° A local identifier is declared at the start of a block. A local has scope starting from its declaration to
the end of the block in which it was declared.

° Exception identifiers and labels have the scope of a function. These identifiers can be referenced
from the start of a function to its end, regardless of position of the declaration.

° A member of a complex type is in scope only when the dereference operators . and -> are applied to
the type. Hidden type members have special scope and may only be referenced by function members
of the type.

° All definitions outside of a function body have the scope of file. Unqualified declarations at the file
scope have static storage class.

397



2.2. Storage classes

There are three storage classes: automatic, parameter and static. Automatic objects are created at
entry to the block in which they were declared. The value of automatics is undefined upon creation. Auto-
matic variables are destroyed at block exit. Parameters are created by function invocation and are destroyed
at function exit. Uninitialised static objects exist from invocation of the program until termination. Static
objects which have not been initialised have the value 0.

3. Types
A small set of basic types are defined by the language. More complex types may be derived from the
basic types.

3.1. Basic types
The basic types are:

name size type

byte 8 bits unsigned character
sint 16 bits signed short integer
usint 16 bits unsigned short integer

int 32 bits signed integer

uint 32 bits unsigned integer
float 64 bits floating point

lint 64 bits long signed integer
ulint 64 bits unsigned long integer
chan 32 bits channel

The size given for the basic types is the minimum number of bits required to represent that type. The format
and precision of £loat is implementation dependent. The float type should be the highest precision
floating point provided by the hardware. The 1int and ulint types are not part of the current implemen-
tation but have been defined. The alignment of the basic types is implementation dependent. Channels are
implemented by the runtime system and must be initialised before use. They are the size of a pointer. The
void type performs the special task of declaring procedures returning no value and as part of a derived
type to form generic pointers. The void type may not be used as a basic type.

3.2. Derived types

Types are derived in the same way as C. Operators applied in declarations use one of the basic types
to derive a new type. The deriving operators are:

* create a pointer to
& yield the address of
() a function returning
[] an array of

These operators bind to the name of each identifier in a declaration or definition. Some examples are:

int *ptr; /* A pointer to an integer */
char c[10]; /* A vector of 10 characters */
float *pow () ; /* A function returning a pointer to a float */

Complex types may be built from the basic types and the deriving operators. Complex types may be either
aggregates, unions or abstract data types (ADT). These complex types contain sequences of basic types and
other derived types. An aggregate is a simple collection of basic and derived types. Each element of the
aggregate has unique storage. An abstract data type has the same storage allocation as an aggregate but also
has a set of functions to manipulate the type, and a set of protection attributes for each of its members. A
union type contains a sequence of basic and derived types which occupy the same storage. The size of a
union is determined by the size of the largest member.

~



5

The declaration of complex types introduces fypenames into the language. After declaration a type-
name can be used wherever a basic type is permitted. Derived types and basic types may be renamed using
the typedef statement.

The integral types are int, uint, sint, suint, byte, lint and ulint. The arithmetic types
are the integral types and the type f1oat. The pointer type is a type derived from the & (address of) opera-
tor or derived from a pointer declaration.

3.3. Conversions and Promotions

ALEF performs the same implicit conversions and promotions as C with the exception of complex
type promotion. Under assignment, function parameter evaluation or function returns, ALEF will promote
an unnamed member of a complex type into the type of the lefthand side, formal parameter or function.

4. Declarations

A declaration attaches a type to an identifier; it need not reserve storage. A declaration which
reserves storage is called a definition. A program consists of a list of declarations:

program:
declaration-list

declaration-list:
declaration
declaration-list declaration

A declaration can define a simple variable, a function, a prototype to a function, an ADT function, a type
specification or a type definition:

declaration:
simple-declarations
type-declaration
type-definition
function-declaration

4.1. Simple declarations

A simple declaration consists of a type specifier and a list of identifiers. Each identifier may be quali-
fied by deriving operators. Simple declarations at the file scope may be initialised.

simple-declarations:
type-specifier simple-decl-list ;

simple-decl-list:
simple-declaration
simple-decl-list , simple-declaration

simple-declaration:
pointer tidennﬁer array-spec
pointeropr identifier array-spec, = initialiser-list

pointer:
*

pointer *

array-spec:
[ constant-expression ]
[ constant-expression 1 array-spec

393



4.2. Array Specifiers
The dimension of an array must be non-zero positive constant. Arrays have a lower bound of 0 and

an upper bound of n-1. Where n is the bound specified by the constant expression.

4.3. Type Specifiers

type-specifier:

storage-class __type

opt

type:
byte
int
uint
sint
usint
lint
ulint
void
float
typename
channel-specifier

storage-class:
intern
extern

channel-specifier:

chan ( chan-type ) buﬁer-specop’
buffer-spec:

[ constant-expression ]

The storage class controls the scope of the declaration. Storage classes may only be applied to declarations
at the file scope. The scope of a definition qualified with intern is file. A declaration qualified by
extern references a definition in this or another file.

Typename is an identifier defined by a complex type declaration or a typedef statement.

