
A String Type for C

Document: N3210
Date: 2024-01-14
Author: Martin Uecker

Introduction

C needs a string type. To get started and stimulate discussion, we formulate an initial
proposal and discuss some general design questions.

Design

Here, we propose to add a minimalistic, length-prefixed, UTF-8 encoded, and zero-
terminated string type **string_t** and some helper functions.

The main design goal is to provide safer basis for computation with UTF-encoded strings.
At the same time, the string type should be low-level enough to be relatively performant,
suitable to replace the most common open-coded string operations, and be usable for
interoperability with existing C code, other languages, and systems. To achieve this, we
propose to define the type as an incomplete (opaque) structure type, but suggest to fully
specify the representation of this type according to:

struct string {
size_t size;
char8_t data[/* size */];

};

This design is a compromise between discouraging unsafe manipulation and keeping the
door open for low-level interoperability. By making the type incomplete and providing
functions that return the length of string excluding the terminating null character
(string_length) and a function that provides a const qualified pointer to the data
(string_cstr), as well as additional helper functions, direct manipulation of these strings
can be avoided. Nevertheless, at least where read-only strings are sufficient, this still
allows simple replacement of existing char pointers with string_t pointers in existing APIs
by adding calls to string_cstr where the strings is handed over to existing code. Changes
to the memory handling logic are then not required. Null termination and UTF8 encoding,
as well as access to a predefined representation will lead to good interoperability with
existing code, other languages, and tools. If necessary, a completed version of the type
can be defined by the user, which allows seamless extensions. Specifying the
representation ensures that the type becomes part of the ABI, which helps with
interoperability.

Alternatives

Alternatively, we could use a fully defined struct type. The functions string_length and
string_cstr may then not be required (one then needs to decide whether the size / length
should then include the terminating null character or not - both choices could be
confusing).

Going into a different direction, one could also leave the representation undefined. The
advantage would be that the implementation has more freedom to transparently implement
various optimizations. If the internal encoding should also be left to the implementation, the
function string_cstr that now provides direct access to the underlying string needs to be
replaced by a different interface. One could then also consider a requirement that the user
has to use special memory allocation and deallocation functions (string_free) for these
types, to give the implementation even more freedom. In this case, the type would act as
an opaque memory buffer, which then could also be achieved by adding the corresponding
functions for FILE* which may be an interesting alternative.

Future Extensions

An extension, which seems important, is to support the new type in I/O functions by adding
suitable conversion specifiers (or length modifiers).

Here, only a minimal set of additional functions is defined. More high-level interfaces, e.g.
for searching, splitting, etc. should be considered to encourage use of this string type
instead of using error-prone hand-coded string processing. Also some functions that help
with the Unicode aspects will likely be required. The focus should be on a small set of
functions that nevertheless provides the most important functionality.

In this proposal, we also do not specify a string view type (e.g. strview_t) that can point at
substrings inside other strings. Nevertheless, such a type is required for the efficient
implementation of many string processing operations. Such a type could be added as a
future extension:

typedef struct {
size_t size;
char8_t *data;

} strview_t;

For most of the functions included in this proposal, such as string_length, string_cstr,
string_concat, string_compare, string_append etc., it would then make sense to have
versions (or replacements) that take arguments of type strview_t. Future extensions to
the core language (e.g. wide pointers) could also play a role here (but this would delay
adoption).

Acknowledgment: Various members of WG14 for insightful discussions.

Proposed Wording

7.26 String handling <string.h>

7.26.1 String function conventions

1 The header <string.h> declares one type two types, The type One of the types is
size_t ...

The type

string_t

is an incomplete structure type. An object of this type has the same representation as an
object declared with the following type:

struct string_t {
size_t size;
char8_t data[/* size */];

};

The type stores a valid UTF-8 encoded character string in data using length characters in
the encoding including the terminating null character. When passing a pointer to an object
of type string_t to any function in this subsection, it is undefined behavior when the
pointed-to object does not conform to these requirements.

The string_from_utf8, string_from_utf16, and string_from_utf32 functions

Synopsis

#include <string.h>
string_t * string_from_utf8(const char8_t *s);
string_t * string_from_utf16(const char16_t *s);
string_t * string_from_utf32(const char32_t *s);

Description

The string_from_utfX functions allocate an object of type string_t as if by a call to
malloc and initializes it with the UTF-X encoded string pointed to by s. X can be 8, 16, or
32. If the encoding of s is not a valid UTF-X encoding with a terminating null character, the
behavior is undefined.

Returns

The string_from_utfX functions return the allocated string_t object. The returned pointer
can be passed to free. If no space can be allocated the functions return a null pointer.

The string_cstr function

Synopsis

#include <string.h>
const char8_t * string_cstr(const string_t *s);

Description

The string_cstr function returns a pointer to the first character of the null-terminated string
stored in the object pointed to by s. Modifying the returned string is undefined behavior.

Returns

The string_cstr returns a pointer to the first character of the string stored in the string
object.

The string_length function

Synopsis

#include <string.h>
size_t string_length(const string_t *s);

Description

The string_length function returns the number of characters in the encoding of the string
excluding the terminating null character.

Returns

The string_length functions returns the number of characters in string.

The string_concat function

Synopsis

#include <string.h>
string_t * string_concat(const string_t *a, const string_t *b);

Description

The string_concat function returns a pointer to a new object of type string_t that stores a
string that is the concatenation of the strings stored in the object pointed-to by a and the
string stored in the object pointed-to by b. The new object is allocated as if by malloc.

Returns

The string_concat function returns a pointer to the allocated object. The returned pointer
can be passed to free. If no space can be allocated the string_concat function returns a
null pointer.

The string_compare function

Synopsis

#include <string.h>
int string_compare(const string_t *a, const string_t *b);

Description

The string_compare function returns an integer -1, 0, 1 depending on whether the string
pointed to by a comes earlier, is at the same position, or comes later in the lexicographic
order.

Returns

The string_compare function returns an integer -1, 0, 1.

The string_append function

Synopsis

#include <string.h>
string_t * string_append(const string_t * restrict *a,

const string_t * restrict b);

Description

The string_append function returns a pointer to a new object of type string_t that stores
a string that is the concatenation of the strings stored in the object pointed-to by *a and the
string stored in the object pointed-to by b. The new object is allocated as if by malloc. If no
space can be allocated a null pointer is returned and *a is not modified, otherwise the
object pointed-to-by *a is freed and the pointer to the newly allocated object is stored in *a.

Returns

The string_append function returns a pointer to the allocated object. The returned pointer
can be passed to free. If no space can be allocated the string_append function returns a
null pointer.

The string_printf function

Synopsis

#include <string.h>
string_t * string_printf(const char * restrict fmt, ...);

Description

The string_printf function is equivalent to the printf function, except that the output is
written to a a new object of type string_t. The new object is allocated as if by malloc.

Returns

The string_printf function returns the allocated object or a null pointer if an output or
encoding error occurred or if no space could be allocated. The returned pointer can be
passed to free.

The string_vprintf function

Synopsis

#include <string.h>
string_t * string_vprintf(const char * restrict fmt, va_list arg);

Description

The string_vprintf function is equivalent to the vprintf function, except that the output is
written to a new object of type string_t. The new object is allocated as if by malloc.

Returns

The string_vprintf function returns the allocated object or a null pointer if an output or
encoding error occurred or if no space could be allocated. The returned pointer can be
passed to free.

