Restricted Pointers in C
Numerical C Extensions Group
Aliasing Subcommittee
Final Report: Draft 2
X3J11/94-019
WG14/N334

Bill Homer
Cray Research, Inc.
655F Lone Oak Drive
Eagan, MN 55121
homer@cray.com or uunet!cray'homer

April 25, 1994

This document incorporates the change proposed in X3J11.1/93-040 to
Draft 1 of the Final Report, WG14/N274 (also know as X3J11.1/93-026
and X3J11/93-020). The change consists of a revision of the section entitled
“Aliasing of unmodified objects” (formerly numbered 1.6 in the Rationale),
and small changes to section 2 (in the subsection of entitled “Semantics”)
and section 3 (for the examples in Figure 7 and Figure 8). There are also
some purely editorial changes, which include reordering some of the sections.
In particular, three sections that discuss design decisions were moved into
an Appendix.

1 Rationale

1.1 Aliasing

For many compiler optimizations, ranging from simply holding a value in
a register to the parallel execution of a loop, it is necessary to determine

1

Py



2 WG14/N334, X3J11/94-019 Restricted Pointers in C

whether two distinct lvalues designate distinct objects. If the objects are not
distinct, the lvalues are said to be aliases. It is aliasing through pointers that
presents the greatest difficulty, because there is often not enough information
available within a single function, or even within a single compilation unit,
to determine whether two pointers can point to the same object. Even when
enough information is available, this analysis can require substantial time
and space. For example, it could require an analysis of a whole program to
determine the possible values of a pointer that is a function parameter.

1.2 Library examples

Consider how potential aliasing enters into implementations in C of two
Standard C library functions. There are no restrictions on the use of memmove,
and the implementation shown below follows the model described in the
Standard by copying through a temporary array. (Other approaches are
possible, but this one is straightforward and strictly-conforming.) Since
memcpy cannot be used for copying between overlapping arrays, its imple-
mentation can be a direct copy.

Figure 1 Sample implementation of memmove.

void *memmove(void *s1, const void *s2, size_t n) {
char * t1 = si;
const char * t2 = s2;
char * t3 = malloc(n);
size_t i;
for(i=0; i<n; i++) t3[i] = t2[i];
for(i=0; i<n; i++) ti[i] = t3[i];
free(t3);
return si;

Figure 2 Sample implementation of memcpy.

void *memcpy(void *s1, const void *s2, size_t n);
char * t1 = si;
const char * t2 = s2;
while(n-- > 0) *tl++ = *t2++;
return si;

}

Note that the restriction on memcpy is expressed only in its Description
in the Standard, and cannot be expressed directly in its implementation in



Restricted Pointers in C WG14/N334, X3J11/94-019 3

C. While this does allow the source-level optimization of eliminating the
temporary used in memmove, it does not provide for compiler optimization
of the resulting single loop. In many architectures, it is faster to copy bytes
in blocks, rather than one at a time. The implementation of memmove uses
malloc to obtain the temporary array, and this guarantees that the tem-
porary is disjoint from the source and target arrays. From this a compiler
can deduce that block copies may safely be used for both loops. The imple-
mentation of memcpy, on the other hand, provides the compiler no basis for
ruling out the possibility that, for example, s1 and s2 point to successive
bytes. Therefore unconditional use of block copies does not appear to be
safe, and the code generated for the single loop in memcpy may not be as
fast as the code for each loop in memmove.

1.3 Overlapping objects

The restriction in the Description of memcpy prohibits copying between
“overlapping objects.” A recent interpretation from X3J11 in response to
RFI #42, X3J11 92-001, clarified what is meant by “objects” in this context.
In the following quotation from that interpretation, the section numbers
prefixed with ## refer to the American National Standard X3.159-1989.
(The number of the corresponding section in ISO/IEC 9899:1990(E) is three
greater.)

From ##1.6, an object is “a region of data storage ...” “Except
for bit-fields, objects are composed of contiguous sequences of
one or more bytes, the number, order, and encoding of which
are either explicitly specified or implementation-defined ...”

Figure 3 Memcpy between rows of a matriz.

void f1(void) {
extern char a[2][N];
memcpy(a[1], a[0], N);
}

Therefore, the “objects” referred to by ##4.11.2.1 are exactly
the regions of data storage pointed to by the pointers and dy-
namically determined to be of N bytes in length (i.e. treated as
an array of N elements of character type).