4.3.1. Channel Type Specification

chan-type:
basic
basic , chan-type

basic:
type pointer
The type specified by a chan declaration is actually a pointer to an internal object with an anonymous type
specifier. Because of their anonymity, objects of this special type cannot be defined in declarations; instead
they must be created by an alloc statement referring to a chan. A channel declaration without a buffer
specification produces a synchronous communication channel. Threads sending values on the channel will
block until some other thread receives from the channel. The two threads rendezvous and a value is passed
between sender and receiver. If buffers are specified then an asynchronous channel is produced. The
constant-expression defines the number of buffers to be allocated. A send operation will complete immedi-
ately while buffers are available. A thread will block if all buffers are in use. A receive operation will block
if no value is buffered. If a value is buffered the receive will complete and deallocate the buffer. Any

39Y



senders waiting for buffers will then be allowed to continue. ]

Values of chan-type are passed between threads using the channel for communication. If chan-type is
a comma separated list of types the channel supplies a .variantprotocol A variant protocol allows messages
to be demultiplexed by type during a receive operation. A form of the alt statement allows the control
flow to be modified based on the type of a value received from a channel supplying a variant protocol.

4.4. Initialisers
Only simple declarations at the file scope may be initialised.

initialiser-list:
constant-expression
[ constant-expression ] constant-expression
{ initialiser-list }
initialiser-list , initialiser-list

An initialisation consists of a constant-expression or a list of constant-expressions separated by commas
and enclosed by braces. An array or complex type requires an explicit set of braces for each level of nest-
ing. All the components of a variable need not be explicitly initialised; uninitialised elements are set to
zero. ADT types are initialised in the same way as aggregates with exception of ADT function members
which are ignored for the purposes of initialisation. Elements of sparse arrays can be initialised by supply-
ing a bracketed index for an element. Successive elements without the index notation continue to initialise
the array in sequence. For example:

char a[256] = {

[ra’] L /* Set element 97 to 65 */
[*a’+1] 'B’, /* Set element 98 to 66 */
end /* Set element 99 to 67 */

};

If the dimensions of the array are omitted from the array-spec the compiler sets the size of each dimension
to be large enough to accommodate the initialisation. The size of the array can be found using sizeof.

4.5. Type Declarations

A type declaration creates a new type and introduces an identifier representing that type into the lan-
guage.

type-declaration:
complex typename { memberlist } ;
complex { memberlist } decl-tag ;
complex typename { memberlist } decl-tag ;
enumeration-type

tupletype

complex:
adt
aggr
union

decl-tag:
identifier

tupletype:
tupleap : ( typelist )

typelist:
typelist , type-declaration

37



cH

A complex type is composed of a list of members. Each member may be a complex type, a derived type or
a basic type. Members are referenced by tag or by type. Members without tags are called unna'lmed.
Unnamed members are referenced by type or by implicit promotion during assignment or when supplied as
function arguments. A type declaration must have either a type name or a tag.

memberlist:
member
memberlist member

member:
tmame pointer decl-tag array-spec,,, i
tname decl-tag ( arglist) ;
tname is one of the basic types or a new type introduced by aggr, adt, union, or typedef. A tuple
type is a complex type whose members are all unnamed. Tuples may only be addressed by assignment into

other complex types or an l-valued tuple expression. For example:

(int, byte*)

func ()
%
return (10, "hello"):
}
void
main ()
{
int a;
byte *str;
(a, str) = func();

}

This example demonstrates multiple return values. The return type of func is a complex type consisting of
three integers. The tuple type returned by func will match any other complex type consisting of three
arithmetic types. So the following is legal:

aggr T

{
int a;
byte b;
float c;

};

void

main()

(a, b, c) = func();

4.6. Abstract Data Types

An abstract data type (ADT) defines both storage for members, like an aggregate, and the operations
that can be performed on that type. Access to the members of an abstract data type is restricted to enforce a
policy of information hiding. The mechanism is designed to encourage modular program design and pro-
vide clean library interfaces. The scope of the members of an abstract data type depends on their type. By
default access to members that define data is limited to the member functions. Members can be explicitly
exported from the type using the extern storage class in the member declaration. Member functions are
visible by default, that is the opposite behaviour of data members. Access to a member function may be
restricted to other member functions by qualifying the declaration with the intern storage class. The four

D
o~



combinations are:

adt Point
{
int b 4 /* Access by member functions only */
extern int Y /* Access by everybody */
Point set(Point*); /* Access by everybody */
intern Point tst(Point); /* Access only from Point.set */
¥ir

Member functions are defined by type and name. The pair form a unique name for the function, so the same
member function name can be used in many types. Using the last example, the member function set
could be defined as:

Point

Point.set (Point *a)

{
a->x = 0; /* Set the value of the point to zero */
a->y 0;

return *a;

}

An implicit pointer to the abstract data type may be passed to a member function. If the first argument of
the member function declaration in the ADT specification is ‘* typename’ (Note the * precedes the name)
the first parameter is passed implicitly.

