
A Provenance-aware Memory Object Model for C

Draft Technical Specification

Jens Gustedt1, Peter Sewell2, Kayvan Memarian2, Victor B. F. Gomes2, Martin Uecker3

1INRIA and ICube, Université de Strasbourg, France
2University of Cambridge, UK

3University Medical Center, Göttingen, Germany

ISO TC1/SC22/WG14
document number: N3005
document date: 2022-6-15

ISO TC1/SC22/WG21 SG22
document number: P2318R2
document date: 2022-6-15

Changes:

2020-10-4: WG14 N2577, orginal version

2021-3-24: WG14 N2676

� Change in terminology. Instead of using the confusing “indeterminate value”, change to “invalid value”
for pointer values and to “indeterminate state” to describe certain object representations.

Synchronized with WG14 N2668.

2022-6-15: WG14 N3005, this version

� Integrate changes of documents that are agreed by WG14 for the new revision of ISO/IEC 9899:2023.

N2861 Indeterminate Values and Trap Representations

N2888 Exact-width Integer Type Interfaces

� As agreed by WG14, integrate N2889, “Pointers and integer types”, and adapt the proposed text to
refer to uintptr_t for abstract addresses.

� Numerous editorial improvements.

1

ISO/IEC TS 6010:2023 (E) draft N3005 2

Contents

Foreword 3

1 Introduction 4
1.1 Previous related papers . 4
1.2 The basic idea . 5
1.3 Newly introduced terms . 7

1.3.1 Storage instance . 7
1.3.2 Provenance . 7
1.3.3 Abstract address . 7
1.3.4 Pointer exposure and synthesis . 8

1.4 Operations . 8
1.4.1 Exposing and non-exposing operations . 8
1.4.2 Reconstructing operations . 8
1.4.3 Pointer inquiry . 9
1.4.4 Pointer arithmetic . 9

1.5 Ambiguous Provenance . 9

2 Scope 10

3 Normative references 11

4 Terms and definitions 12
4.1 pointer provenance . 12
4.2 storage instance . 12

5 Specifications 13

A Examples (informative) 14
A.1 Introduction . 14
A.2 Basic pointer provenance . 15
A.3 Refining the basic provenance model to support pointer construction via casts, representation ac-

cesses, etc. 17
A.4 Refining the basic provenance model: phenomena and examples . 18
A.5 Implications of provenance semantics for optimisations . 26
A.6 Testing the example behaviour in Cerberus . 31
A.7 Testing the example behaviour in mainstream C implementations 32

B Detailed semantics (informative) 33
B.1 The PNVI-ae-udi, PNVI-ae, PNVI-plain, and PVI semantics . 33

B.1.1 The memory object model interface . 34
B.2 The memory object model state . 34

B.2.1 Mappings between abstract values and representation abstract-byte sequences 34
B.2.2 Memory operations . 35
B.2.3 Pointer / Integer operations . 37
B.2.4 No-expose annotation . 40
B.2.5 Provenance of other operations . 40

C Modifications to ISO/IEC 9899:2018 (normative) 41

Bibliography 89

ISO/IEC TS 6010:2023 (E) draft N3005 3

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commis-
sion) form the specialized system for worldwide standardization. National bodies that are member of ISO or IEC
participate in the development of International Standards through technical committees established by the respec-
tive organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate
in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with
ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a
joint technical committee, ISO/IEC JTC 1.

The procedures used to develop this document and those intended for its further maintenance are described
in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of
document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC
Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. Details of any
patent rights identified during the development of the document will be in the Introduction and/or on the ISO
list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute
an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and ex-
pressions related to conformity assessment, as well as information about ISO’s adherence to the World
Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see the following URL:
www.iso.org/iso/foreword.html.

This document was prepared for presentation to the Technical Committee ISO/IEC JTC 1, Information tech-
nology, Subcommittee SC 22, Programming languages, their environments and system software interfaces.

https://www.iso.org/directives
https://www.iso.org/patents
https://www.iso.org/iso/foreword.html

ISO/IEC TS 6010:2023 (E) draft N3005 4

1 Introduction

In a committee discussion from 2004 concerning DR260, WG14 confirmed the concept of provenance of pointers,
introduced as means to track and distinguish pointer values that represent storage instances with same address but
non-overlapping lifetimes. Implementations started to use that concept, in optimisations relying on provenance-
based alias analysis, without it ever being clearly or formally defined, and without it being integrated consistently
with the rest of the C standard.

This Technical Specification provides a solution for this: a provenance-aware memory object model for C to
put C programmers and implementers on a solid footing in this regard. This draft Technical Specification is based
on, and incorporates the content of, three earlier WG14 documents:

� N2362 Moving to a provenance-aware memory model for C: proposal for C2x by the memory object model
study group. Jens Gustedt, Peter Sewell, Kayvan Memarian, Victor B. F. Gomes, Martin Uecker. This
introduced the proposal and gives the proposed change to the standard text, presented as change-highlighted
pages of the standard. Here, as appropriate for a Technical Specification, we instead present the proposed
changes with respect to ISO/IEC 9899:2018.

� N2363 C provenance semantics: examples. Peter Sewell, Kayvan Memarian, Victor B. F. Gomes, Jens
Gustedt, Martin Uecker. This explains the proposal and its design choices with discussion of a series of
examples.

� N2364 C provenance semantics: detailed semantics. Peter Sewell, Kayvan Memarian, Victor B. F. Gomes.
This gives a detailed mathematical semantics for the proposal

In the first draft of this Technical Specification, the latter two parts have identical text to those earlier N-papers.
Later, we integrated the following papers into the specification of this TS:

� N2861 Indeterminate Values and Trap Representations. Martin Uecker, Jens Gustedt. This paper has
already been accepted by WG14 for ISO/IEC 9899:2023. It clarifies the previous contradictory terminology
for what was then called “indeterminate values”, but that described a property of an object representation.

� N2888 Exact-width Integer Type Interfaces. Jens Gustedt. This paper has also been accepted by WG14 for
ISO/IEC 9899:2023. It clarifies some issues about integer types and is the basis for the integration of the
following paper.

� N2889 Pointers and integer types. Jens Gustedt. Although this paper has not been accepted for ISO/IEC
9899:2023, WG14 voted in favor to integrate it in this TS. It makes the type uintptr_t mandatory and
thereby eases the specifications that are proposed here.

In addition:

� At http://cerberus.cl.cam.ac.uk/cerberus we provide an executable version of the semantics, with a web
interface that allows one to explore and visualise the behaviour of small test programs. Following N2363, we
include the results of this for the example programs and for some major compilers.

The proposal has been developed in discussion among the C memory object model study group, including
the authors listed above, Hubert Tong, Martin Sebor, and Hal Finkel. It has been discussed with WG14 (in
multiple meetings) and at the March 2019 Cologne meeting of WG21, in SG12 UB & Vulnerabilities. Both of
these have approved the overall direction, subject to implementation experience. It has also been discussed with
the Clang/LLVM and GCC communities, with presentations and informal conversations at EuroLLVM and the
GNU Tools Cauldron in 2018.

To the best of our knowledge and ability, the proposal reconciles the various demands of existing implementa-
tions and the corpus of existing C code.

This Technical Specification does not address subobject provenance.

1.1 Previous related papers

The proposal is based on discussion in the following WG14 notes and several plenary meetings. With respect to
these, the main changes are

1. a clear preference among the study group and the compiler communities we have spoken with for a model
that does not track provenance via integers (coined PNVI (provenance not via integers) models rather than
PVI (provenance via integers));

http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_260.htm
http://cerberus.cl.cam.ac.uk/cerberus

ISO/IEC TS 6010:2023 (E) draft N3005 5

2. the enhancement to the specific address-exposed variants (PNVI-ae-*), which introduce the concepts of
exposed storage instances and synthesized pointer values and which for many seems to be more intuitive
than PNVI-plain (though it is also more complex); and

3. the refinement to the PNVI-ae-udi (user disambiguation) variant that leaves the responsibility for disam-
biguation of the provenance of synthesized pointer values of certain corner cases to the user code. This allows
pointer-integer-pointer roundtrip casts for one-past pointers.

The papers that supported these discussions are:

� N2012 Clarifying the C memory object model

� N2013 C Memory Object and Value Semantics: The Space of de facto and ISO Standards

� N2014 What is C in Practice? (Cerberus Survey v2): Analysis of Response

� N2015 What is C in practice? (Cerberus survey v2): Analysis of Responses - with Comments

� N2090: Clarifying Pointer Provenance (Draft Defect Report or Proposal for C2x)

� N2219: Clarifying Pointer Provenance (Q1-Q20) v3

� N2263: Clarifying Pointer Provenance v4

� N2294: C Memory Object Model Study Group: Progress Report

� N2311: Exploring C Semantics and Pointer Provenance1

� N2388: Introduce the term storage instance

1.2 The basic idea

This section follows the start of Section 2 of N2363.
C pointer values are typically represented at runtime as simple concrete numeric values, but mainstream

compilers routinely exploit information about the provenance of pointers to reason that they cannot alias, and
hence to justify optimisations. In this section we develop a provenance semantics for simple cases of the construction
and use of pointers,

For example, consider the classic test [Fea04, KW12, Kre15, CMM+16, MML+16] below. Note that this and
many of the examples below are edge-cases, exploring the boundaries of what different semantic choices allow, and
sometimes what behaviour existing compilers exhibit; they are not all intended as desirable code idioms.

