
N3059: C23 fopen "x" and "a"

Document #: N3059
Date: 2022-09-26
Project: Programming Language C
Reply-to: Niall Douglas

<s_sourceforge@nedprod.com>

In the May 2022 WG14 meeting we discussed [N2857] C2x fopen("x") and fopen("a") v2, and the
committee sought:

1. Fixes to the proposed normative wording changes, specifically:

(a) Add mention of processes in statements about atomicity of checks.

(b) Remove mention of atomicity applies to other users of fopen only, as other syscalls may
be used by other threads or functions.

(c) ‘must’ => ‘shall’.

2. That the second half of the permitted implementation of the existing C11 fopen("x") be split
out into a standalone fopen letter, for which I have chosen ‘p’ (private).

I believe that these solve the committee’s concerns raised in the meeting about ensuring TOCTOU
safety both in terms of file content use, and file naming on the file system.

‘Real life’ then intruded and I was unable to deliver the next revision of this paper before the C23
IS cutoff, so I have split the paper into two:

• The uncontroversial bits already agreed by the committee as a C23 IS delta suitable for NB
comment (this paper).

• The bits perhaps needing another round by the committee targeting post-C23, which include
taking the opportunity to reconcile the fopen modifier specification with that from the next
release of POSIX (NOT this paper).

Contents

1 Proposed DR wording 2
1.1 7.21.5.3.5 . 2
1.2 7.21.5.3.6 . 2
1.3 K.3.5.2.1.7 . 2

2 Platform compatibility 3
2.1 fopen(’x’) . 3
2.2 fopen(’a’) . 3

1

mailto:s_sourceforge@nedprod.com

2.3 fopen_s(’x’) . 4

3 Acknowledgements 5

4 References 5

1 Proposed DR wording

1.1 7.21.5.3.5

Opening a file with exclusive mode (’x’ as the last character in the mode argument) fails if the file
already exists or cannot be created. Otherwise, the file is created with exclusive (also known as
non-shared) access to the extent that the underlying system supports exclusive access. The check
for the existence of the file and the creation of the file if it does not exist is atomic with respect
to other threads and processes. If the implementation is not capable of performing the check for
the existence of the file and the creation of the file atomically, it shall fail instead of performing a
non-atomic check and creation.

[Note: The last sentence is important: if a program is written assuming that the check
is atomic, and it is not atomic, then data loss or corruption would occur. It is better
to return an error here so the program can adapt rather than silently allow data loss or
corruption. – end note]

1.2 7.21.5.3.6

Opening a file with append mode (’a’ as the first character in the mode argument) causes all sub-
sequent writes to the file to be forced to the current end-of-file at the point of buffer flush or actual
write, regardless of intervening calls to the fseek function, fsetpos, or rewind functions. Increment-
ing the current end-of-file by the amount of data written is atomic with respect to other threads
writing to the same file provided the file was also opened in append mode. If the implementation
is not capable of incrementing the current end-of-file atomically, it shall fail instead of performing
non-atomic end-of-file writes. In some implementations, opening a binary file with append mode
(’b’ as the second or third character in the above list of mode argument values) may initially position
the file position indicator for the stream beyond the last data written, because of null character
padding.

[Note: This text only guarantees the atomicity of the increment of the end of file, NOT
the atomicity of the write of the data. This difference is important: no additional locking
is needed here on platforms capable of atomic integer increment. – end note]

1.3 K.3.5.2.1.7

To the extent that the underlying system supports the concepts, files opened for writing shall be
opened with exclusive (also known as non-shared) access. If the file is being created, and the first

2

character of the mode string is not ’u’ , to the extent that the underlying system supports it, the
file shall have a file permission that prevents other users on the system from accessing the file. If
the file is being created and first character of the mode string is ’u’ , then by the time the file has
been closed, it shall have the system default file access permissions.

[Note: Robert Seacord suggested that this ought to be removed for consistency with the
change above. Me personally I am agnostic, but given that the only implementation that
I know of of fopen_s which is Microsoft’s, it would now conform to C2x if this stanza is
removed. – end note]

2 Platform compatibility

I checked whether the proposed new wording would break any existing platforms implementing C11:

2.1 fopen(’x’)

• Linux (glibc): Existing implementation is compatible.

• FreeBSD: Existing implementation is compatible.

• NetBSD: Existing implementation is compatible.

• OpenBSD: Existing implementation is compatible.

• MacOS: Existing implementation is compatible.

• Microsoft VS2019: Existing implementation is compatible.