adt Point
{
int X;
extern int Vi
Point set(*Point); /* Pass &Point as first argument */

intern Point tst(Point);

void
func ()
{
Point p;
p.set(); /* Set receives &p as first argument */
}

The implicit parameter passing mechanism is particularly useful when the ADT is an unnamed substruc-
ture. The receiving function is defined as:

void
Point.set (Point *p)
{

}i

4.7. Enumeration Types

392



100

enumeration-type:
enum typename { enum-list } ;

enum-list:
identifier
identifier = constant-expression
enum-list , enum-list

Enumerations are types whose value is limited to a set of integer constants. The members of an enumera-
tion are called enumerators. Enumeration variables are equivalent to integer variables. Enumeration con-
stants may appear wherever an integer constant is legal. If the values of the enumerators are undefined the
compiler assigns incrementing values from 0. If a value is given to an enumeration constant, values are
assigned to the following enumerators by incrementing the value for each successive member until the next
assigned value is reached.

4.8. Type Definition

Type definition allows derived types to be named, basic types to bé renamed, and forward referenc-
ing between complex types.

type-definition:
typedef tname identifier;

A typedef is required to declare complex types with mututally dependent pointers. ALEF does not per-
mit mutually dependent complex types; only references between them. For example:

typedef aggr A;

aggr B
{
A *aptr;
B *bptr;
}
aggr A
{
A *aptr;
B *bptr;

4.9. Function Declarations

There are three forms of function declaration: function definition, prototype declaration, and function
pointer declaration.

>



-11-

function-declaration:
type-specifier identifier ( arglist ) block
type-specifier function-id ( arglist ) ;
type-specifier ( function-id ) ( arglist ) ;

function-id:
pointero ¥ identifier array-spec,,,
adt-function

adt-function:
typename . decl-tag

arglist:
arg
pointer type
arglist, arg

arg:
type
type pointer
type ( pointer ) ( arglist)
type simple-declaration

If a formal parameter is declared without an identifier no declaration for the corresponding variable is pro-
duced in the function body.

5. Expressions

The order of expression evaluation is not defined except where noted. That is, unless the definition of
the operator guarantees evaluation order, an operator may evaluate any of its operands first.

The behaviour of exceptional conditions such as divide by zero, arithmetic overflow and floating
point exceptions is not defined.

5.1. Pointer Generation

References to expressions of type ‘function returning T’ and ‘array of T’ are rewritten to produce
pointers to either the function or the first element of the array. That is ‘function returning T" becomes
‘pointer to function returning T° and ‘array of T” becomes ‘pointer to the first element of array T’.

5.2. Primary Expressions
Primary expressions are identifiers, constants or parenthesised expressions:

primary-expression:
identifier
constant
nil
( expression )
tuple

The parameters received by a function taking variable arguments are referenced using ‘...’ . The
primary-expression ’ . . .’ yields a value of type ‘pointer to void’. The value points at the first location
after the formal parameters. The primary-expression nil returns a pointer of type ‘pointer to void’ of
value 0 which is guaranteed not to point at an object.

399



shl0

6. Tuples
A tuple is a collection of types forming a single object which can be used in the place of an
unnamed complex type. The individual members of a tuple can only be accessed by assignment.

tuple:
( tlist )

tlist:
tlist , expression

When the declaration of a tuple would be ambiguous because of the parenthesis (for instance in automatics)
use the keyword tuple:

void

£()

{
int a;
tuple (int, byte, Rectangle) b;
int c;

}

Type checking of tuple expressions is performed by matching the shape of each of the component types. A
tuple will match another tuple or complex type if each individual member of the tuple could legally be
assigned to its corresponding member under the rules of assignment.

6.1. Postfix Expressions

postfix-expression:
primary-expression
postfix-expression [ expression ]
postfix-expression ( argument-list )
postfix-expression . tag
postfix-expression -> tag
postfix-expression ++
postfix-expression —-
postfix-expression ?

tag:
typename
identifier

argument-list:
expression
argument-list , expression

6.1.1. Array Reference

A primary expression followed by an expression enclosed in square brackets is an array indexing
operation. The expression is rewritten to be *((postfix-expression)+(expression)). One of the expressions
must be of type pointer; the other of integral type.

6.1.2. Function Calls

The postfix-expression must yield a value of type ‘pointer to function’. A type declaration for the
function must be declared prior to a function call. The declaration can be either the definition of the func-
tion or a function prototype. The types of each argument in the specification must match the corresponding
expression type under the rules of promotion and conversion for assignment. In addition unnamed complex
type members will be promoted automatically. For example:

YV



N

B

aggr Test
{
int t;
Lock; /* Unnamed substructure */
};
Test yuk; /* Definition of complex Test */
void lock(Lock*); /* Prototype for function lock */
void
main ()
{
lock (&yuk) ; /* address of Lock in Test is passed */

}

6.1.3. Complex Type References

The operator . references a member of a complex type. The first part of the expression must be a
union, aggr or adt. The member may be specified by either name or type. Only one unnamed member
of type typename is permitted in the complex type when referencing members by type, otherwise the refer-
ence is ambiguous. If the reference is by typename and no members of typename exist in the complex,
unnamed substructures will be searched breadth first. The operation -> uses a pointer to reference a com-
plex type member. The -> operator follows the same search and type rules as . and is equivalent to
(*postfix-expression).tag.