1 #include <stdio.h>
2 #include <string.h>
3 int y=2, x=1;
4 int main() {
5 int *p = &x + 1;
6 int *q = &y;
7 printf("Addresses: p=%p q=%p\n",(void*)p,(void*)q);
8 if (memcmp (&p, &q, sizeof(p)) == 0) {
9 *p = 11; // does this have undefined behaviour?

10 printf("x=%d y=%d *p=%d *q=%d\n",x,y,*p,*q);
11 }
12 }

Depending on the implementation, x and y might in some executions happen to be allocated in adjacent memory,
in which case &x+1 and &y will have bitwise-identical representation values, the memcmp will succeed, and p (derived
from a pointer to x) will have the same representation value as a pointer to a different object, y, at the point of
the update *p=11. This can occur in practice, e.g. with GCC 8.1 -O2 on some platforms. Its output of

x=1 y=2 *p=11 *q=2

suggests that the compiler is reasoning that *p does not alias with y or *q, and hence that the initial value of y=2 can
be propagated to the final printf. ICC, e.g. ICC 19 -O2, also optimises here (for a variant with x and y swapped),
producing

x=1 y=2 *p=11 *q=11.

In contrast, Clang 6.0 -O2 just outputs the

1Identical text to the POPL 2019 paper of the same title.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2012.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2013.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2014.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2015.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2090.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2263.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2263.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2294.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2311.pdf
https://open-std.org/jtc1/sc22/wg14/www/docs/n2388.pdf

ISO/IEC TS 6010:2023 (E) draft N3005 6

x=1 y=11 *p=11 *q=11

that one might expect from a concrete semantics. Note that this example does not involve type-based alias analysis,
and the outcome is not affected by GCC or ICC’s -fno-strict-aliasing flag. Note also that the mere formation of
the &x+1 one-past pointer is explicitly permitted by the ISO standard, and, because the *p=11 access is guarded by
the memcmp conditional check on the representation bytes of the pointer, it will not be attempted (and hence flag
UB) in executions in which the two storage instances are not adjacent.

These GCC and ICC outcomes would not be correct with respect to a concrete semantics, and so to make the
existing compiler behaviour sound it is necessary for this program to be deemed to have undefined behaviour.

The current ISO standard text does not explicitly speak to this, but the 2004 ISOWG14 C standards committee
response to Defect Report 260 (DR260 CR) [Fea04] hints at a notion of provenance associated to values that keeps
track of their ”origins”:

“Implementations are permitted to track the origins of a bit-pattern and [...]. They may also treat
pointers based on different origins as distinct even though they are bitwise identical.”

However, DR260 CR has never been incorporated in the standard text, and it gives no more detail. This leaves
many specific questions unclear: it is ambiguous whether some programming idioms are allowed or not, and exactly
what compiler alias analysis and optimisation are allowed to do.

Basic provenance semantics for pointer values For simple cases of the construction and use of pointers,
capturing the basic intuition suggested by DR260 CR in a precise semantics is straightforward: we associate a
provenance with every pointer value, identifying the original storage instance that the pointer is derived from. In
more detail:

� We take abstract-machine pointer values to be pairs (π, a), adding a provenance π, either @i where i is a
storage instance ID, or the empty provenance @empty, to their concrete address a.

� On every creation of a storage instance (of objects with static, thread, automatic, and allocated storage
duration), the abstract machine nondeterministically chooses a fresh storage instance ID i (unique across the
entire execution), and the resulting pointer value carries that single storage instance ID as its provenance
@i.

� Provenance is preserved by pointer arithmetic that adds or subtracts an integer to a pointer.

� At any access via a pointer value, its numeric address must be consistent with its provenance, with undefined
behaviour otherwise. In particular:

– access via a pointer value which has provenance a single storage instance ID @i must be within the
memory footprint of the corresponding original storage instance, which must still be live.

– all other accesses, including those via a pointer value with empty provenance, are undefined behaviour.

This undefined behaviour is what justifies optimisation based on provenance alias analysis.

Below is a provenance-semantics memory-state snapshot (from the Cerberus GUI) for provenance_basic_global_yx

.c, just before the invalid access via p, showing how the provenance mismatch makes it UB: at the attempted
access via p, its pointer-value address 0x4c is not within the storage instance with the ID @5 of the provenance of p.

y: signed int [@6, 0x4c]
 2

p: signed int* [@7, 0x50]

@5, 0x4c

q: signed int* [@8, 0x58]

@6, 0x4c

x: signed int [@5, 0x48]
 1

https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_basic_global_yx.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_basic_global_yx.c

ISO/IEC TS 6010:2023 (E) draft N3005 7

All this is for the C abstract machine as defined in the standard: compilers might rely on provenance in their
alias analysis and optimisation, but one would not expect normal implementations to record or manipulate prove-
nance at runtime (though dynamic or static analysis tools might), as might non-standard or bug-finding-tool
implementations. Provenances therefore do not have program-accessible runtime representations in the abstract
machine.

Then there are many other ways to construct and manipulate pointer values: casts to and from integers,
copying with memcpy, manipulation of their representation bytes, type punning, I/O, copying with realloc, and
constructing pointer values that embody knowledge established from linking. N2363 discusses all these.

This technical specification follows the

provenance not via integers
exposed-address

user-disambiguation

model, abbreviated as PNVI-ae-udi. Here:

� PNVI-plain is a semantics that tracks provenance via pointer values but not via integers. Then, at integer-
to-pointer cast points, it checks whether the given address points within a live storage instance and, if so,
recreates the corresponding provenance.

� PNVI-ae (PNVI exposed-address) is a variant of PNVI that allows integer-to-pointer casts to recreate
provenance only for storage instances that have previously been exposed. A storage instance is deemed ex-
posed by a conversion of a pointer to it to an integer type, by a read (at non-pointer type) of the representation
of the pointer, or by an output of the pointer using "%p".

� PNVI-ae-udi (PNVI exposed-address user-disambiguation) is a further refinement of PNVI-ae that
supports roundtrip casts, from pointer to integer and back, of pointers that are one-past a storage instance.
This was the preferred option from WG14 and WG21 discussions and voted by WG14 to be used in this
technical specification.

1.3 Newly introduced terms

1.3.1 Storage instance

An addressable storage instance2 is the byte array that is created when either an object starts its lifetime (for
static, automatic and thread storage duration) or an allocation function is called (malloc, calloc etc). Addressable
storage instances are more than just an address, they have a unique ID throughout the whole execution. Once
their lifetime ends, another storage instance may receive the same address, but never the same ID.

1.3.2 Provenance

The provenance of a valid pointer is the ID of the specific storage instance to which the pointer refers (or one-past).
This ID is a genuine component of the pointer value in C’s abstract machine, but does not necessarily take part
in the object representation of the pointer; in general the provenance of a pointer is not observable.

Valid pointers keep provenance to the encapsulating storage instance of the referred object. When the storage
instance dies (falls out of scope, the thread ends, free is called) the pointer value becomes invalid, and any stored
representations of the pointer value becomes indeterminate.

1.3.3 Abstract address

The concept of abstract address lifts the implementation defined mapping required for pointer-to-integer conver-
sions, up the level of the memory model.

� Each byte of a storage instance has an abstract address, which is a positive integer of type uintptr_t that
is constant during the whole lifetime of the storage instance.

� Abstract addresses are increasing within a storage instance.

� Storage instances are strictly ordered by the induced order of their abstract addresses.

� Storage instances don’t overlap.

� The set of all abstract addresses forms the address space of the execution.

2There are also storage instances that are not addressable, namely for register variables. But since provenance needs pointers,
these play no role in the following and we don’t discuss them, here.

ISO/IEC TS 6010:2023 (E) draft N3005 8

� There are no other ordering constraints between any pair of storage instances. In particular, no syntactic
features (declaration order) or runtime features (order of allocation) can give any hint about the relative
position.

This concept is completely decorrelated from the object representation of pointers: it is up to any implementation
to define the relation between the two in any way that suits best. In particular, the address offset between
consecutive bytes does not need to be 1 (or any other constant). There can be bumps (corresponding to segments,
for example) and strides, and address sharing on the boundary between the one-past pointer of one storage instance
and the start address of the next.

Compared to C17, the type uintptr_t is made mandatory, here. On “usual” architectures where uintptr_t
exists already, the abstract address of a pointer value p is just (uintptr_t)p. Architectures that do not yet have
uintptr_t should be able to define an abstract address that is consistent with the other operations that they allow
on pointers; the suggested changes now allow this type to be wider than uintmax_t.

1.3.4 Pointer exposure and synthesis

Tracking provenance for the sake of aliasing analysis will fail if pointers can acquire an abstract address with an
arbitrary provenance of which the compiler could not be aware. With the above rules for abstract addresses this
is only possible with a leak of information about a storage instance A:

� the abstract address of A has been made known,

� the object representation of a pointer to A is inspected.

In such a case we say that A has been exposed.
There are only very restricted contexts where a pointer value p can be constructed from scratch. In such a case

we say that p has been synthesized. We require that a storage instance of such a synthesized pointer must have
been exposed previously. By that we ensure that all storage instances that have not been exposed can be subject
to a rigorous aliasing analysis, whereas pointers to potentially exposed storage instance acquire a clear “warning
label” that tell the compiler to be cautious about them.