(A) So, no, the objects are not “the largest objects into which
the arguments can be construed as pointing”.

2%



4 WG14/N334, X3J11/94-019 Restricted Pointers in C

(B) In Figure 3, the call to memcpy has defined behavior.

(C) The behavior is defined because the pointers point into dif-
ferent (non-overlapping) objects.

Figure 4 Memcpy between halves of an array.

void £2(void) {
extern char b[2#N];
memcpy (b+N, b, N);
}

Objects are defined as “regions of data storage” unrelated to
declarations or types (from the same citations above).

(A) So, yes, for memcpy, a contiguous sequence of elements within
an array can be regarded as an object in its own right.

(B) The objects are not the smallest contiguous sequence of bytes
that can be construed, they are exactly the regions of data stor-
age starting at the pointers and of N bytes in length.

(C) Yes, the non-overlapping halves of array b can be regarded
as objects in their own rights.

(D) Behavior is defined.

Length is determined by “various methods.” For strings in which
all elements are accessed, length is inferred by null byte termi-
nation. For mbstowcs, wcstombs, strftime, vsprintf, sscanf,
sprintf, and all other similar functions, it was the intent of
the standard that the rules in ##4.11.1 be applicable by ex-
tension (i.e., the objects and lengths are similarly dynamically
determined).

1.4 Restricted pointers

If an aliasing restriction like the one for memcpy could be expressed in a
function definition, then it would be available to a compiler to facilitate
effective pointer alias analysis. The preceding discussion suggests the form
that the restriction should take. It should be possible to specify in the
declaration of a pointer that it provides “exclusive initial access” to the
object to which it points, as though the pointer were initialized with a call to

2 FL-



Restricted Pointers in C WG14/N334, X3J11/94-019 5

malloc. Because it is the unqualified versions of function parameter types
that are compared for type compatibility, it is convenient to specify the
restriction with a type qualifier, spelled restrict, on the pointer type. The
following prototype for memcpy thus both expresses the desired restriction
and is compatible with the current prototype.

Figure 5 Restricted pointer prototype for memcpy.

void *memcpy(void * restrict s1, const void * restrict s2, size_t n);

1.5 Design choices

Given this general concept of restricted pointers, there remain a number of
design choices. Three of these are discussed in detail in an appendix. Most
such choices may be characterized as a choice between simplicity and expres-
sive power. To some, it seems better to simplify the analysis of restricted
pointers by confining their use to the simplest paradigms. For example, re-
stricted pointers would be quite useful even if they could be declared only as
function parameters and if the restricted pointers themselves could not be
modified. This would support what is clearly the most important paradigm,
an alias-free function call interface in C, analogous to that in Fortran. To
others, it seems better to support the expression of aliasing restrictions in
as many paradigms as feasible. This would be helpful in converting existing
programs to use restricted pointers, and would allow more freedom of style
in new programs.

The definition given in section 2 favors the second view. It allows re-
stricted pointers to be modifiable, to be members of structures and elements
of arrays, and to be “strongly scoped,” in the sense that a restricted pointer
declared in a nested block makes a non-aliasing assertion only within that
block.

2 Formal definition of restrict

What follows are proposed additions to the document International Stan-
dard Programming Languages — C (ISO/IEC 9899:1990(E)). The relevant
sections are noted in brackets in each header, with the corresponding section
in American National Standard X3.159-1989 noted in parentheses.

Keywords [6.1.1 (ANS 3.1.1)]
Add a keyword: restrict

2¥



6 WG14/N334, X3J11/94-019 Restricted Pointers in C

Type Qualifiers [6.5.3 (ANS 3.5.3)]
Syntax
Add a type-qualifier: restrict

Constraints

Add a constraint:
Types other than pointer types derived from object or incomplete types
shall not be restrict-qualified.

Semantics

Add the following text after line 22.

Let D be a declaration of an ordinary identifier that provides a means of
designating an object P as a restrict-qualified pointer.

If D appears inside a block and does not have storage-class extern, let
B denote the block. If D appears in the list of parameter declarations of
a function definition, let B denote the associated block. Otherwise, let B
denote the block of main (or the block of whatever function is called at
program startup, in a freestanding environment).