6.1.4. Postfix Increment and Decrement

The postfix increment ( ++ ) and decrement ( -- ) operators return the value of expression, then add
or subtract 1 to the expression. The expression must be an I-value of integral type.

6.2. Unary Operators
The unary operators are:

unary-expression:
postfix-expression
++ unary-expression
- - unary-expression
unary-operator cast-expression
sizeof cast-expression

unary-operator: one of
<- 2?2 *

+ =~ !

6.3. Prefix Increment and Decrement

The prefix increment ( ++ ) and prefix decrement ( -- ) operators add or subtract one to a unary-
expression and return the new value. The unary-expression must be an l-value of integral or pointer type.

6.4. Receive and Can Receive

The operator <- receives a value from a channel. The unary-expression must be of type ‘channel of
T’. The type of the result will be T. A process or task will block until a value is available from the channel.
The prefix operator ? returns 1 if a channel has a value available for receive, 0 otherwise. unary-expression
must be of type ‘channel of T".

vo)



-14-

6.5. Can send
The postfix operator ? returns 1 if a thread can send on a channel without blocking, O otherwise.

unary-expression must be of type ‘channel of T".

The prefix or postfix blocking test operator ? is only reliable when used on a channel shared between
tasks in a single process. A process may block after a successful ? because the interleaving of the pro-

cesses using the channel is undefined.

6.6. Indirection

The unary operator * retrieves the the value pointed to by its operand. The operand must be of type
‘pointer to T’. The result of the indirection is a value of type T.

6.7. Unary Plus and Minus

Unary plus is equivalent to (O+(unary-expression)). Unary minus is equivalent to (0O-(unary-
expression)). An integral operand undergoes integral promotion. The result is the type of the promoted
operand.

6.8. Bitwise Negate
The operator ~ performs a bitwise negation of its operand, which must be of integral type.

6.9. Logical Negate

The operator ! performs logical negation of its operand, which must of arithmetic or pointer type. If
the operand is a pointer and its value is nil the result is integer 0, otherwise 1. If the operand is arithmetic
and the value is O the result is 0, otherwise the result is 1.

6.10. Sizeof Operator

The sizeof operator yields the size in bytes of its operand, which may be an expression or the
parenthesized name of a type. The size is determined from the type of the operand, which is not itself evalu-
ated. The result is an integer constant. If sizeof is applied to a string constant the result is the number of
bytes required to store the string including its terminating NUL byte or zero rune.

6.11. Casts
A cast converts the result of an expression into a new type:

cast-expression:
unary-expression
( type-cast ) cast-expression

cast-type:
type pointer

6.12. Multiply, Divide and Modulus
The multiplicative operators are:

multiplicative-expression:
cast-expression
multiplicative-expression * multiplicative-expression
multiplicative-expression /| multiplicative-expression
multiplicative-expression $ multiplicative-expression

The operands of * and / must have arithmetic type. The operands of % must be of integral type. The opera-
tor / yields the quotient, % the remainder and * the product of the operands. If b is non-zero then a =
(a/b) + a%b should always be true.

yor



-15-

6.13. Add and Subtract
The additive operators are:

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

The + operator computes the sum of its operands. Either one of the operands may be a pointer. If P is an
expression yielding a pointer to type T then P+n is the same as p+(sizeof(T)*n). The - operator computes
the difference of its operands. The first operand may be of pointer or arithmetic type. The second operand
must be of arithmetic type. If P is an expression yielding a pointer of type T then P-n is the same as p-
(sizeof(T)*n). Thus if P is a pointer to an element of an array P+ will point to the next object in the array
and P-1 will point to the previous object in the array.

6.14. Shift Operators
The shift Operators perform bitwise shifts:

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

If the first operand is unsigned, << performs a logical left shift by additive-expression bits. If the first
operand is signed, << performs an arithmetic shift left by additive-expression bits. The shift-expression
must be of integral type. The >> operator is a right shift and follows the same rules as left shift.

6.15. Relational Operators
The values of expressions can be compared as follows:

relational-expression:
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

The operators are < (less than), > (greater than), <= (less than or equal to) and >= (greater than or equal t0).
The operands must be of arithmetic or pointer type. The value of the expression is 1 if the relation is true,
otherwise 0. The usual arithmetic conversions are performed. A pointer of type void * or nil may be
compared to any other pointer. Pointers of any other type may only be compared to pointers of the same

type.
6.16. Equality operators
The equality operators are:

equality-expression:
relational-expression
relational-expression == equality-expression
relational-expression ! = equality-expression

The operators == (equal to) and ! = (not equal) follow the same rules as relational operators.

6.17. Bitwise Logic Operators

Y3



-16-

AND-expression:
equality-expression
AND-expression & equality-expression

XOR-expression:
AND-expression
XOR-expression ~ AND-expression

OR-expression:
XOR-expression
OR-expression | XOR-expression

The operators perform bitwise logical operations and apply only to integral types. The operators are & (bit-
wise and), ~ (bitwise exclusive or) and | (bitwise inclusive or).