For the sake of sequencing and synchronization, exposure constitutes a side effect, even though it might not
be directly observable.

1.4 Operations

1.4.1 Exposing and non-exposing operations

A storage instance is exposed once information from any valid pointer with this provenance has leaked into other
parts of the program state. In C17 there are four different operations that can provide information about the
address of a storage instance A.

� A pointer to A is converted to integer.

� printf (or similar) with "%p" is used to print the pointer value.

� A byte of the pointer representation is accessed directly.

� A byte of the pointer representation is written with fwrite.

All other C library functions (with the exception of tss_set) are guaranteed not to expose address information,
unless they use a callback that does so (e.g qsort or exit). This guarantee has two different aspects:

� C library functions that receive pointers are not allowed to leak information about these pointers into global
state.

� C library functions (such as memcpy, realloc or atomic_compare_exchange_weak) that copy bytes are sup-
posed to know what they are doing. That is, if they copy the object representation of a pointer, they are
supposed to transfer provenance information consistently.

1.4.2 Reconstructing operations

Lvalue conversion Lvalue conversion for a pointer object that has somehow been synthesized in memory, reads
bytes of the object representation of the pointer and reinterprets them as a valid address with provenance. To
be sure that we do not synthesize a pointer value for which the compiler has assumptions about non-aliasing, we
must be sure that the provenance of that newly synthesized pointer value had been exposed before.

ISO/IEC TS 6010:2023 (E) draft N3005 9

Integer-to-pointer conversion An integer-to-pointer conversion (cast) or IO (scanf with "%p") is only defined
if the corresponding storage instance had been exposed, and if the result is a pointer to a byte (or one-past) of
the storage instance.

Copies Pointer values can be copied by the usual means that is: assignment, memcpy, memmove and byte-wise
copy. The first three copy over provenance in addition to the representation and the effective type.

Byte-wise copy is special, here, because up to now there is no tool to hint a transfer of a pointer value including
provenance to the compiler. Therefore this works only through exposure, that is a pointer value that is copied
byte-wise is first exposed (because bytes are accessed) and then synthesized as before by lvalue conversion.

1.4.3 Pointer inquiry

Pointer equality With the tool of abstract addresses, the description of pointer equality becomes quite simple:
pointers are equal if their abstract addresses are the same.

Ordered comparision Ordered comparisons (<, >, >=, <=) between pointers are only defined when the two
pointers have the same provenance. They then can be defined by the relative position of the abstract addresses.

A possible extension here would be to remove the constraint that the two pointers have to have the same
provenance.

1.4.4 Pointer arithmetic

Pointer addition and subtraction Pointer arithmetic (addition or subtraction of integers) preserves prove-
nance. The resulting pointer value is invalid if the result not within (or one-past) the storage instance.

Pointer difference Pointer difference is only defined for pointers with the same provenance and within the
same array. The latter is still necessary because pointer difference is not in byte but in number of elements of
an array. The former is necessary because the one-past element of an array could be the first element of another
storage instance that just happens to follow in the address space.

1.5 Ambiguous Provenance

With the above, there is one special case where a back-converted pointer (let’s just assume integer-to-pointer)
could have two different provenances. This can happen when:

� p is the end address (one past) pointer of a storage instance A and the start address of another storage
instance B, and

� both storage instances A and B are exposed, that is at some point we did a pointer-to-integer conversion with
two pointers a == b, a having provenance A, and b having provenance B.

In such a situation, both A and B could be valid choices for the provenance. Our solution in 6.2.5 p20 is to leave
which of A or B is chosen to the programmer, allowing one or the other (but not both) to be used, so long as that
is done consistently.

ISO/IEC TS 6010:2023 (E) draft N3005 10

2 Scope

This document specifies the form and establishes the interpretation of programs written in the C programming
language. It is not a complete specification of that language but amends ISO/IEC 9899:2018 by providing a
Technical Specification that constrains and clarifies the Memory Object Model implicit there.

ISO/IEC TS 6010:2023 (E) draft N3005 11

3 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references, the
latest edition of the referenced document (including any amendments) applies.

ISO/IEC 2382:2015, Information technology – Vocabulary. Available from the ISO online browsing platform
at http://www.iso.org/obp.

ISO/IEC 9899:2018, Programming languages – C

ISO 80000–2, Quantities and units — Part 2: Mathematical signs and symbols to be used in the natural sciences
and technology.

http://www.iso.org/obp

ISO/IEC TS 6010:2023 (E) draft N3005 12

4 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC 2382, ISO 80000–2, and the
following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

� ISO Online browsing platform: available at https://www.iso.org/obp

� IEC Electropedia: available at http://www.electropedia.org/

The following terms are explicitly defined in this document and are not to be presumed to refer implicitly to
similar terms defined elsewhere. The clauses in the modified version of ISO/IEC 9899:2018 are 3.17 and 3.20,
respectively.

4.1 pointer provenance

provenance

an entity that is associated to a pointer value in the abstract machine, which is either empty, or the identity
of a storage instance

4.2 storage instance

the inclusion-maximal region of data storage in the execution environment that is created when either an object
definition or an allocation is encountered

https://www.iso.org/obp
http://www.electropedia.org/

ISO/IEC TS 6010:2023 (E) draft N3005 13

5 Specifications

The normative specification is given in its entirety by modifications to ISO/IEC 9899:2018. These are provided
by normative Annex C.

Prior to that, two informative annexes provide examples (Annex A) and detailed semantics (Annex B) for the
different variants of the memory model that have been discussed in the introduction.

ISO/IEC TS 6010:2023 (E) draft N3005 14

A Examples (informative)

This annex discusses the design of provenance semantics for C, looking at a series of examples. We consider the
three variants of the provenance-not-via-integer (PNVI) model: PNVI plain, PNVI address-exposed (PNVI-ae)
and PNVI address-exposed user-disambiguation (PNVI-ae-udi), and also the provenance-via-integers (PVI) model.
The examples include those of Exploring C Semantics and Pointer Provenance [POPL 2019] (also available as ISO
WG14 N2311 http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2311.pdf), with several additions.

A.1 Introduction

The new material for PNVI-address-exposed and PNVI address-exposed user-disambiguation models starts in
§A.3, but first we introduce introduce the problem in general and describe the basic pointer provenance semantics.

The semantics of pointers and memory objects in C has been a vexed question for many years. A priori,
one might imagine two language-design extremes: a concrete model that exposes the memory semantics of the
underlying hardware, with memory being simply a finite partial map from machine-word addresses to bytes
and pointers that are simply machine words, and an abstract model in which the language types enforce hard
distinctions, e.g. between numeric types that support arithmetic and pointer types that support dereferencing. C
is neither of these. Its values are not abstract: the language intentionally permits manipulation of their underlying
representations, via casts between pointer and integer types, char* pointers to access representation bytes, and
so on, to support low-level systems programming. But C values also cannot be considered to be simple concrete
values: at runtime a C pointer will typically just be a machine word, but compiler analysis reasons about abstract
notions of the provenance of pointers, and compiler optimisations rely on assumptions about these for soundness.
Particularly relevant here, some compiler optimisations rely on alias analysis to deduce that two pointer values do
not refer to the same object, which in turn relies on assumptions that the program only constructs pointer values
in “reasonable” ways (with other programs regarded as having undefined behaviour, UB). The committee response
to Defect Report DR260 [Fea04] states that implementations can track the origins (or “provenance”) of pointer
values, “the implementation is entitled to take account of the provenance of a pointer value when determining what
actions are and are not defined”, but exactly what this “provenance” means is left undefined, and it has never
been incorporated into the standard text. Even what a memory object is is not completely clear in the standard,
especially for aggregate types and for objects within heap regions.

Second, in some respects there are significant discrepancies between the ISO standard and the de facto stan-
dards, of C as it is implemented and used in practice. Major C codebases typically rely on particular compiler
flags, e.g. -fno-strict-aliasing or -fwrapv, that substantially affect the semantics but which standard does not
attempt to describe, and some idioms are UB in ISO C but relied on in practice, e.g. comparing against a pointer
value after the lifetime-end of the object it pointed to. There is also not a unique de facto standard: in reality,
one has to consider the expectations of expert C programmers and compiler writers, the behaviours of specific
compilers, and the assumptions about the language implementations that the global C codebase relies upon to
work correctly (in so far as it does). Our recent surveys [MML+16, MS16b] of the first revealed many discrepancies,
with widely conflicting responses to specific questions.

Third, the ISO standard is a prose document, as is typical for industry standards. The lack of mathematical
precision, while also typical for industry standards, has surely contributed to the accumulated confusion about C,
but, perhaps more importantly, the prose standard is not executable as a test oracle. One would like, given small
test programs, to be able to automatically compute the sets of their allowed behaviours (including whether they
have UB). Instead, one has to do painstaking argument with respect to the text and concepts of the standard, a
time-consuming and error-prone task that requires great expertise, and which will sometimes run up against the
areas where the standard is unclear or differs with practice. One also cannot use conventional implementations to
find the sets of all allowed behaviours, as (a) the standard is a loose specification, while particular compilations will
resolve many nondeterministic choices, and (b) conventional implementations cannot detect all sources of undefined
behaviour (that is the main point of UB in the standard, to let implementations assume that source programs
do not exhibit UB, together with supporting implementation variation beyond the UB boundary). Sanitisers and
other tools can detect some UB cases, but not all, and each tool builds in its own more-or-less ad hoc C semantics.