In what follows, a pointer expression E is said to be based on object P
if (at some sequence point in the execution of B prior to the evaluation of
E) modifying P to point to a copy of the array object into which it formerly
pointed would change the value of E. (In other words, E depends on the
value of P itself rather than on the value of an object referenced indirectly
through P. For example, if identifier p has type (int ** restrict), then
the pointer expressions p and p+1 are based on the restricted pointer object
designated by p, but the pointer expressions *p and p[1] are not.)

During each execution of B, let 0 be the array object that is determined
dynamically by all references through pointer expressions based on P. All
references to values of 0 shall be through pointer expressions based on P.
Furthermore, if P is assigned the value of a pointer expression E that is based
on another restricted pointer object P2, associated with block B2, then either
the execution of B2 shall begin before the execution of B, or the execution
of B2 shall end prior to the assignment. If these requirements are not met,
then the behavior is undefined.

Here an execution of B means that portion of the execution of the pro-
gram during which storage is guaranteed to be reserved for an instance of
an object that is associated with B and has automatic storage duration. A

Zs

¥



Restricted Pointers in C WG14/N334, X3J11/94-019 7

reference to a value means either an access to or a modification of the value.
During an execution of B, attention is confined to those references that are
actually evaluated (this excludes references that appear in unevaluated ex-
pressions, and also excludes references that are “available,” in the sense of
employing visible identifiers, but do not actually appear in the text of B).

A translator is free to ignore any or all aliasing implications of uses of
restrict.

3 Examples

3.1 File scope restricted pointers

A file scope restricted pointer is subject to very strong restrictions. It should
point into a single array object for the duration of the program. That ar-
ray object may not be referenced both through the restricted pointer and
through either its declared name (if it has one) or another restricted pointer.
Because of these restrictions, references through the pointer can be opti-
mized as effectively as references to a static array through its declared name.
File scope restricted pointers are therefore useful for providing access to dy-
namically allocated global arrays. In Figure 6, a compiler can deduce from
the restrict qualifiers that there is no potential aliasing among the names a,
b, and c. Notice how the single block of allocated storage is “subdivided”
into two unique arrays in init.

Figure 6 File scope restricted pointer.

float * restrict a, * restrict b;
float c[100];

int init(int n) {
float * t = malloc(2*n*sizeof (float));
a=t; /* a refers to 1st half. */
b=t+mn; /*brefers to 2nd half. */

3.2 Function parameters

Restricted pointers are also very useful as pointer parameters of a function.
In the function £3 in Figure 7, it is possible for a compiler to infer that there
is no aliasing of modified objects, and so to optimize the loop aggressively.
Upon entry to £3, the restricted pointer a must provide exclusive access

285



8 WG14/N334, X3J11/94-019 Restricted Pointers in C

to its associated array. In particular, within £3 neither b nor ¢ may point
into the array associated with a, because neither is assigned a pointer value
based on a. For b, this is evident from the const-qualifier in its declaration,
but for ¢, an inspection of the body of £3 is required.

Figure 7 Restricted pointer function parameters.

float x[100];
float *c;

void £f3(int n, float * restrict a, float * comst b) {
int i;
for ( i=0; i<m; i++ )
ali] = b[i] + c[il;
}
void g3(void) {

float d[100], e[100];

c =x; £3(100, d, e); /* Behavior defined. %/
£3( 50, d, d+50); /* Behavior defined. */
£3( 99, d+1, d); /* Behavior undefined. */

c =d; £3( 99, d+1, e); /* Behavior undefined. */
£3( 99, e, d+1); /* Behavior defined. */

}

Two of the calls shown in g3 result in aliasing that is inconsistent with
the restrict qualifier, and their behavior is undefined. Note that it is
permitted for ¢ to point into the array associated with b. Note also that,
for these purposes, the “array” associated with a particular pointer means
only that portion of an array object which is actually referenced through
that pointer.

For a similar example in which ¢ is another parameter instead of a file
scope array, see “Aliasing of unmodified objects” in the Appendix “Discus-
sion of design choices.”

3.3 Block scope

A block scope restricted pointer makes an aliasing assertion that is limited
to its block. This seems more natural than allowing the assertion to have
function scope. It allows local assertions that apply only to key loops, for
example. It also allows equivalent assertions to be made when inlining a
function by converting it into a macro. In Figure 8, the original restricted
pointer parameter is represented by a block scope restricted pointer.