6.18. Logical Operators

logical-AND-expression:
OR-expression
logical-AND-expression && OR-expression

logical-OR-expression:
logical-AND-expression
logical-OR-expression [ logical-AND-expression

The && operator returns 1 if both of its operands evaluate to non-zero, otherwise 0. The || operator
returns 1 if either of its operand evaluates to non-zero, otherwise 0. Both operators are guaranteed to evalu-
ate strictly left to right. Evaluation of the expression will cease as soon as any component of the expression
evaluate to a 1. The operands can be any mix of arithmetic and pointer types.

6.19. Constant expressions

A constant expression is an expression which can be fully evaluated by the compiler during
translation rather than at runtime.

constant-expression:
logical-OR-expression

constant-expression appears as part of initialisation, channel buffer specifications and array dimensions.
The following operators may not be part of a constant expression: function calls, assignment, send, receive,
increment and decrement. Address computations using the & (address of) operator on static declarations is
permitted.

6.20. Assignment
The assignment operators are:

assignment-expression:
logical-OR-expression
unary-expression <-= assignment-expression
unary-expression assignment-operator assignment-expression
unary-expression = ( type-cast ) tuple

assignment-operator: one of
= += *= /= %= &= l: A= >>= <<=

The left side of the expression must be an l-value. Compound assignment allows the members of a com-
plex type to be assigned from a member list in a single statement. A compound assignment is formed by
casting a tuple into the complex type. Each element of the tuple is evaluated in turn and assigned to its

J09



-17-

o corresponding element in the complex types. The usual conversions are performed for each assignment.

aggr Readmesg /* Read message to file system */

{

int fd;
void *data;
int len;

}:

chan (Readmsg) filesys;

int

read(int fd, void *data, int len)

{
/* Pack message parameters and send to file system */

filesys <-= (Readmesg) (fd, data, len);
}
If the left side of an assignment is a tuple, selected members may be discarded by placing nil in the corre-
sponding position in the the tuple list. In the following example only the first and third integers returned
from func are assigned.

(int; - int; dnt)sfunc():;

void
main ()

{

int‘a,¢;

e (a, nil, c) = func();
}

The <-= (assign send) operator sends the value of the right side into a channel. The unary-
expression must be of type ‘channel of T’. If the left side of the expression is of type ‘channel of T", the
value transmitted down the channel is the same as if the expression were ‘object of type T = expression’.

6.20.1. Promotion

If both sides of an assignment yield different complex types then assignment promotion is performed.
The type of the right hand side is searched for an unnamed complex type under the same rules as the .
operator. If a matching type is found it is assigned to the left side. This promotion is also performed for

function arguments.

6.21. Binding and Precedence
The binding and precedence of the operators is as follows:

Y03~



-18-

binding operator

ltor ) st s>

rtol I~ 4+ -=- <= ? + & (cast) sizeof

ltor faliatiy R

Itor + -

Itor << >>

Itor < <= > >=

Itor = =

Itor &

Itor ~

Itor |

Itor &&

ltor ||

ltor <-= = += - *= |/ = <<= >>=
7. Statements

Statements are executed for effect, and do not yield values. Statements fall into one of several groups:

Statement:

label-statement :
expression-statement ;
block-statement
selection-statement ;
loop-statement
Jjump-statement
exception-statement
process-statement ;
allocation-statement ;

7.1. Label Statements

A statement may be prefixed by an identifier. The identifier labels the statement and may be used as
the destination of a goto. Label and exception identifiers have their own namespace and do not conflict

with other names. Labels have function scope.

7.2. Expression Statements

Most expressions statements are function calls or assignments. Expressions may be null. Null expres-

sions are often useful as empty bodies to labels or iteration statements.

7.3. Block Statements

Several statements may be grouped together to form a block. The body of a function is a block.

Ypb



igk

block:
{ autolist slist }
1 { autolist slist }

autolist:
declaration
autolist declaration

slist:
statement
slist statement

An identifier declared in autolist suspends any previous declaration of the same identifier. An identifier
may be declared only once per block. The declaration remains in force until the end of the block, after
which any suspended declaration comes back into effect.

The value of identifiers declared in autolist is undefined at block entry and should be assigned to a
known value after declaration but before use.

The symbol ! { introduces a guarded block. Only one thread may be executing the statements con-
tained in the guarded block at any instant.

7.4. Selection Statements
Selection statements alter the flow of control based on the value of an expression.

selection-statement:
if ( expression ) statement else statement
if ( expression ) statement
switch ( expression ) cbody
alt cbody

cbody:
{ caselist }
! { caselist }

caselist:
case-item
alt-item
caselist case-item

case-item:
case constant-expression : statement
default : statement

alt-item:
case expression : statement

An if statement first evaluates expression, which must yield a value of arithmetic or pointer type. The
value of expression is compared with 0. If it compares unequal statement is executed. If an else clause is
supplied and the value compares equal the else statement will be executed. The else clause shows an
ambiguity in the grammar. The ambiguity is resolved by matching an else with the nearest i f without an
else at the same block level.