This is not just an academic problem: disagreements over exactly what is or should be permitted in C have
caused considerable tensions, e.g. between OS kernel and compiler developers, as increasingly aggressive optimi-
sations can break code that worked on earlier compiler implementations.

This note continues an exploration of the design space and two candidate semantics for pointers and memory
objects in C, taking both ISO and de facto C into account. We earlier [MML+16, CMM+16] identified many
design questions. We focus here on the questions concerning pointer provenance, which we revise and extend. We
develop two main coherent proposals that reconcile many design concerns; both are broadly consistent with the
provenance intuitions of practitioners and ISO DR260, while still reasonably simple. We highlight their pros and
cons and various outstanding open questions. These proposals cover many of the interactions between abstract
and concrete views in C: casts between pointers and integers, access to the byte representations of values, etc.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2311.pdf

ISO/IEC TS 6010:2023 (E) draft N3005 15

A.2 Basic pointer provenance

C pointer values are typically represented at runtime as simple concrete numeric values, but mainstream compilers
routinely exploit information about the provenance of pointers to reason that they cannot alias, and hence to
justify optimisations. In this section we develop a provenance semantics for simple cases of the construction and
use of pointers,

// provenance_basic_global_yx.c (and an xy variant)
1 #include <stdio.h>
2 #include <string.h>
3 int y=2, x=1;
4 int main() {
5 int *p = &x + 1;
6 int *q = &y;
7 printf("Addresses: p=%p q=%p\n",(void*)p,(void*)q);
8 if (memcmp (&p, &q, sizeof(p)) == 0) {
9 *p = 11; // does this have undefined behaviour?

10 printf("x=%d y=%d *p=%d *q=%d\n",x,y,*p,*q);
11 }
12 }

For example, consider the classic test [Fea04,
KW12, Kre15, CMM+16, MML+16] on the right
(note that this and many of the examples below
are edge-cases, exploring the boundaries of what
different semantic choices allow, and sometimes
what behaviour existing compilers exhibit; they
are not all intended as desirable code idioms).

Depending on the implementation, x and y

might in some executions happen to be allocated
in adjacent memory, in which case &x+1 and &y will
have bitwise-identical representation values, the
memcmp will succeed, and p (derived from a pointer
to x) will have the same representation value as a
pointer to a different object, y, at the point of the update *p=11. This can occur in practice, e.g. with GCC 8.1 -O2
on some platforms. Its output of x=1 y=2 *p=11 *q=2 suggests that the compiler is reasoning that *p does not
alias with y or *q, and hence that the initial value of y=2 can be propagated to the final printf. ICC, e.g. ICC
19 -O2, also optimises here (for a variant with x and y swapped), producing x=1 y=2 *p=11 *q=11. In contrast,
Clang 6.0 -O2 just outputs the x=1 y=11 *p=11 *q=11 that one might expect from a concrete semantics. Note
that this example does not involve type-based alias analysis, and the outcome is not affected by GCC or ICC’s
-fno-strict-aliasing flag. Note also that the mere formation of the &x+1 one-past pointer is explicitly permitted by
the ISO standard, and, because the *p=11 access is guarded by the memcmp conditional check on the representation
bytes of the pointer, it will not be attempted (and hence flag UB) in executions in which the two storage instances
are not adjacent.

These GCC and ICC outcomes would not be correct with respect to a concrete semantics, and so to make the
existing compiler behaviour sound it is necessary for this program to be deemed to have undefined behaviour.

The current ISO standard text does not explicitly speak to this, but the 2004 ISOWG14 C standards committee
response to Defect Report 260 (DR260 CR) [Fea04] hints at a notion of provenance associated to values that keeps
track of their ”origins”:

“Implementations are permitted to track the origins of a bit-pattern and [...]. They may also treat
pointers based on different origins as distinct even though they are bitwise identical.”

However, DR260 CR has never been incorporated in the standard text, and it gives no more detail. This leaves
many specific questions unclear: it is ambiguous whether some programming idioms are allowed or not, and exactly
what compiler alias analysis and optimisation are allowed to do.

Basic provenance semantics for pointer values For simple cases of the construction and use of pointers,
capturing the basic intuition suggested by DR260 CR in a precise semantics is straightforward: we associate a
provenance with every pointer value, identifying the original storage instance the pointer is derived from. In more
detail:

� We take abstract-machine pointer values to be pairs (π, a), adding a provenance π, either @i where i is a
storage instance ID, or the empty provenance @empty, to their concrete address a.

� On every storage instance (of objects with static, thread, automatic, and allocated storage duration), the ab-
stract machine nondeterministically chooses a fresh storage instance ID i (unique across the entire execution),
and the resulting pointer value carries that single storage instance ID as its provenance @i.

� Provenance is preserved by pointer arithmetic that adds or subtracts an integer to a pointer.

� At any access via a pointer value, its numeric address must be consistent with its provenance, with undefined
behaviour otherwise. In particular:

– access via a pointer value which has provenance a single storage instance ID @i must be within the
memory footprint of the corresponding original storage instance, which must still be live.

– all other accesses, including those via a pointer value with empty provenance, are undefined behaviour.

Regarding such accesses as undefined behaviour is necessary to make optimisation based on provenance alias
analysis sound: if the standard did define behaviour for programs that make provenance-violating accesses,

https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_basic_global_yx.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_basic_global_xy.c

ISO/IEC TS 6010:2023 (E) draft N3005 16

e.g. by adopting a concrete semantics, optimisation based on provenance-aware alias analysis would not be
sound.

y: signed int [@6, 0x4c]
 2

p: signed int* [@7, 0x50]

@5, 0x4c

q: signed int* [@8, 0x58]

@6, 0x4c

x: signed int [@5, 0x48]
 1

On the right is a provenance-semantics memory-
state snapshot (from the Cerberus GUI) for
provenance_basic_global_xy.c, just before the invalid
access via p, showing how the provenance mismatch
makes it UB: at the attempted access via p, its
pointer-value address 0x4c is not within the storage
instance with the ID @5 of the provenance of p.

All this is for the C abstract machine as defined
in the standard: compilers might rely on provenance
in their alias analysis and optimisation, but one would
not expect normal implementations to record or manip-
ulate provenance at runtime (though dynamic or static
analysis tools might, as might non-standard implemen-
tations such as CHERI C). Provenances therefore do not have program-accessible runtime representations in the
abstract machine.

Even for the basic provenance semantics, there are some open design questions, which we now discuss.

Can one construct out-of-bounds (by more than one) pointer values by pointer arith-
metic? Consider the example below, where q is transiently (more than one-past) out of
bounds but brought back into bounds before being used for access. In ISO C, construct-
ing such a pointer value is clearly stated to be undefined behaviour [c1818, 6.5.6p8]. This
can be captured using the provenance of the pointer value to determine the relevant bounds.

// cheri_03_ii.c

1 int x[2];
2 int *p = &x[0];
3 int *q = p + 11; // defined behaviour?
4 q = q - 10;
5 *q = 1;

There are cases where such pointer arithmetic would go wrong
on some platforms (some now exotic), e.g. where pointer arith-
metic subtraction overflows, or if the transient value is not aligned
and only aligned values are representable at the particular pointer
type, or for hardware that does bounds checking, or where pointer
arithmetic might wrap at values less than the obvious word size
(e.g. “near” or “huge” 8086 pointers). However, transiently out-of-bounds pointer construction seems to be com-
mon in practice. It may be desirable to make it implementation-defined whether such pointer construction is
allowed. That would continue to permit implementations in which it would go wrong to forbid it, but give a clear
way for other implementations to document that they do not exploit this UB in compiler optimisations that may
be surprising to programmers.

Inter-object pointer arithmetic The first example in this section relied on guessing (and then checking) the
offset between two storage instances. What if one instead calculates the offset, with pointer subtraction; should that
let one move between objects, as below? In ISO C18, the q-p is UB (as it is a pointer subtraction between pointers to

// pointer_offset_from_ptr_subtraction_global_xy.c

1 #include <stdio.h>
2 #include <string.h>
3 #include <stddef.h>
4 int x=1, y=2;
5 int main() {
6 int *p = &x;
7 int *q = &y;
8 ptrdiff_t offset = q - p;
9 int *r = p + offset;

10 if (memcmp (&r, &q, sizeof(r)) == 0) {
11 *r = 11; // is this free of UB?
12 printf("y=%d *q=%d *r=%d\n",y,*q,*r);
13 }
14 }

different objects, which in some abstract-machine executions
are not one-past-related). In a variant semantics that allows
construction of more-than-one-past pointers (which allows
the evaluation of p + offset), one would have to to choose
whether the *r=11 access is UB or not. The basic provenance
semantics will forbid it, because r will retain the provenance
of the x storage instance, but its address is not in bounds for
that. This is probably the most desirable semantics: we have
found very few example idioms that intentionally use inter-
object pointer arithmetic, and the freedom that forbidding
it gives to alias analysis and optimisation seems significant.

https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_basic_global_xy.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/cheri_03_ii.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_offset_from_ptr_subtraction_global_xy.c

ISO/IEC TS 6010:2023 (E) draft N3005 17

Pointer equality comparison and provenance A priori, pointer equality comparison (with == or !=) might be
expected to just compare their numeric addresses, but we observe GCC 8.1 -O2 sometimes regarding two pointers
with the same address but different provenance as nonequal. Unsurprisingly, this happens in some circumstances

// provenance_equality_global_xy.c

1 #include <stdio.h>
2 #include <string.h>
3 int x=1, y=2;
4 int main() {
5 int *p = &x + 1;
6 int *q = &y;
7 printf("Addresses: p=%p q=%p\n",(void*)p,(void*)q);
8 _Bool b = (p==q);
9 // can this be false even with identical addresses?

