
JTC1/SC22/WG14 - N3121
Title: Forward Declaration of Parameters v2 (updates N2780)
Author: Martin Uecker
Date: 2023-04-22
Prior Art: GCC

Introduction

It is not possible to use a later parameter in a size specifier, which makes it
impossible to annotate existing APIs where the length of a buffer is passed before
the pointer. Parameter forward declarations as implemented in GCC as an
extensions solve this problem [1]. Originally proposed in N2780 for C23, the feature
did not receive sufficient consensus. With the removal of K&R function definitions,
this also became a problem for function definitions and was brought up again as
open issue. This paper addresses issues pointed out on the reflector [2].

Example:

void foo(size_t len; char buf[static len], size_t len);

Alternative:

It was proposed to allow referring to later arguments in size expressions as a more
elegant solution. While this initially seemed appealing, it turned out that this would
be more complicated to specify and implement: It requires more complicated
changes to existing parsers, has backwards compatibility issues, and there are
problems related to mutual dependencies between parameters [3]. In C, identifiers
generally require a declaration before use (the only exception are labels). Thus, this
solution would require the invention of new rules.

Examples of other forward declarations in C:

extern int counter; // object with external linkage
void foo(void); // function prototype
struct foo; // tag

Example (backwards compatibility issue):

int a;
int foo(char buf[static a], size_t a); // meaning would change

Syntax

GCC supports comma and semicolon to separate multiple forward declarations.
Here we propose to allow only the semicolon, because then it is directly visible
whether a declaration is a forward parameter declaration or a parameter
declaration. The syntax is robust against typos, because confusing a semicolon
with a comma would either cause an invalid re-declaration of the same parameter
name or a forward declaration for a parameter that does not exist. The syntax is not
used in C++. Function declarations using run-time size expressions in argument
types are not supported in C++. Thus, the use of such new extension is possible
only in function declarations which are already not compatible with C++. It is
possible to hide both run-time size expressions and forward declaration behind a
macro.

General Issues

The GCC extension is obscure and rarely used. Nevertheless, it is enabled by
default and does not seem to cause problems. Apart from the removal of K&R
function definitions, another reason it becomes more useful recently is that
compilers recently started to use size expressions for improved compile-time and
run-time bounds checking and this already sparked increased interest in adding
such annotations to existing APIs. Because of this, the extension was also
requested by users [4].

References:

[1] https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html

[2] [SC22WG14.20184] Parameter forward declarations (N2780)

[3] Ritchie DM. Variable-size arrays in C. The Journal of C Language Translation
1990;2:81-86.

[4] https://github.com/llvm/llvm-project/issues/47617

(proposed wording on next page)

https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html

Proposed Wording

6.7 Declarations

Constraints

3 If an identifier has no linkage, there shall be no more than one declaration of the
identifier (in a declarator or type specifier) with the same scope and in the same
name space, except that:
— a typedef name may be redefined to denote the same type as it currently does,
provided that type is not a variably modified type;
— tags may be redeclared as specified in 6.7.2.3.
--- parameters declared in a parameter forward declaration are redeclared in
the parameter list as specified in 6.7.6.3.

6.7.6 Declarators

1 Syntax

parameter-type-list:

parameter-forward-declaration ; parameter-type-list
parameter-list
parameter-list , …

parameter-forward-declaration:
attribute-specifier-sequenceopt declaration-specifiers declarator

parameter-list:
parameter-declaration
parameter-list , parameter-declaration

parameter-declaration:
attribute-specifier-sequenceopt declaration-specifiers declarator
attribute-specifier-sequenceopt declaration-specifiers abstract-declaratoropt

6.2.2 Linkages of identifiers

2 In the set of translation units and libraries that constitutes an entire program, each
declaration of a particular identifier with external linkage denotes the same object or
function. Within one translation unit, each declaration of an identifier with internal
linkage denotes the same object or function. With the exception of parameter
forward declarations and their respective parameter declarations, each
declaration of an identifier with no linkage denotes a unique entity.

6.2.7 Compatible type and composite type

4 For an identifier with internal or external linkage declared in a scope in which a
prior declaration of that identifier is visible 60), if the prior declaration specifies
internal or external linkage, the type of the identifier at the later declaration
becomes the composite type. The type of a parameter with a parameter forward
declaration becomes the composite type at the parameter declaration.

6.7.6.3 Function declarators

Constraints

4 An identifier declared in a parameter forward declaration shall also be
declared in the parameter list.

Semantics

5 A parameter type list specifies the types of, and may declare identifiers for, the
parameters of the function. Parameter forward declarations may provide
forward declarations of the identifiers of the parameters (for use in size
expressions).

12 The storage class specifier in the declaration specifiers for a parameter
declaration, if present, is ignored unless the declared parameter is one of the
members of the parameter type list for a function definition. The optional attribute
specifier sequence in a parameter declaration and in a parameter forward
declaration appertains to the parameter.

6.9.1 Function definitions

10 On entry to the function, the size expressions of parameter declarations and
forward parameter declarations of of each variably modified parameter type
are evaluated and the value of each argument expression is converted to the type
of the corresponding parameter as if by assignment. (Array expressions and
function designators as arguments were converted to pointers before the call.