254



Restricted Pointers in C WG14/N334, X3J11/94-019 9

Figure 8 Macro version of f3.

float x[100];
float *c;

#define £3(N, A, B)
{ intn=(N);

float * restrict a = (A);
float * const b= (B);
int i;

for ( i=0; i<m; i++ )
ali] = b[i] + c[i];

P i i

3.4 Members of structures

A restricted pointer member of a structure makes an aliasing assertion, and
the scope of that assertion is the scope of the ordinary identifier used to
access the structure. Thus although the structure type is declared at file
scope in Figure 9, the assertions made by the declarations of the parameters
of £4 have block (of the function) scope.

Figure 9 Restricted pointers as members of a structure.

struct t { /* Restricted pointers assert that */
int n; /* members point to disjoint storage. */
float * restrict p;
float * restrict q;

j &

void f4(struct t r, struct t s) {
/* r.p, r.q, s.p, s.q should all point to */
/* disjoint storage during each execution of f4. */

/* ... */

3.5 Type definitions

A restrict qualifier in a type definition makes an aliasing assertion when
the typedef name is used in the declaration of an ordinary identifier that
provides access to an object. As with members of structures, it is the scope
of the latter identifier, not the scope of the typedef name, that determines
the scope of the aliasing assertion.

257



10 WG14/N334, X3J11/94-019 Restricted Pointers in C

3.6 Expressions based on restricted pointers

Figure 10 Pointer ezpressions based on p.

struct t { int * q; int i; } a[2] = { /= ... %/ };

main() {
£5(a, 0);
f5(a, 1);
}
void f5(struct t * restrict p, int c)
{

struct t * q;

int n;

if(e) |

struct t * r;

r = malloc(2*sizeof (*p));
memcpy(r, p, 2*sizeof (*p));
P=r;

}

q = P;

n = (int)p;

[* = = = = & - e e e e e e e e e e - e - e ===
Pointer expressions Pointer expressions
based on p not based on p
P P—>q
p+l plil.q
&pl1] &p
&pl1].i
&p->q
q q->q
++q
(char *)p (char *) (p->i)
(struct t *)n ((struct t *)n)->q

----------------------- */

}

In Figure 10, the restricted pointer parameter p is potentially adjusted
to point into a copy of its original array of two structures. By definition,
a subsequent pointer expression is said to be based on p if and only if its
value is changed by this adjustment. In the comment, the values of the
pointer expressions in the first column are changed by this adjustment, and



Restricted Pointers in C WG14/N334, X3J11/94-019 11

so those expressions are based on p. The values of the pointer expressions
in the second column are not changed by the adjustment, and so those
expressions are not based on p. This can be verified by adding appropriate
print statements for the expressions, and comparing the values produced by
the two calls of £5 in main. ,

It is important to note that the definition of “based on” applies to ex-
pressions that rely on implementation-defined behavior. This is illustrated in
this example, which assumes that the casts (int) followed by (struct t *)
give the original value.

3.7 Assignments between restricted pointers
Figure 11 Assignments between restricted pointers.
int * restrict pl, * restrict p2;

void £6(int * restrict ql, * restrict q2)

{
Pl = p2; /* Behavior undefined. */
pl = qi; /* Behavior undefined. */
ql = q2; /* Behavior undefined. */
{ :
int * restrict rl, * restrict r2;
rl = r2; /* Behavior undefined. */
ql = rl; /* Behavior undefined. */
pl = rl; /* Behavior undefined. */
}
}

Let us say that one restricted pointer is “newer” than another if the block
with which the first is associated begins execution after the block associated
with the second. Then the formal definition allows a newer restricted pointer
to be assigned a value based on an older restricted pointer. This allows, for
example, a function with a restricted pointer parameter to be called with
an argument that is a restricted pointer.

Conversely, an older restricted pointer may be assigned a value based on
a newer restricted pointer only after execution of the block associated with
the newer restricted pointer has ended. This allows, for example, a function
to return the value of a restricted pointer that is local to the function, and
the return value then to be assigned to another restricted pointer.

27



12 WG14/N334, X3J11/94-019 Restricted Pointers in C

The behavior of a program is undefined if it contains an assignment
between two restricted pointers that does not fall into one of these two
categories. Some examples are given in Figure 11.