10 printf("(p==q) = %s\n", b?"true":"false");
11 return 0;
12 }

but not others, e.g. if the test is pulled into a
simple separate function, but not if in a separate
compilation unit. To be conservative w.r.t. cur-
rent compiler behaviour, pointer equality in the
semantics should give false if the addresses are
not equal, but nondeterministically (at each run-
time occurrence) either take provenance into ac-
count or not if the addresses are equal – this spec-
ification looseness accommodating implementa-
tion variation. Alternatively, one could require
numeric comparisons, which would be a simpler
semantics for programmers but force that GCC
behaviour to be regarded as a bug. Cerberus sup-
ports both options. One might also imagine making it UB to compare pointers that are not strictly within their
original storage instance [Kre15], but that would break loops that test against a one-past pointer, or requiring
equality to always take provenance into account, but that would require implementations to track provenance at
runtime.

The current ISO C18 standard text is too strong here unless numeric comparison is required: 6.5.9p6 says
“Two pointers compare equal if and only if both are [...] or one is a pointer to one past the end of one array
object and the other is a pointer to the start of a different array object that happens to immediately follow the first
array object in the address space”, which requires such pointers to compare equal – reasonable pre-DR260 CR, but
debatable after it.

Pointer equality should not be confused with alias analysis: we could require == to return true for pointers with
the same address but different provenance, while still permitting alias analysis to regard the two as distinct by
making accesses via pointers with the wrong provenance UB.

Pointer relational comparison and provenance In ISO C (6.5.8p5), inter-object pointer relational compar-
ison (with < etc.) is undefined behaviour. Just as for inter-object pointer subtraction, there are platforms where
this would go wrong, but there are also substantial bodies of code that rely on it, e.g. for lock orderings

It may be desirable to make it implementation-defined whether such pointer construction is allowed.

A.3 Refining the basic provenance model to support pointer construction via casts,
representation accesses, etc.

To support low-level systems programming, C provides many other ways to construct and manipulate pointer
values:

� casts of pointers to integer types and back, possibly with integer arithmetic, e.g. to force alignment, or to
store information in unused bits of pointers;

� copying pointer values with memcpy;

� manipulation of the representation bytes of pointers, e.g. via user code that copies them via char* or unsigned

char* accesses;

� type punning between pointer and integer values;

� I/O, using either fprintf/fscanf and the %p format, fwrite/fread on the pointer representation bytes, or point-
er/integer casts and integer I/O;

� copying pointer values with realloc;

� constructing pointer values that embody knowledge established from linking, and from constants that rep-
resent the addresses of memory-mapped devices.

A satisfactory semantics has to address all these, together with the implications on optimisation. We define and
explore several alternatives:

� PNVI-plain: a semantics that does not track provenance via integers, but instead, at integer-to-pointer cast
points, checks whether the given address points within a live object and, if so, recreates the corresponding
provenance. We explain in the next section why this is not as damaging to optimisation as it may sound.

https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_equality_global_xy.c

ISO/IEC TS 6010:2023 (E) draft N3005 18

� PNVI-ae (PNVI exposed-address): a variant of PNVI that allows integer-to-pointer casts to recreate
provenance only for storage instances that have previously been exposed. A storage instance is deemed
exposed by a cast of a pointer to it to an integer type, by a read (at non-pointer type) of the representation
of the pointer, or by an output of the pointer using %p.

� PNVI-ae-udi (PNVI exposed-address user-disambiguation): a further refinement of PNVI-ae that
supports roundtrip casts, from pointer to integer and back, of pointers that are one-past a storage instance.
This is the currently preferred option in the C memory object model study group.

� PVI: a semantics that tracks provenance via integer computation, associating a provenance
with all integer values (not just pointer values), preserving provenance through integer/
pointer casts, and making some particular choices for the provenance results of integer and pointer
+/- integer operations; or

We write PNVI-* for PNVI-plain, PNVI-ae, and PNVI-ae-udi. The PNVI-plain and PVI semantics were described
in the POPL 2019/N2311 paper. PNVI-ae and PNVI-ae-udi have emerged from discussions in the C memory object
model study group.

We also mention other variants of PNVI that seem less desirable:

� PNVI-address-taken: an earlier variant of PNVI-ae that allowed integer-to-pointer casts to recreate prove-
nance for objects whose address has been taken (irrespective of whether it has been exposed); and

� PNVI-wildcard: a variant that gives a “wildcard” provenance to the results of integer-to-pointer casts,
delaying checks to access time.

The PVI semantics, originally developed informally in ISO WG14 working papers [MS16a, MGS18], was mo-
tivated in part by the GCC documentation [FSF18]:

“When casting from pointer to integer and back again, the resulting pointer must reference the same
object as the original pointer, otherwise the behavior is undefined. That is, one may not use integer
arithmetic to avoid the undefined behavior of pointer arithmetic as proscribed in C99 and C11 6.5.6/8.”

which presumes there is an “original” pointer, and by experimental data for uintptr_t analogues of the first test
of §A.2, which suggested that GCC and ICC sometimes track provenance via integers (see xy and yx variants).
However, discussions at the 2018 GNU Tools Cauldron suggest instead that at least some key developers regard
the result of casts from integer types as potentially broadly aliasing, at least in their GIMPLE IR, and such test
results as long-standing bugs in the RTL backend.

A.4 Refining the basic provenance model: phenomena and examples

Pointer/integer casts The ISO standard (6.3.2.3) leaves conversions between pointer and integer types al-
most entirely implementation-defined, except for conversion of integer constant 0 and null pointers, and for the

// provenance_roundtrip_via_intptr_t.c

1 #include <stdio.h>
2 #include <inttypes.h>
3 int x=1;
4 int main() {
5 int *p = &x;
6 intptr_t i = (intptr_t)p;
7 int *q = (int *)i;
8 *q = 11; // is this free of undefined behaviour?
9 printf("*p=%d *q=%d\n",*p,*q);

10 }

optional intptr_t and uintptr_t types, for which
it guarantees that any “valid pointer to void”
can be converted and back, and that “the result
will compare equal to the original pointer”. As
we have seen, in a post-DR260 CR provenance-
aware semantics, “compare equal” is not enough
to guarantee the two are interchangeable, which
was clearly the intent of that phrasing. All vari-
ants of PNVI-* and PVI support this, by recon-
structing or preserving the original provenance
respectively.

https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_basic_using_uintptr_t_global_xy.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_basic_using_uintptr_t_global_yx.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_roundtrip_via_intptr_t.c

ISO/IEC TS 6010:2023 (E) draft N3005 19

Inter-object integer arithmetic Below is a uintptr_t analogue of the §A.2 example
pointer offset from ptr subtraction global xy.c, attempting to move between objects with uintptr_t

// pointer_offset_from_int_subtraction_global_xy.c

1 #include <stdio.h>
2 #include <string.h>
3 #include <stdint.h>
4 #include <inttypes.h>
5 int x=1, y=2;
6 int main() {
7 uintptr_t ux = (uintptr_t)&x;
8 uintptr_t uy = (uintptr_t)&y;
9 uintptr_t offset = uy - ux;

10 printf("Addresses: &x=%"PRIuPTR" &y=%"PRIuPTR\
11 " offset =%"PRIuPTR" \n",ux,uy,offset);
12 int *p = (int *)(ux + offset);
13 int *q = &y;
14 if (memcmp (&p, &q, sizeof(p)) == 0) {
15 *p = 11; // is this free of UB?
16 printf("x=%d y=%d *p=%d *q=%d\n",x,y,*p,*q);
17 }
18 }

arithmetic. In PNVI-*, this has defined be-
haviour. For PNVI-plain: the integer values are
pure integers, and at the int* cast the value of
ux+offset matches the address of y (live and of the
right type), so the resulting pointer value takes
on the provenance of the y storage instance. For
PNVI-ae and PNVI-ae-udi, the storage instance
for y is marked as exposed at the cast of &y to
an integer, and so the above is likewise permitted
there.

In PVI, this is UB. First, the integer values
of ux and uy have the provenances of the storage
instances of x and y respectively. Then offset is a
subtraction of two integer values with non-equal
single provenances; we define the result of such to
have the empty provenance. Adding that empty-
provenance result to ux preserves the original x-storage instance provenance of the latter, as does the cast to int*.
Then the final *p=11 access is via a pointer value whose address is not consistent with its provenance. Similarly,
PNVI-* allows (contrary to current GCC/ICC O2) a uintptr_t analogue of the first test of §A.2, on the left below.
PVI forbids this test.