• QNX: fopen(’x’) not supported. open() is compatible.

• HPUX: fopen(’x’) not supported. open() is compatible.

The excellent compatibility story here is almost certainly due to POSIX O_EXCL creating an easy
choice for how to implement fopen(’x’).

2.2 fopen(’a’)

• glibc implements fopen(’a’) as O_APPEND, so appends are atomic across the system as per the
proposed wording.
https://sourceware.org/git/?p=glibc.git;a=blob;f=libio/fileops.c;h=0986059e7b16f885f8ab62bc9a98bda5fde10264;

hb=HEAD#l237.

• BSD libc implements fopen(’a’) as O_APPEND, so appends are atomic across the system as per
the proposed wording.
https://svnweb.freebsd.org/base/head/lib/libc/stdio/flags.c?revision=326025&view=

markup#l72

• Microsoft UCRT implements fopen(’a’) as _O_APPEND:

3

https://sourceware.org/git/?p=glibc.git;a=blob;f=libio/fileops.c;h=0986059e7b16f885f8ab62bc9a98bda5fde10264;hb=HEAD#l237
https://sourceware.org/git/?p=glibc.git;a=blob;f=libio/fileops.c;h=0986059e7b16f885f8ab62bc9a98bda5fde10264;hb=HEAD#l237
https://svnweb.freebsd.org/base/head/lib/libc/stdio/flags.c?revision=326025&view=markup#l72
https://svnweb.freebsd.org/base/head/lib/libc/stdio/flags.c?revision=326025&view=markup#l72

1 case ’a’:
2 result._lowio_mode = _O_WRONLY | _O_CREAT | _O_APPEND;
3 result._stdio_mode = _IOWRITE;
4 break;

Then:

1 // Set FAPPEND flag if appropriate. Don’t do this for devices or pipes:
2 if ((options.crt_flags & (FDEV | FPIPE)) == 0 && (oflag & _O_APPEND))
3 _osfile(*pfh) |= FAPPEND;

Then:

1 if (_osfile(fh) & FAPPEND)
2 (void)_lseeki64_nolock(fh, 0, FILE_END);

Which eventually calls Win32 SetFilePointerEx(). This means appends are atomic within the
local process per file descriptor, but are not atomic per inode in the local process, nor atomic
across the system.

I suspect that this is an implementation oversight considering there are two forms of whole
system atomic append supported on Windows:

1. Win32 CreateFile() when opened with
GENERIC_READ | FILE_WRITE_ATTRIBUTES | STANDARD_RIGHTS_WRITE | FILE_APPEND_DATA in-
stead of GENERIC_READ | GENERIC_WRITE does perform atomic appends across the system.

2. Win32 WriteFile() when supplied with an offset to write value of all bits one will perform
an atomic append for that specific write across the system.

Steve Wishnousky from Microsoft who helps maintain their UCRT doesn’t see any major
impact from ensuring the file access is atomic (stated on the WG21-WG14 liason mailing list,
11th Oct 2021).

The source code of other platform’s fopen() implementation was not easily available to me, so I
cannot say more about how those implement fopen(’a’).

2.3 fopen_s(’x’)

• Linux (glibc): fopen_s() is not provided.

• FreeBSD: fopen_s() is not provided.

• NetBSD: fopen_s() is not provided.

• OpenBSD: fopen_s() is not provided.

• MacOS: fopen_s() is not provided.

• Microsoft VS2019: Existing implementation is compatible.

• QNX: fopen_s() is not provided.

4

• HPUX: fopen_s() is not provided.

3 Acknowledgements

Thanks to Robert Seacord for his help in drafting the proposed normative wording. Thanks to
Aaron Ballman for reminding me of the existence of [N2357]. Thanks to Nick Stoughton for writing
the original paper raising this issue, and to Joseph Myers for his feedback on earlier drafts.

4 References

[N2357] Stoughton, Nick
Change Request for fopen exclusive access
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2357.htm

[N2731] C2x Working Draft
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2731.pdf

[N2857] Douglas, Niall
C2x fopen("x") and fopen("a") v2
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2857.pdf

[POSIX.2017] The 2017 POSIX standard
https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/functions/contents.

html

5

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2357.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2731.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2857.pdf
https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/functions/contents.html
https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/functions/contents.html

	Proposed DR wording
	7.21.5.3.5
	7.21.5.3.6
	K.3.5.2.1.7

	Platform compatibility
	fopen('x')
	fopen('a')
	fopens('x')

	Acknowledgements
	References