3.8 Assignments to unrestricted pointers

This proposal permits assignment of the value of a restricted pointer to an
unrestricted pointer, as in Figure 12 below.

Figure 12 Assigning restricted to unrestricted pointers.

void £7(int n, float * restrict r, float * restrict s) {
float * p=1, * q = 8;
while(n-- > 0)
*pH+ = %kqQ++;

}

If a compiler tracks pointer values, it should be able to optimize the loop
as effectively as if the restricted pointers r and s were used directly.

More complicated ways of combining restricted and unrestricted pointers
are unlikely to be effective because they are too difficult for a compiler to
analyze. As always, a programmer concerned about performance must adapt
his style to the capabilities of available compilers. A conservative approach
would be to avoid using both restricted and unrestricted pointers in the
same function.

3.9 Ineffective uses of type qualifiers

Except where specifically noted in the formal definition, the restrict qual-
ifier behaves in the same way as const and volatile. In particular, note
that it is not a constraint violation for a function return type or the type-
name in a cast to be qualified, but the qualifier has no effect because function
call and cast expressions are not lvalues. Thus the presence of the restrict
qualifier in the declaration of £8 in Figure 13 makes no assertion about
aliasing in functions that call £8. Similarly, the two casts make no assertion
about aliasing of the references through the pointers p and r.



Restricted Pointers in C WG14/N334, X3J11/94-019 13

Figure 13 Qualified function return type and casts.

float * restrict £8(void) /* No assertion about aliasing. */

{
extern int i, *p, *q, *r;
r = (int * restrict)q; /* No assertion about aliasing. */
for(i=0; i<100; i++)
*(int * restrict)p++ = r[i]; /* No assertion */
/* about aliasing. */
return p;
}

3.10 Constraint violations

It is a violation of the constraint in 6.5.3 (ANS 3.5.3) (of the Standard as
modified above) to restrict-qualify an object type which is not a pointer
type, or to restrict-qualify a pointer to a function.

Figure 14 Restrict cannot qualify non-pointer object types.

int restrict x; /* Constraint violation. */
int restrict *p; /#* Constraint violation. */

Figure 15 Restrict cannot qualify pointers to functions.

float (* restrict £9) (void); /* Conmstraint violation. */



14 WG14/N334, X3J11/94-019 Restricted Pointers in C

Appendix: Discussion of design choices

Contiguity

A restricted pointer points to an associated object that is determined dynam-
ically. When all references, both direct and indirect, through a restricted
pointer comprise a contiguous sequence of bytes, then the associated ob-
ject is exactly that sequence. Otherwise, the object consists of both the
referenced bytes and those unreferenced bytes that fall between any two
referenced bytes.

This convention is consistent with the specification noted above, that
“except for bit-fields, objects are composed of contiguous sequences of one
or more bytes.” It is also consistent with the notions of objects and ar-
gument association in Fortran 77. Thus, in environments that support
mixed-language programming, restricted pointer parameters can be used
in C prototypes for functions defined in Fortran, and also in definitions of
C functions that are called from Fortran.

Note that an implementation is free to support restricted pointers to non-
contiguous sets of bytes as an extension. Such support is not mandated,
however, because the need for it does not seem compelling, and it could
inhibit optimizations for architectures that cannot load and store single bytes
or that have software-managed caches. Note that such an extension might be
useful in implementation-defined calling conventions between C and Fortran
90, because Fortran 90 permits arguments that are non-contiguous sets of
array elements.

Aliasing of unmodified objects

Comparison with Fortran raises an issue concerning aliasing of unmodified
objects, as illustrated in Figure 16. Knowing that parameter a provides
exclusive access to the array into which it points is sufficient to allow the
loop in £10 to be vectorized or executed in parallel. Knowing that b and
c are not used to access overlapping portions of a single array allows no
additional optimizations, and so, in principle, there is no need to restrict-
qualify b and c.

292



Restricted Pointers in C WG14/N334, X3J11/94-019 15

Figure 16 Aliasing matters only for modified objects.

void £10(int n, float * restrict a, float *b, float *c) {
int i;
for ( i=0; i<mn; i++ )
ali] = b[i] + c[il;

But, as a practical matter, it is easier for a compiler to analyze functions
in which all pointer parameters are restrict-qualified. This suggests that
the semantics of the qualifier should be defined so that one can restrict-
qualify all three pointer parameters of £10 and still make calls of the form
£10(x,y,y). This would be analogous to the aliasing semantics of Fortran
dummy arguments.