// provenance_basic_using_uintptr_t_global_xy.c

1 #include <stdio.h>
2 #include <string.h>
3 #include <stdint.h>
4 #include <inttypes.h>
5 int x=1, y=2;
6 int main() {
7 uintptr_t ux = (uintptr_t)&x;
8 uintptr_t uy = (uintptr_t)&y;
9 uintptr_t offset = 4;

10 ux = ux + offset;
11 int *p = (int *)ux; // does this have UB?
12 int *q = &y;
13 printf("Addresses: &x=%p p=%p &y=%"PRIxPTR\
14 "\n",(void*)&x,(void*)p,uy);
15 if (memcmp (&p, &q, sizeof(p)) == 0) {
16 *p = 11; // does this have undefined

behaviour?
17 printf("x=%d y=%d *p=%d *q=%d\n",x,y,*p,*

q);
18 }
19 }

// pointer_offset_xor_global.c

1 #include <stdio.h>
2 #include <inttypes.h>
3 int x=1;
4 int y=2;
5 int main() {
6 int *p = &x;
7 int *q = &y;
8 uintptr_t i = (uintptr_t) p;
9 uintptr_t j = (uintptr_t) q;

10 uintptr_t k = i ˆ j;
11 uintptr_t l = k ˆ i;
12 int *r = (int *)l;
13 // are r and q now equivalent?
14 *r = 11; // does this have defined

behaviour?
15 _Bool b = (r==q);
16 printf("x=%i y=%i *r=%i (r==p)=%s\n",x,y,*

r,
17 b?"true":"false");
18 }

Both choices are defensible here: PVI will permit more aggressive alias analysis for pointers computed via integers
(though those may be relatively uncommon), while PNVI-* will allow not just this test, which as written is
probably not idiomatic desirable C, but also the essentially identical XOR doubly linked list idiom, using only one
pointer per node by storing the XOR of two, on the right above. Opinions differ as to whether that idiom matters
for modern code.

There are other real-world but rare cases of inter-object arithmetic, e.g. in the implementations of Linux and
FreeBSD per-CPU variables, in fixing up pointers after a realloc, and in dynamic linking (though arguably some
of these are not between C abstract-machine objects). These are rare enough that it seems reasonable to require
additional source annotation, or some other mechanism, to prevent compilers implicitly assuming that uses of such
pointers as undefined.

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_offset_from_int_subtraction_global_xy.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_basic_using_uintptr_t_global_xy.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_offset_xor_global.c

ISO/IEC TS 6010:2023 (E) draft N3005 20

Pointer provenance for pointer bit manipulations It is a standard idiom in systems code to use otherwise
unused bits of pointers: low-order bits for pointers known to be aligned, and/or high-order bits beyond the
addressable range. The example on the right (which assumes _Alignof(int)>= 4) does this: casting a pointer to

// provenance_tag_bits_via_uintptr_t_1.c

1 #include <stdio.h>
2 #include <stdint.h>
3 int x=1;
4 int main() {
5 int *p = &x;
6 // cast &x to an integer
7 uintptr_t i = (uintptr_t) p;
8 // set low -order bit
9 i = i | 1u;

10 // cast back to a pointer
11 int *q = (int *) i; // does this have UB?
12 // cast to integer and mask out low -order bits
13 uintptr_t j = ((uintptr_t)q) & ˜((uintptr_t)3u);
14 // cast back to a pointer
15 int *r = (int *) j;
16 // are r and p now equivalent?
17 *r = 11; // does this have UB?
18 _Bool b = (r==p); // is this true?
19 printf("x=%i *r=%i (r==p)=%s\n",x,*r,b?"t":"f");
20 }

uintptr_t and back, using bitwise logical oper-
ations on the integer value to store some tag
bits.

To allow this, we suggest that the set of un-
used bits for pointer types of each alignment
should be made implementation-defined. In
PNVI-* the intermediate value of q will have
empty provenance, but the value of r used for
the access will re-acquire the correct prove-
nance at cast time. In PVI we make the bi-
nary operations used here, combining an inte-
ger value that has some provenance ID with a
pure integer, preserve that provenance.

(A separate question is the behaviour if the
integer value with tag bits set is converted
back to pointer type. In ISO the result is
implementation-defined, per 6.3.2.3p{5,6} and
7.20.1.4.)

Algebraic properties of integer operations The PVI definitions of the provenance results of integer opera-
tions, chosen to make pointer_offset_from_int_subtraction_global_xy.c forbidden and provenance_tag_bits_via_uintptr_t_1.c

allowed, has an unfortunate consequence: it makes those operations no longer associative. Compare the examples
below:

// pointer_arith_algebraic_properties_2_global.c

1 #include <stdio.h>
2 #include <inttypes.h>
3 int y[2], x[2];
4 int main() {
5 int *p=(int*)(((uintptr_t)&(x[0])) +
6 (((uintptr_t)&(y[1])) -((uintptr_t)&(y[0]))));
7 *p = 11; // is this free of undefined behaviour?
8 printf("x[1]=%d *p=%d\n",x[1],*p);
9 return 0;

10 }

// pointer_arith_algebraic_properties_3_global.c

1 #include <stdio.h>
2 #include <inttypes.h>
3 int y[2], x[2];
4 int main() {
5 int *p=(int*)(
6 (((uintptr_t)&(x[0])) + ((uintptr_t)&(y[1])))
7 -((uintptr_t)&(y[0])));
8 *p = 11; // is this free of undefined behaviour?
9 //(equivalent to the &x[0]+(&(y[1]) -&(y[0])) version ?)

10 printf("x[1]=%d *p=%d\n",x[1],*p);
11 return 0;
12 }

The latter is UB in PVI. It is unclear whether this would be acceptable in practice, either for C programmers
or for compiler optimisation. One could conceivably switch to a PVI-multiple variant, allowing provenances to
be finite sets of storage instance IDs. That would allow the pointer_offset_from_int_subtraction_global_xy.c example
above, but perhaps too much else besides. The PNVI-* models do not suffer from this problem.

https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_tag_bits_via_uintptr_t_1.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_offset_from_int_subtraction_global_xy.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_tag_bits_via_uintptr_t_1.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_arith_algebraic_properties_2_global.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_arith_algebraic_properties_3_global.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_offset_from_int_subtraction_global_xy.c

ISO/IEC TS 6010:2023 (E) draft N3005 21

Copying pointer values with memcpy() This clearly has to be allowed, and so, to make the results us-
able for accessing memory without UB, memcpy() and similar functions have to preserve the original provenance.

// pointer_copy_memcpy.c

1 #include <stdio.h>
2 #include <string.h>
3 int x=1;
4 int main() {
5 int *p = &x;
6 int *q;
7 memcpy (&q, &p, sizeof p);
8 *q = 11; // is this free of undefined behaviour?
9 printf("*p=%d *q=%d\n",*p,*q);

10 }

The ISO C18 text does not explicitly address this
(in a pre-provenance semantics, before DR260, it
did not need to). One could do so by special-
casing memcpy() and similar functions to preserve
provenance, but the following questions suggest
less ad hoc approaches, for PNVI-plain or PVI.
For PNVI-ae and PNVI-ae-udi, the best approach
is not yet clear.

Copying pointer values bytewise, with user-memcpy One of the key aspects of C is that it supports ma-
nipulation of object representations, e.g. as in the following naive user implementation of a memcpy-like function,

// pointer_copy_user_dataflow_direct_bytewise.c

1 #include <stdio.h>
2 #include <string.h>
3 int x=1;
4 void user_memcpy(unsigned char* dest ,
5 unsigned char *src , size_t n) {
6 while (n > 0) {
7 *dest = *src;
8 src += 1; dest += 1; n -= 1;
9 }

10 }
11 int main() {
12 int *p = &x;
13 int *q;
14 user_memcpy ((unsigned char*)&q,
15 (unsigned char*)&p, sizeof(int *));
16 *q = 11; // is this free of undefined behaviour?
17 printf("*p=%d *q=%d\n",*p,*q);
18 }

which constructs a pointer value from copied
bytes. This too should be allowed. PNVI-plain
makes it legal: the representation bytes have
no provenance, but when reading a pointer
value from the copied memory, the read will
be from multiple representation-byte writes.
We use essentially the same semantics for such
reads as for integer-to-pointer casts: checking
at read-time that the address is within a live
object, and giving the result the correspond-
ing provenance. For PNVI-ae and PNVI-ae-
udi, the current proposal is to mark storage
instances as exposed whenever representation
bytes of pointers to them are read, and use
the same semantics for reads of pointer values
from representation-byte writes as for integer-
to-pointer casts. This is attractively simple,
but it does means that integer-to-pointer casts become permitted for all storage instances for which a pointer has
been copied via user_memcpy, which is arguably too liberal. It may be possible to add additional annotations for
code like user_memcpy to indicate (to alias analysis) that (a) their target memory should have the same provenance
as their source memory, and (b) the storage instances of any copied pointers should not be marked as exposed,
despite the reads of their representation bytes. This machinery has not yet been designed.