The switch statement selects one of several statements. The expression is evaluated and converted
into an integer. The integer is compared with the value specified in each case. If the integers compare the
statement part of the case is executed. The case expression must yield an integer constant. For a single
switch statement each case expression must yield a unique value. If no case is matched, the default

707



-20-

clause is executed. If the default is omitted then none of the case statements are executed.

The alt statement allows threads to perform communication on several channels simultaneously
without polling. The expression in each case of an alt must contain either a send or receive operation.
The alt statement provides a fair select between ready channels. A thread will remain blocked in alt
until one of the case expressions can be evaluated without blocking. The case expression may be evalu-
ated more than once, therefore care should be taken when using expressions which have side effects. If sev-
eral of the case expressions are ready for evaluation one is chosen at random. A break statement termi-
nates each case of the alt. If the break statement is omitted execution will proceed to execute the com-
munication of the next case regardless of its readiness to communicate. For example:

chan (Mesg) keyboard, mouse;
Mesg m;

alt {

case m = <-keyboard:
/* Process keyboard event */
break;

case m = <-mouse:
/* Process mouse event */
break;

}

The alt statement is also used to descriminate between the type of values received from channels of
variant protocols. In this form each case-item of the alt must be a simple assignment. The right hand side
must contain a communication operation on a channel which supplies a variant protocol. The type of the 1-
value is used to match a type in the variant protocol. An alt may be performed on an abitrary set of vari-
ant protocol channels so long as no type is supplied by more than one channel. There must be a case
clause for each type supplied by the union of all channel types; ALEF requires the match against types to be
exhaustive. For example:

Aggrl a;
Aggr2 b;
Aggr3c;

chan (Aggrl, Aggr2, Aggr3) c;

alt {

case a = <-C:
print("received Aggrl");
break;

case b = <-c:
print("received Aggr2");
break;

case ¢ = <-c:
print("received Aggr3");
break;

J

If an alt is pending on a channel the programmer must ensure that other threads do not perform an
operation of the same type on the channel until the alt is complete. Otherwise the alt on that channel
may block if values are removed by the other thread. A channel may not be used in two alt statements
simultaneously.

The symbol ! { introduces a guarded caselist. Only one thread may be executing the statements con-
tained in the guarded caselist at any instant.

Yk



-21-

7.5. Loop Statements
Several loop constructs are provided:

loop-statement:
while ( expression ) statement
do statement while ( expression) ;
for ( expression ; expression ; expression ) statement

In while and do loops the statement is repeated until the expression evaluates to 0. The expression must
yield either an arithmetic or pointer type. In the while loop the expression is evaluated and tested before
the statement. In the do loop the statement is executed before the expression is evaluated and tested.

In the for loop the first expression is evaluated once before loop entry. The expression is usually
used to initialise the loop variable. The second expression is evaluated at the beginning of each loop itera-
tion, including the first. The expression must yield either a pointer or arithmetic type. The statement is exe-
cuted while the evaluation of the second expression does not compare to 0. The third expression is evalu-
ated after the statement on each loop iteration. The first and third expressions have no type restrictions. All
of the expressions are optional. If the second expression is omitted an expression returning a non-zero value
is implied.

7.6. Jump Statements
Jump statements transfer control unconditionally.

jump-statement:
goto identifier ;
continue count ;
break caunto s
raise identifier  ;

t

return expression ;
Xp O opt

become expression ;

count:
integer-constant

goto transfers control to the label identifier, which must be in the current function.

7.6.1. Continue Statements

The continue statement may only appear as part of an iteration statement. If count is omitted the
continue statement transfers control to the loop-continuation portion of the smallest enclosing iteration
statement, that is the end of the loop. If count is supplied continue transfers control to the loop continu-
ation of some outer nested loop. count specifies the number of loops to skip. The statement continue
with no count is the same as continue 1. For example:

while (1) {
while(1l) {
continue 2; /* Same as goto contin; */
}
contin: /* Continue comes here */
}

7.6.2. Break Statements

The break statement may only appear as part of an iteration statement or selection statement. If
count is omitted in an interaction statement then the break terminates the statement portion of the iteration
loop and transfers control to the statement after the iteration statement. If count is supplied break causes
termination of the iteration statement of some nested loop. count is the number of nested iteration loops to
terminate. break with no count is the same as break 1. When used in a selection statement, break

Yy



-22.

causes the termination of the case in the selection statement.

7.6.3. Raise Statement

By default raise transfers control to the last rescue statement declared in the code. Execution has
no effect on the connection between raise and rescue statements. If an identifier is supplied, control is
transferred to the named rescue statement. raise is intended for use in error recovery. For example,

these two fragments are equivalent:

alloc p; alloc p;
rescue { goto notrescue;
unalloc p; dorescue:
raise; unalloc p;
} goto nextrescue;
notrescue:
if (error) if (error)
raise; goto dorescue;

7.6.4. Return Statement

A function returns to its caller using a return statement. An expression is required unless the func-
tion is declared as returning the type void. The result of expression is evaluated using the rules of assign-
ment to the return type of the function.