The simplest way of doing this (proposed in Draft 1 of this report) is to
allow aliasing through two restrict-qualified pointers provided the referenced
objects are not modified. Unfortunately, if those objects are themselves
pointers (i.e., there are two levels of indirection), this aliasing can inhibit
optimization, even if the secondary pointers are also restrict-qualified and
used to modify the objects to which they, in turn, refer. See X3J11.1/93-040
for examples.

In the final analysis, it did not seem possible to permit aliasing of un-
modified objects, have effective assertions for multiple levels of indirection,
and still keep the semantics relatively simple.

It was decided to drop the special treatment of unmodified objects,
largely because the practical effect is quite small. First, as noted, the ex-
tra qualifiers are not needed in principle, though they may be useful for
specific compilers. Second, in these cases, it is also useful, and might be
sufficient, to const-qualify b and c, because this gives a compiler enough
aliasing information in the parameter declarations alone to optimize £10
(see the discussion of Figure 7). Finally, even if a specific compiler requires
all three restrict qualifiers to give the desired optimization, it is most un-
likely that that their use would give unexpected results for a call such as
£10(x,y,y), even though its behavior is techniquely undefined. Such use
may therefore be justified in particular cases, as are other instances of unde-
fined or implementation-defined behavior, such as assigning to one member
of a union and then referring to another.



16 WG14/N334, X3J11/94-019 Restricted Pointers in C

3.11 Linked lists

Operations on data contained in the items of a linked list are difficult to
optimize, particularly for vector or parallel execution. Because potential
aliasing is not the only difficulty, it is unlikely that the use of restricted
pointers in this context will make much difference with currently available
compilers. Nevertheless, as the use of parallel architectures becomes more
widespread, their compilers may well be more ambitious in this area. With
this in mind, the following examples illustrate how to use the restrict and
const qualifiers to make assertions that could, in principle, enable effective
optimizations.

First note that restricted pointers cannot, in general, be used for link
pointers in portions of the program that modify the lists. Thus in Figure 17,
the assignments to next and head would give undefined behavior if they were
restrict qualified.

Figure 17 Operations on the structure of a linked list.

struct t { struct t * next; float x; } * head, * item;

void modify_links()
/* Add a list item at the beginning. */
item -> next = head; head = item;

/* Add a list item as the second item. */
item -> next = head -> next; head -> next = item;

/* Delete second list item. */
head -> next = head -> next -> next;

/* Delete first list item. */
head = head -> next;

}

In contrast, in functions in which the structure of the lists is constant,
this can be asserted by using a combination of the restrict and const
qualifiers. Note that, as in Figure 18, this requires a second structure type,
and a cast from the original to the new type. The comments describe an
optimization that allows parallel execution of the second loop. Alternatively,
the second loop could be fused with the first, so that both operations are
performed during a single walk. The latter optimization is likely to be
beneficial on any architecture.

2 7Y



Restricted Pointers in C WG14/N334, X3J11/94-019 17

Figure 18 Operations on the values in a linked lists.

struct t { struct t * next; float x; 1};
struct rt { struct rt * const restrict next; float x; };

void modify_values(struct t * head) {
/* Assert that links will not change. */
struct rt * const restrict rhead = (struct rt *)head;

/* Need modifiable unrestricted pointer to walk list. */
struct rt * this = rhead;

/* Can build a cache of link addresses. */
for(this=rhead; this; this = this->next) {
this -> x += 1;

}

/* Can use cached addresses to execute in parallel. */
for (this=rhead; this; this = this->next) {
this -> x *= 2;
}
}

Unfortunately, there is a subtle problem with this approach. If there is
a function call between the two loops that has rhead as a parameter, then
there should be a guarantee that the cached links are not changed during
the execution of the called function. The problem is that there is nothing
to prevent the function from modifying a link via
*x(struct rt * restrict *)&(rhead->next) = ...
(assuming for the sake of argument that the structures on the list were
dynamically allocated as an array of structures). To make the aliasing as-
sertions effective would require forbidding this sort of modification. This
might be done be extending the full semantics of the const qualfier to in-
clude objects designated as const-qualified by a restricted pointer, as well as
objects that are const-qualified by their definitions. (This extension is not
part of the current proposal.)