One might instead think of recording symbolically in the semantics of integer values (e.g. for representation-
byte values) whether they are of the form “byte n of pointer value v”, or perhaps “byte n of pointer value of type
t”, and allow reads of pointer values from representation-byte writes only for such. This is more complex and
rather ad hoc, arbitrarily restricting the integer computation that can be done on such bytes. If one wanted to
allow (e.g.) bitwise operations on such bytes, as in provenance_tag_bits_via_repr_byte_1.c, one would essentially have
to adopt a PVI model. However, note that to capture the 6.5p6 preservation of effective types by character-type
array copy (“If a value is copied into an object having no declared type using memcpy or memmove, or is copied as
an array of character type, then the effective type of the modified object for that access and for subsequent accesses
that do not modify the value is the effective type of the object from which the value is copied, if it has one.”), we
might need something like a very restricted version of PVI: some effective-type information attached to integer
values of character type, to say“byte n of pointer value of type t”, with all integer operations except character-type
stores clearing that info.

As Lee observes [private communication], to make it legal for compilers to replace user-memcpy by the library
version, one might want the two to have exactly the same semantics. Though strictly speaking that is a question
about the compiler intermediate language semantics, not C source semantics.

PVI makes user-memcpy legal by regarding each byte (as an integer value) as having the provenance of the
original pointer, and the result pointer, being composed of representation bytes of which at least one has that
provenance and none have a conflicting provenance, as having the same.

Real memcpy() implementations are more complex. The glibc memcpy()[gli18] involves copying byte-by-byte, as
above, and also word-by-word and, using virtual memory manipulation, page-by-page. Word-by-word copying is
not permitted by the ISO standard, as it violates the effective type rules, but we believe C2x should support it
for suitably annotated code. Virtual memory manipulation is outside our scope at present.

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_copy_memcpy.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_copy_user_dataflow_direct_bytewise.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_tag_bits_via_repr_byte_1.c

ISO/IEC TS 6010:2023 (E) draft N3005 22

Reading pointer values from byte writes In all these provenance semantics, pointer values carry their
provenance unchanged, both while manipulated in expressions (e.g. with pointer arithmetic) and when stored or
loaded as values of pointer type. In the detailed semantics, memory contains abstract bytes rather than general
C language values, and so we record provenance in memory by attaching a provenance to each abstract byte. For
pointer values stored by single writes, this will usually be identical in each abstract byte of the value.

However, we also have to define the result of reading a pointer value that has been partially or completely
written by (integer) representation-byte writes. In PNVI-*, we use the same semantics as for integer-to-pointer
casts, reading the numeric address and reconstructing the associated provenance iff a live storage instance covering
that address exists (and, for PNVI-ae and PNVI-ae-udi, if that instance has been exposed). To determine whether
a pointer value read is from a single pointer value write (and thus should retain its original provenance when read),
or from a combination of representation byte writes and perhaps also a pointer value write (and thus should use
the integer-to-pointer cast semantics when read), we also record, in each abstract byte, an optional pointer-byte
index (e.g. in 0..7 on an implementation with 8-byte pointer values). Pointer value writes will set these to the
consecutive sequence 0, 1, .., 7, while other writes will clear them. For example, the code on the left below sets the
fourth byte of p to 0. The memory state on the right, just after the *q=2, shows the pointer-byte indices of p, one
of which has been cleared (shown as -). When the value of p is read (e.g. in the q=p), the fact that there is not a
consecutive sequence 0, 1, .., 7 means that PNVI-* will apply the integer-to-pointer cast semantics, here successfully
recovering the provenance @68 of the storage instance x. Then the write of q will itself have a consecutive sequence
(its pointer-byte indices are therefore suppressed in the diagram). Any non-pointer write overlapping the footprint
of p, or any pointer write that overlaps that footprint but does not cover it all, would interrupt the consecutive
sequence of indices.

1 int x=1;
2 int main() {
3 int *p = &x;
4 if (*((unsigned char*)&p+4) ==0)
5 *((unsigned char*)&p+4)=0;
6 int *q = p;
7 *q=2;
8 } x: signed int [@68, 0x11f0]

 2

 p: signed int* [@70, 0x11f8]

 0 : 0xf0 @68

@68, 0x11f0

1 : 0x11 @68

2 : 0x0 @68

3 : 0x0 @68

- : 0x0 @empty

5 : 0x0 @68

6 : 0x0 @68

7 : 0x0 @68

 q: signed int* [@71, 0x1200]

@68, 0x11f0

In PNVI-plain a representation-byte copy of a pointer value thus is subtly different from a copy done at pointer
type: the latter retains the original provenance, while the former, when it is loaded, will take on the provenance
of whatever storage instance is live (and covers its address) at load time.

The conditional in the example is needed to avoid UB: the semantics does not constrain the allocation address
of x, so there are executions in which byte 4 is not 0, in which case the read of p would have a wild address and
the empty provenance, and the write *q=2 would flag UB.

ISO/IEC TS 6010:2023 (E) draft N3005 23

Pointer provenance for bytewise pointer representation manipulations To examine the possible se-
mantics for pointer representation bytes more closely, especially for PNVI-ae and PNVI-ae-udi, consider the
following. As in provenance_tag_bits_via_uintptr_t_1.c, it manipulates the low-order bits of a pointer value, but
now it does so by manipulating one of its representation bytes (as in pointer_copy_user_dataflow_direct_bytewise.c)

// provenance_tag_bits_via_repr_byte_1.c

1 #include <assert.h>
2 #include <stdio.h>
3 #include <stdint.h>
4 int x=1;
5 int main() {
6 int *p=&x, *q=&x;
7 // read low -order (little endian) representation byte of p
8 unsigned char i = *(unsigned char*)&p;
9 // check the bottom two bits of an int* are not used

10 assert(_Alignof(int) >= 4);
11 assert ((i & 3u) == 0u);
12 // set the low -order bit of the byte
13 i = i | 1u;
14 // write the representation byte back
15 *(unsigned char*)&p = i;
16 // [p might be passed around or copied here]
17 // clear the low -order bits again
18 *(unsigned char*)&p = (*(unsigned char*)&p) & ˜((unsigned char)3

u);
19 // are p and q now equivalent?
20 *p = 11; // does this have defined behaviour?
21 _Bool b = (p==q); // is this true?
22 printf("x=%i *p=%i (p==q)=%s\n",x,*p,b?"true":"false");
23 }

instead of by casting to uintptr_t

and back. In PNVI-plain and
PVI this will just work, respectively
reconstructing the original prove-
nance and tracking it through the
(changed and unchanged) integer
bytes.

In PNVI-ae and PNVI-ae-udi,
we regard the storage instance of
x as having been exposed by the
read of a pointer value (with non-
empty provenance in its abstract
bytes in memory) at an integer (re-
ally, non-pointer) type. Then the
last reads of the value of p, from
a combination of the original p=&x

write and later integer byte writes,
use the same semantics as integer-
to-pointer casts, and thus recreate
the original provenance.

Copying pointer values via encryption To more clearly delimit what idioms our proposals do and do
not allow, consider copying pointers via code that encrypts or compresses a block of multiple pointers together,
decrypting or uncompressing later.

In PNVI-plain, it would just work, in the same way as user_memcpy(). In PNVI-ae and PNVI-ae-udi, it would work
but leave storage instances pointed to by those pointers exposed (irrespective of whether the encryption is done via
casts to integer types or by reads of representation bytes), similar to user_memcpy and provenance_tag_bits_via_repr_byte_1

.c.
One might argue that pointer construction via intptr_t and back via any value-dependent identity function

should be required to work. That would admit these, but defining that notion of “value-dependent” is exactly
what is hard in the concurrency thin-air problem [BMN+15], and we do not believe that it is practical to make
compilers respect dependencies in general.

In PVI, this case involves exactly the same combination of distinct-provenance values that (to prohibit inter-
object arithmetic, and thereby enable alias analysis) we above regard as having empty-provenance results. As
copying pointers in this way is a very rare idiom, one can argue that it is reasonable to require such code to have
additional annotations.

https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_tag_bits_via_uintptr_t_1.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_copy_user_dataflow_direct_bytewise.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_tag_bits_via_repr_byte_1.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_tag_bits_via_repr_byte_1.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_tag_bits_via_repr_byte_1.c

ISO/IEC TS 6010:2023 (E) draft N3005 24

Copying pointer values via control flow We also have to ask whether a usable pointer can be constructed
via non-dataflow control-flow paths, e.g. if testing equality of an unprovenanced integer value against a valid
pointer permits the integer to be used as if it had the same provenance as the pointer. We do not believe that
this is relied on in practice. For example, consider exotic versions of memcpy that make a control-flow choice on the
value of each bit or each byte, reconstructing each with constants in each control-flow branch

// pointer_copy_user_ctrlflow_bytewise_abbrev.c

1 #include <stdio.h>
2 #include <string.h>
3 #include <assert.h>
4 #include <limits.h>
5 int x=1;
6 unsigned char control_flow_copy(unsigned char

c) {
7 assert(UCHAR_MAX ==255);
8 switch (c) {
9 case 0: return (0);

10 case 1: return (1);
11 case 2: return (2);
12 ...
13 case 255: return (255);
14 }
15 }
16 void user_memcpy2(unsigned char* dest ,
17 unsigned char *src , size_t n

) {
18 while (n > 0) {
19 *dest = control_flow_copy (*src);
20 src += 1;
21 dest += 1;
22 n -= 1;
23 }
24 }
25 int main() {
26 int *p = &x;
27 int *q;
28 user_memcpy2 ((unsigned char*)&q, (unsigned

char*)&p,
29 sizeof(p));
30 *q = 11; // does this have undefined

behaviour?
31 printf("*p=%d *q=%d\n",*p,*q);
32 }

// pointer_copy_user_ctrlflow_bitwise.c

1 #include <stdio.h>
2 #include <inttypes.h>
3 #include <limits.h>
4 int x=1;
5 int main() {
6 int *p = &x;
7 uintptr_t i = (uintptr_t)p;
8 int uintptr_t_width = sizeof(uintptr_t)

* CHAR_BIT;
9 uintptr_t bit , j;

10 int k;
11 j=0;
12 for (k=0; k<uintptr_t_width; k++) {
13 bit = (i & (((uintptr_t)1) << k)) >> k

;
14 if (bit == 1)
15 j = j | ((uintptr_t)1 << k);
16 else
17 j = j;
18 }
19 int *q = (int *)j;
20 *q = 11; // is this free of undefined

behaviour?
21 printf("*p=%d *q=%d\n",*p,*q);
22 }

In PNVI-plain these would both work. In PNVI-ae and PNVI-ae-udi they would also work, as the first exposes the
storage instance of the copied pointer value by representation-byte reads and the second by a pointer-to-integer
cast. In PVI they would give empty-provenance pointer values and hence UB.

