
C and C++ Compatibility Study Group

Meeting Minutes (Jun 2022)
Reply-to: Aaron Ballman (aaron@aaronballman.com)

Document No: N3015

SG Meeting Date: 2022-06-17

Fri Jun 17, 2022 at 11:06am EST

Attendees

Aaron Ballman WG21/WG14 chair

Hubert Tong WG21/(14)

Michael Wong WG21/(14)

Jens Gustedt WG14

Steve Downey WG21

Philipp K. Krause WG14

Tom Honermann WG21 scribe

Martinho Fernandes WG21

Corentin Jabot WG21

Inbal Levi WG21

Code of Conduct: follows ISO, IEC, and WG21 CoCs (no current WG14-specific CoC)

Agenda

P2071R2 (https://wg21.link/P2071R2) Named Universal Character Escapes

P2558R1 (https://wg21.link/P2558R1) Add @, $, and ` to the basic character set

P2071R2: Named Universal Character Escapes

Steve provided an introduction:

This paper was accepted for C++23.

Extends UCNs to also allow character names in addition to UCS scalar values.

Requires exact match of names from the Unicode standard; space and case sensitive.

Corentin has provided an implementation; his implementation requires ~375K of data.

Other than the data size, there are no particular implementation concerns.

Named escapes can be used in identifiers; everywhere that UCNs are currently accepted.

Since UCS scalar value typos are not obvious, use of names can help avoid errors.

https://wg21.link/P2071R2
https://wg21.link/P2558R1

Especially important when the author does not know the language for the character they are trying to

encode.

The Unicode standard offers guarantees for various name matching algorithms.

C++ adopted spelling in the most strict form because that is what had the greatest consensus.

There was considerable discussion about which names from the Unicode standard to use; there are a

few categories.

ISO/IEC 10646 conflates some of those categories.

Aaron: If we wanted to relax the name matching algorithm in the future, we can, yes?

Steve: Yes, relaxing the requirements would not create ambiguity or make any existing code ill-formed.

Aaron: Can these names be produced by macros?

Martinho: It is UB to form a UCN via token pasting.

Hubert: Agreed; a macro can produce a UCN, just not via token pasting.

Aaron: Corentin's Clang implementation has not landed yet; pending questions about where to record

licensing.

Aaron: The LLVM board has approved use of the Unicode data.

Aaron: For C, there is concern about compiler size; compilers may be distributed in embedded system

for code generation purposes.

Tom: If that becomes a significant concern, this could be an optional facility, but that would make me

sad.

Aaron: That would be possible, but then obviates the portability benefits.

Corentin described how his implementation reduces the size of the data needed.

Corentin: I'm not aware of any suggestions for how to further reduce the size of the data.

Steve: The implementation techniques are not that complicated.

Tom: It is basically a trie, right?

Corentin: Yes.

Steve: The data could be a good candidate for #embed.

Tom: In chat:

With regard to ISO/IEC 10646 vs Unicode concerns:

WG2-N5168: https://www.unicode.org/wg2/docs/n5168R1-ISO10646.pdf

WG2-N5174: https://www.unicode.org/wg2/docs/n5174-namesaliases.pdf

Steve presented the grammar changes in C++ and stated they should be similar for C.

Jens: Need to watch out for similar grammar having different semantics.

Aaron: (chair hat off) I like this feature; it helps with the problem of programmers accidentally getting

things wrong via, e.g., transposing characters.

Aaron: I also like that it avoids having to add a comment along with the UCS scalar value.

Martinho: There are still some concerns: some of the names in the Unicode standard are incorrect, but

won't be fixed due to immutability.

Aaron: WG14 would likely want to see an implementation in a C compiler.

Tom: Corentin, does your implementation enable this in C?

Corentin: We could enable it as a conforming extension.

Tom: Agreed; '\N' is currently implementation defined.

Steve: A key question is whether this would break existing C code.

Aaron: That would only be the case for implementations that have assigned semantics to '\N'; many

implementations just substitute 'N' in that case.

Aaron: The same problem would appear for any other chosen character.

Tom: That concern exists only within character and string literals.

Aaron: Real life cases would probably involve generated code.

Martinho: Perhaps, but universal escaping doesn't really work; would still have to avoid doing so for

defined escapes.

Aaron: To Philipp, since you maintain the SDCC compiler, does the 375K pose a concern for you?

Philipp: SDCC is only officially supported as a cross compiler. Users sometimes want to shrink it down to

fit on such a system, but that isn't supported.

Tom: To summarize: No new concerns identified, no specific WG14 concerns.

Corentin: We don't know if WG14 wants such a paper.

Aaron: Need a paper to answer that. Implementation experience would help. I can see this being

adopted.

Jens: I think the concerns will be about the feature being well-motivated.

Jens: Would be good to have data regarding uptake in the field.

Tom: Would you expect use in other languages to offer compelling data?

Aaron: We have been considering such use for other features; like lambda expressions in C.

Aaron: A Tony Table would be useful.

Tom: Like an example that demonstrates DRY violations.

Steve: And a spot the error example.

Jens: May need to address why Unicode is important.

P2558R1 Add @, $, and ` to the basic character set

Steve introduced:

This is being round-tripped; this functionality was adopted in WG14 and is on track for WG21 adoption.

The method of specification is a bit different in WG21 vs WG14.

For WG14, the basic source character set is abstract and not tied to any particular encoding.

For WG21, we are pursuing a requirement to support UTF-8 source files; source characters are

translated to the translation character set.

For WG21, the changes make some uses of UCNs that name the new characters outside literals ill-

formed where they were not previously.

Hubert: WG14 did not add the new characters to the basic source character set, but did impose the

requirement for the new characters to be encoded as a single code unit.

Hubert: Could someone in WG14 confirm that WG14 adopted all three new characters? The original

paper only mentions two.

Jens: Confirmed.

Aaron: Confirmed.

Hubert: It may not be the case that C requires the values of the new characters to be encoded as a

positive numeric value.

Aaron: I don't recall.

Philipp: I don't think that was discussed in WG14.

Aaron: I'll review notes.

Steve: I'm not aware of any encodings that encode characters with negative values.

Jens: The C2X wording, these characters are not described differently than other characters; that may

imply they should be positive.

Aaron: What is the target for C++?

Steve: C++26; this missed the C++23 cutoff.

Aaron: Should this be pursued as a DR?

Tom: All implementations already support these characters and the edge cases aren't worth being

concerned about.

Steve: We haven't adopted these characters for anything outside literals at this point.

Hubert: I think we should investigate wording to support that these characters are positively valued.

Tom: Is there any motivation to suggest that WG14 should put these characters in the basic source

character set and have WG14 have the same edge case compatibility issues as WG21?

Corentin: C++ doesn't really have the same notion as basic source character set any more.

Tom: The basic character set states what is portably allowed in a character literal.

Hubert: There are several consequences to inclusion in the basic character set; another is for disallowing

forming UCNs that name basic characters because those characters are significant to lexing.

Steve: And we don't want to hide them.

Hubert: The motivation for adding them to the basic character set is to enable their use in syntax.

Tom: And that same motivation would presumably exist for C if WG14 wanted to start using these new

characters in syntax.

Hubert: Correct.

Wrapup

Aaron: I'll schedule the meeting for July, but it might not be for the first week given US holidays.

End at 12:01pm EST

