
Proposal for C2x

WG14 N3138

Title: Rebuttal to N2713 Integer Constant Expressions

Author, affiliation: Aaron Ballman, Intel

Date: 2023-06-21

Proposal category: Issue

Abstract: The original paper makes it invalid to accept other forms of integer constant

expressions, but this diverges from existing practice and breaks code.

Rebuttal to N2713 Integer Constant

Expressions
Reply-to: Aaron Ballman (aaron@aaronballman.com)

Document No: N3138

Date: 2023-06-21

Summary of Changes
N3138

• Made it implementation-defined whether an extended constant expression is an ICE

• Reworded the footnote accordingly

N3125

• Original proposal

Introduction and Rationale
WG14 N2713 took the committee resolution of DR312 and added its wording to the C2x draft standard,

which proscribes implementations from accepting other forms of integer constant expressions. This was

done because of concerns that extended integer constant expressions may form a constant array type in

one implementation and a variable-length array type in another.

We would like N2713 (https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2713.htm) removed from

C2x because it deviates from existing implementation practice in too many areas and the result of the

changes potentially introduces surprising, breaking effects on existing user code. We agree that the paper

is trying to solve an important problem, but as we investigated the changes we'd need to make to our

implementation, it appears to be sufficiently disruptive that we might not implement it in Clang due to

these concerns.

Below are several examples of where this change diverges from existing implementation practice. While

these examples may appear contrived, the problems are not limited to use of _Static_assert nor to

such simple constant expressions in real world code. (Note, the ICC "failures" in the Compiler Explorer

links below are sometimes due to printing the tool's deprecation warning and are unrelated to the

example; you can expand the compilers to see their exact output.)

_Static_assert(_Generic(1, int : 1), "");

https://godbolt.org/z/5zTYcMYMb (All tested compilers accept)

(_Generic is perhaps not allowed in an ICE – the associations for the expression are operands that don’t

match the ones listed in 6.6p8.)

_Static_assert(_Generic(1, int : 1, float : 1.0f), "");

https://godbolt.org/z/b4MPbbrff (All tested compilers accept)

(Assuming that association operands are fine, this use of _Generic has an association which includes a

floating-point constant which is not allowed in an ICE.)

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2713.htm
https://godbolt.org/z/5zTYcMYMb
https://godbolt.org/z/b4MPbbrff

_Static_assert((int)(float)1.0f, "");

https://godbolt.org/z/5qTf3Eqx1 (GCC and Clang correctly diagnose while accepting the code, other

implementations silently accept it)

(Cast operations are only allowed to convert an arithmetic type to an integer type, so the intermediate cast

is not allowed in an ICE even though it has no effect.)

_Static_assert((int)(0 ? 1.0f : 1), "");

https://godbolt.org/z/Wdq1Yddee (GCC and Clang correctly diagnose while accepting the code, other

implementations silently accept it)

(The float operand is not allowed in a constant expression despite the branch not being executed and the

expression result being cast to int.)

_Static_assert(1 ?: 1, "");

(GCC, Clang, and ICC all implement this extension and do not diagnose it as being invalid in an ICE, but

it's not clear if this is "another form" of constant expression or not. If it is a valid ICE, then consider

_Static_assert(__builtin_strlen("test"), ""); -- does the use of "test" prevent this from

being an integer constant expression? What about the use of a function call operator? The second example

is also accepted by GCC and Clang, but is diagnosed by ICC.)

We believe more examples exist and we are reasonably sure that more implementations exist with

different behaviors. DR312 made it clear that the committee's intent was that implementations cannot add

additional forms of integer constant expressions. However, the standard’s unambiguous wording allowing

arbitrary extensions to constant expressions was present since at least ANSI C and had not changed in

30+ years until adopting N2713. That’s a long time for implementations to build up considerable uses of

extensions to integer constant expressions they support and removing those extensions will change the

meaning of user code. Hopefully this is sufficiently compelling to the committee to warrant reconsidering

N2713 in light of the current implementation landscape and implementer concerns with the changes. The

paper, while admirable in its goals and faithful to the committee’s intent in 2006, has the potential to do

more harm than good and we believe more work is needed in this area, especially to avoid silently

converting constant arrays into variable length arrays, and that work is better suited to a future revision of

C given where we are in the release schedule.

Discussion during the Jun 2023 WG14 meeting resulted in a suggestion that we change the wording to

require implementations to define whether the extended constant expression is or is not an integer

constant expression.

Proposed Straw Poll
Does WG14 want to adopt the proposed wording from N3138?

Proposed Wording
All proposed wording in this document is a diff from WG14 N3096. Green text is new text, while red text

is deleted text.

Modify 6.6p14:

An implementation may accept other forms of constant expressions; however, they are not it is

implementation-defined whether they are an integer constant expression. Footnote)

https://godbolt.org/z/5qTf3Eqx1
https://godbolt.org/z/Wdq1Yddee

Modify footnote 135:

For example, in the statement int arr_or_vla[(int)+1.0];, while possible to be computed by

some implementations as an array with a size of one, it is implementation-defined whether this still results

in a variable length array declaration or a declaration of an array of known constant size of automatic

storage duration.

Acknowledgements
I would like to recognize the following people for their help in this work: Joseph Myers, Jens Gustedt,

Martin Uecker, and Robert Seacord.