7.6.5. Become Statement

The become statement transforms the current function into the value of the expression given as its
argument. If expression is not a function call the effect of become is exactly the same as return.
However a function call causes the current function to be replaced by the called function. expression must
have exactly the same type as the caller. Functions performing recursion in this manner are guaranteed to
run in constant space.

7.7. Exception Statements
rescue and check statements are provided for use in error recovery:
exception-statement:

rescue identl:ﬁero tblock
check expression ;

7.7.1. Rescue Statement

Under normal execution the block is not executed. A raise after a rescue statement transfers
control to the closest previously defined rescue statement in the same function. Execution flows through
the end of the rescue block by default. rescue statements may be cascaded to perform complex error
recovery actions:

4)0



-23.-

alloc a, b;

rescue {
unalloc a, b;
return 0;

}

alloc c;

rescue {
unalloc c;
raise;

}
dostuff();

if (error)
raise;

7.7.2. Check Statement

The check statement tests an assertion. If the assertion fails a runtime error aborts the program. The
file and line number of the check statement are printed to standard error, the program is then aborted. The
expression is evaluated and compared to 0. If the compare succeeds the assertion has failed. For example:

alloc ptr;
check ptr != nil; /* Program aborts if allocation fails */

A compiler option is provided to omit check statements from trusted object code. By default check
statements are included.

7.8. Process Control Statements
These statements create processes and coroutines:

process-statement:
proc function-call ;
task function-call ;
par block

The proc statement creates a new process. The new process starts running the named function. The argu-
ments to function-call are evaluated by the original process. Processes are scheduled preemptively and the
interleaving of the processes is undefined. Parent and child process share memory and file descriptors. The
stacks of both processes are addressable, so it is possible to pass the address of an automatic between pro-
cesses. The task statement creates a coroutine within a process. The arguments to function-call are evalu-
ated by the original process. Tasks are non-preemptive and are scheduled during message passing and syn-
chronisation primitives. The scheduling primitives that can cause task switching are QLock.lock and
Rendez.sleep. The communication operations which can cause task switching are alt, <-= (send)
and <- (receive). A process that contains several tasks will exist until all the tasks within the process have
exited. In turn, a program will exist until all of the processes in the program have exited. A process or task
may exit explicitly by calling the function exits or by returning from the function in which they were
invoked.

The par statement implements fork/process/join. A new process is created for each statement in the
block. The par statement completes when all processes have completed execution of their statements. A
par with a single statement is the same as a block. The process that entered the par is guaranteed to be
the same process that exits.

All tasks within a process will block until a system call completes.

/)



-24-

7.9. Allocation Statements
Memory management statements allocate and free memory for objects from the heap:

allocation-statement:
alloc alloclist ;
unalloc alloclist ;

alloclist:
expr
alloclist , expr

7.9.1. Alloc Statement

The alloc statement takes a list of pointers, which must also be I-values. For each pointer, memory
is reserved for an object of appropriate type and its address is assigned to the pointer. The memory is guar-
anteed to be filled with zeros. If the allocation fails because there is insufficient memory the expression
will be assigned the value nil.

If the pointer has chan type, the runtime system will also initialise the new channel. If the channel
is asynchronous then the specified number of buffers will be allocated.

7.9.2. Unalloc Statement

The unalloc statement returns memory to the heap. The argument to unalloc must be have
been returned by a successful alloc or be nil. Unalloc of nil has no effect. If an object is unallocated
twice, or an invalid object is unallocated the runtime system will abort the program.

8. Runtime Support

The synchronisation primitives used by the runtime system are made available to ALEF programs.
Prototypes for these and other library functions are provided by the include file alef.h. This file should
be included as the first item as:

#include <alef.h>

The standard include path for ALEF on Plan 9 is /sys/include/alef.

8.1. Lock

The Lock ADT provides spinlocks. Two operations are provided. Lock.lock claims the lock if
free, otherwise is busy loops until the lock becomes free. Lock.unlock releases a lock after it has been
claimed.

Lock ADTs have no runtime state and may be dynamically allocated. The thread which claimed the
lock need not be the thread which unlocks it.

8.2. Qlock

The Qlock ADT provides blocking mutual exclusion. If the lock is free Qlock. lock claims the
lock. Further attempts to gain the lock will cause the thread to be suspended until the lock becomes free.
The lock is released by calling Qlock.unlock.

The thread which claimed the lock need not be the thread which unlocks it.

QLock ADTs have runtime state and may be dynamically allocated provided they are unallocated
when unlocked. The thread which claimed the lock need not be the thread which unlocks it.

9. Yacc Style Grammar

The following grammar is suitable for implementing a yacc parser. Uppercase words and punctuation
surrounded by single quotes are the terminal symbols.