243



18 WG14/N334, X3J11/94-019 Restricted Pointers in C

Appendix: Array syntax and qualified parameters

By section 6.7.1 (ANS 3.7.1) of the Standard, a declaration of a function
parameter as “array of type” is adjusted to “pointer to type.” Thus the
following two prototypes for £11 are compatible.

Figure 19 Equivalent parameter declarations.

void £f11(int n, float a[J[100], float b[][100]);
void £11(int n, float (*a)[100], float (*b)[100]);

In either case, a and b are pointers used to access their respective two-
dimensional arrays, but the first form more clearly conveys the rank of the
arrays. It is therefore unfortunate that only the second form allows the
pointers to be qualified, e.g., by restrict.

This suggests an extension of the syntax to allow one or more type
qualifiers to appear within the “array of” type derivation for a function
parameter declared to have array type. The declaration is then adjusted to
the analogously qualified pointer type.

Figure 20 Restricted version of f11.

void f11(int n, float a[restrict] [100], float b[restrict] [100])

{
int i, j;
for(i=0; i<n; i++)
for(j=0; j<100; j++)
alil [j] = b[il[j];
}

void gii(int m, int k, float p[J[100]) {
f11(m, p, p+k); /* Defined if and only if m <= k. */
}

This extension would be even more convenient in the presence of a vari-
able length array extension, that would allow another parameter to be used
in an array size expression. In Figure 21, the compiler, or code reviewer, can
use the information in the prototype alone to deduce that the first call of
£12 in g12 is defined, but the second call is potentially undefined (depending
upon which elements of the arrays £12 actually references).

29¢



Restricted Pointers in C WG14/N334, X3J11/94-019 19

Figure 21 Restrict and variable length arrays.

void £12(int m, int n, float a[restrict m] [n],
float b[restrict m][n]);

void g12(int n, float p[J[n]) {
£12(10, n, p, p+10); /* Defined behavior. */
£12(20, n, p, p+10); /* Potential undefined behavior. */

g

For consistency, the extension would apply to all type qualifiers. The
following changes to the Standard would be required for this extension.

Declarators [6.5.4 (ANS 3.5.4)]
Syntax

Allow an optional type-qualifier-list in the third form of direct-declarator:
direct-declarator [ type-qualifier-list opt constant-ezpression opt ]

Array Declarators [6.5.4.2 (ANS 3.5.4.2)]
Constraints

Add a constraint:

Type qualifiers shall appear preceding or in place of a size expression
only in a declaration of a function parameter of array type, and then only
in the outermost array type derivation.

Function Definition [6.7.1 (ANS 3.7.1)]
Semantics

Modify lines 23-24 to read:

... A declaration of a parameter as “array of type” shall be adjusted
to “qualified pointer to type” (where the type qualifiers are those specified
within the square brackets of the array type derivation), ...

297



20 WG14/N334, X3J11/94-019 Restricted Pointers in C

Appendix: Comparison with noalias

Tom MacDonald provided the following overview of the differences between
restrict and the previously proposed noalias.

The X3J11 committee attempted to solve the aliasing problem in C by
introducing a new type qualifier noalias. That effort failed because of
technical problems with the proposed semantics of noalias. This restricted
pointer proposal is different in many ways.

e Only pointers can be declared to be restricted. In the noalias pro-
posal, all objects were permitted to be declared noalias-qualified.

e It is the declaration of the restricted pointer that makes the alias-
ing assertions, while it was the noalias-qualified lvalue that made the
aliasing assertions.

e A restricted pointer can be an alias with an unrestricted pointer,
whereas a pointer to a noalias-qualified type was guaranteed to be
completely alias free.

e The proposed semantics of noalias defined an alternate execution
path in which virtual objects were created and later synchronized
with the original object. No alternate execution path is defined for
restricted pointers. The proposed semantics for restricted pointers
merely permit the optimizer to statically analyze restricted pointers.

o A block scope restricted pointer only makes assertions on the contain-
ing scope. In the noalias proposal, a block scope noalias-qualified
object made assertions that affected the entire containing function.

e A pointer to a noalias-qualified type made no aliasing assertion if it
was a member of a structure (because identifiers designating members
of structures were not “handles”). A restricted pointer member of a
structure does make an aliasing assertion.

2.3