9) &



prog:

decllist

decl

zargs

ztname

adtfunc

typespec

ztag

setlist

sname

name

memberlist

vardecllist

ivardecl

zinit

zelist

-25-

decllist

decllist decl

’

tname vardecllist ’;

tname vardecl ‘(' arglist ‘)’ block
tname adtfunc ‘(' arglist ')’ block
tname vardecl ‘(' arglist ’)’' ';'
typespec ';’

TYPEDEF ztname vardecl zargs ';'

‘(' arglist ')’

tname
AGGR
ADT
UNION

TYPENAME ’'.’ name
indsp TYPENAME '.’ name

AGGR ztag ’'{' memberlist '}’ ztag
UNION ztag ‘{’ memberlist '}’ ztag
ADT ztag ‘{’ memberlist ’'}’ ztag
ENUM ztag ’‘{’ setlist '}’

name
TYPENAME

sname
setlist ’,’ setlist

name
name ‘=’ expr

ID

decl
memberlist decl

ivardecl
vardecllist ’,’ ivardecl

vardecl zinit

'=' zelist

zZexpr

l[l expr l]l expr

r{' zelist '}’

l[l expr l]l l(l Zelist I}I
zelist ’,’ zelist

Y)3



vardecl

arrayspec

indsp

arglist

arg

autolist

autodecl

block

slist

cbody

clist

case

rbody

zlab

stmnt

nlstmnt

-26 -

ID arrayspec

indsp ID arrayspec

' (* indsp ID arrayspec ')’ ‘(' arglist ')’
indsp ‘(' indsp ID arrayspec )y’ (' arglist

arrayspec ‘[’ zexpr ']’

"k

indsp ‘'*’

arg
%!/ xtname
arglist ’',’ arg

xtname

xtname indsp arrayspec

xtname ‘(' indsp ‘)’ ‘(' arglist ')’
TUPLE tname ’(’ indsp ‘)’ ‘(' arglist ')’
TUPLE tname vardecl

xtname vardecl

’ i’ ’ ’ ’ ’
autolist autodecl

xtname vardecllist ’';’
TUPLE tname vardecllist ’;’

{' autolist slist '}’
'1{' autolist slist '}’
slist stmnt

¢ {* clist '}’

ri{*clist *})!

clist case

CASE expr ':’' slist
DEFAULT ’':’' slist

stmnt
ID block

ID

nlstmnt
ID ’':’ stmnt

error ';'
zexpr ‘;’
block

CHECK expr ';’

I)l

Y)Y



<97 -

ALLOC elist ';'

UNALLOC elist ‘;’

RESCUE rbody

RAISE zlab ';’

GOTO ID ';’

PROC expr ';’

TASK expr ;'

BECOME expr ';'

ALT cbody

RETURN zexpr ';'

FOR '(’ zexpr ';' zexpr ';’' zexpr ')’ stmnt
WHILE ' ('’ expr ')’ stmnt '
DO stmnt WHILE ’'(’ expr ')’

IF '(’ expr ')’ stmnt

IF ' ('’ expr ')’ stmnt ELSE stmnt
PAR block

SWITCH ' (' expr ')’ cbody
CONTINUE zconst ';’

BREAK zconst ';’

zconst :
| coNsT

zexpr :
| expr

expr : castexpr
| expr '*’ expr
| expr '/’ expr
| expr ‘%’ expr
| expr '+’ expr
| expr ‘-’ expr
| expr '>>' expr
| expr ‘<<’ expr
| expr ‘<’ expr
| expr ‘>’ expr
| expr ‘<=’ expr
| expr ’'>=' expr
| expr ’'!=' expr
| expr ’'==' expr
| expr ‘&’ expr
| expr '~' expr
| expr ‘|’ expr
| expr '&&’ expr
| expr '||’ expr
| expr '=' expr
| expr '<-' '=' expr
| expr ’'+=' expr
| expr ’'-=' expr
| expr ’'*=' expr
| expr ’/=' expr
| expr ’'%=' expr
| expr '>>=' expr
| expr ’'<<=' expr
| expr ‘&=’ expr
| expr ’|=' expr
| expr '~=' expr

castexpr : monexpr

y)v-



typecast

monexpr

term

stag

zarlist

elist

tlist

tname

Xtname

-28-

‘[’ typecast ']’ castexpr
' (' typecast ')’ castexpr

xtname
xtname indsp
xtname ‘(’ indsp ‘)’ ‘(' arglist

TUPLE tname

term

'*! castexpr
'&' castexpr
'+' castexpr
'-' castexpr
Tdec castexpr
Tinc castexpr
1’ castexpr
'~' castexpr
SIZEOF monexpr
'<-' castexpr
'?' castexpr

(' elist )’

SIZEOF ' (' typecast ')’
term ‘(' zarlist ')’
term ‘[’ expr ']’
term ’'.’ stag

‘.’ TYPENAME '.’ stag
term ’‘->' stag

term ’'--'

term ‘++'

term ‘?’

name

CONST

NIL

ENUM_MEMBER

FCONST

STRING

*$' STRING

ID
TYPENAME

elist

expr
elist ',’' expr

typecast
typecast ‘,’ tlist

sclass xtname
sclass ‘(' tlist ‘)’

TYPENAME
INT
UINT
SINT

Y/b



-29-

| SUINT

| BYTE

| FLOAT

| voip

| CHAN ' (' typecast ')’ bufdim

bufdim 4
I ' [l expr I] '

sclass H
| EXTERN
| INTERN
| PRIVATE

47