Integer comparison and provenance If integer values have associated provenance, as in PVI, one has
to ask whether the result of an integer comparison should also be allowed to be provenance dependent
(provenance_equality_uintptr_t_global_xy.c). GCC did do so at one point, but it was regarded as a bug and fixed
(from 4.7.1 to 4.8). We propose that the numeric results of all operations on integers should be unaffected by the
provenances of their arguments. For PNVI-*, this question is moot, as there integer values have no provenance.

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_copy_user_ctrlflow_bytewise_abbrev.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_copy_user_ctrlflow_bitwise.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_equality_uintptr_t_global_xy.c

ISO/IEC TS 6010:2023 (E) draft N3005 25

Pointer provenance and union type punning Pointer values can also be constructed in C by type punning,
e.g. writing a pointer-type union member, reading it as a uintptr_t union member, and then casting back to a
pointer type. (The example assumes that the object representation of the pointer and the object representation
of the result of the cast to integer are identical. This property is not guaranteed by the C standard, but holds for
many implementations.)

// provenance_union_punning_3_global.c

1 #include <stdio.h>
2 #include <string.h>
3 #include <inttypes.h>
4 int x=1;
5 typedef union { uintptr_t ui; int *up; } un

;
6 int main() {
7 un u;
8 int *p = &x;
9 u.up = p;

10 uintptr_t i = u.ui;
11 int *q = (int*)i;
12 *q = 11; // does this have UB?
13 printf("x=%d *p=%d *q=%d\n",x,*p,*q);
14 return 0;
15 }

The ISO standard says “the appropriate part of the ob-
ject representation of the value is reinterpreted as an object
representation in the new type”, but says little about that
reinterpretation. We propose that these reinterpretations be
required to be implementation-defined, and, in PNVI-plain,
that the usual integer-to-pointer cast semantics be used at
such reads.

For PNVI-ae and PNVI-ae-udi, the same semantics as for
representation-byte reads also permits this case: the storage
instance is deemed to be exposed by the read of the prove-
nanced representation bytes by the non-pointer-type read.
The integer-to-pointer cast then recreates the provenance of
x.

For PVI, we propose that it be implementation-
defined whether the result preserves the original provenance
(e.g. where they are the identity).

Pointer provenance via IO Consider now pointer provenance flowing via IO, e.g. writing the address of an
object to a string, pipe or file and reading it back in. We have three versions: one using fprintf/fscanf and the
%p format, one using fwrite/fread on the pointer representation bytes, and one converting the pointer to and from
uintptr_t and using fprintf/fscanf on that value with the PRIuPTR/SCNuPTR formats (provenance_via_io_percentp_global.c,
provenance_via_io_bytewise_global.c, and provenance_via_io_uintptr_t_global.c) The first gives a syntactic indication of a
potentially escaping pointer value, while the others (after preprocessing) do not. Somewhat exotic though they
are, these idioms are used in practice: in graphics code for serialisation/deserialisation (using %p), in xlib (using
SCNuPTR), and in debuggers.

In the ISO standard, the text for fprintf and scanf for %p says that this should work: “If the input item is a value
converted earlier during the same program execution, the pointer that results shall compare equal to that value;
otherwise the behavior of the %p conversion is undefined” (again construing the pre-DR260 “compare equal” as
implying the result should be usable for access), and the text for uintptr_t and the presence of SCNuPTR in inttypes.h

weakly implies the same there.
But then what can compiler alias analyses assume about such a pointer read? In PNVI-plain, this is simple:

at scanf-time, for the %p version, or when a pointer is read from memory written by the other two, we can do a
runtime check and potential acquisition of provenance exactly like an integer-to-pointer cast.

In PNVI-ae and PNVI-ae-udi, for the %p case we mark the associated storage instance as exposed by the output,
and use the same semantics as integer-to-pointer casts on the input. The uintptr_t case and representation-byte
case also mark the storage instance as exposed, in the normal way for these models.

For PVI, there are several options, none of which seem ideal: we could use a PNVI-like semantics, but that
would be stylistically inconsistent with the rest of PVI; or (only for the first) we could restrict that to provenances
that have been output via %p), or we could require new programmer annotation, at output and/or input points,
to constrain alias analysis.

Pointers from device memory and linking In practice, concrete memory addresses or relationships between
them sometimes are determined and relied on by programmers, in implementation-specific ways. Sometimes these
are simply concrete absolute addresses which will never alias C stack, heap, or program memory, e.g. those of
particular memory-mapped devices in an embedded system. Others are absolute addresses and relative layout
of program code and data, usually involving one or more linking steps. For example, platforms may lay out
certain regions of memory so as to obey particular relationships, e.g. in a commodity operating system where
high addresses are used for kernel mappings, initial stack lives immediately below the arguments passed from the
operating system, and so on. The details of linking and of platform memory maps are outside the scope of ISO
C, but real C code may embody knowledge of them. Such code might be as simple as casting a platform-specified
address, represented as an integer literal, to a pointer. It might be more subtle, such as assuming that one object
directly follows another in memory—the programmer having established this property at link time (perhaps by a
custom linker script). It is necessary to preserve the legitimacy of such C code, so that compilers may not view
such memory accesses as undefined behaviour, even with increasing link-time optimisation.

We leave the design of exactly what escape-hatch mechanisms are needed here as an open problem. For memory-
mapped devices, one could simply posit implementation-defined ranges of such memory which are guaranteed not
to alias C objects. The more general linkage case is more interesting, but well outside current ISO C. The tracking
of provenance through embedded assembly is similar.

https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_union_punning_3_global.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_via_io_percentp_global.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_via_io_bytewise_global.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_via_io_uintptr_t_global.c

ISO/IEC TS 6010:2023 (E) draft N3005 26

Pointers from allocator libraries Our semantics special-cases malloc and the related functions, by giving
their results fresh provenances. This is stylistically consistent with the ISO text, which also special-cases them,
but it would be better for C to support a general-purpose annotation, to let both stdlib implementations and other
libraries return pointers that are treated as having fresh provenance outside (but not inside) their abstraction
boundaries.

Compilers already have related annotations, e.g. GCC’s malloc attribute “tells the compiler that a function is
malloc-like, i.e., that the pointer P returned by the function cannot alias any other pointer valid when the function
returns, and moreover no pointers to valid objects occur in any storage addressed by P” (https://gcc.gnu.org/
onlinedocs/gcc/Common-Function-Attributes.html#Common-Function-Attributes).

A.5 Implications of provenance semantics for optimisations

In an ideal world, a memory object semantics for C would be consistent with all existing mainstream code usage
and compiler behaviour. In practice, we suspect that (absent a precise standard) these have diverged too much
for that, making some compromise required. As we have already seen, the PNVI semantics would make some
currently observed GCC and ICC behaviour unsound, though at least some key GCC developers already regard
that behaviour as a longstanding unfixed bug, due to the lack of integer/pointer type distinctions in RTL. We now
consider some other important cases, by example.

Optimisation based on equality tests Both PNVI-* and PVI let p==q hold in some cases where p and q are
not interchangeable. As the authors of [LHJ+18] observe in the LLVM IR context, that may limit optimisations
such as GVN (global value numbering) based on pointer equality tests. PVI suffers from the same problem also
for integer comparisons, wherever the integers might have been cast from pointers and eventually be cast back.
This may be more serious.

Can a function argument alias local variables of the function? In general one would like
this to be forbidden, to let optimisation assume its absence. Consider first the example below, where

// pointer_from_integer_1pg.c

1 #include <stdio.h>
2 #include <stdint.h>
3 #include "charon_address_guesses.h"
4 void f(int *p) {
5 int j=5;
6 if (p==&j)
7 *p=7;
8 printf("j=%d &j=%p\n",j,(void*)&j);
9 }

10 int main() {
11 uintptr_t i = ADDRESS_PFI_1PG;
12 int *p = (int*)i;
13 f(p);
14 }

main() guesses the address of f()’s local variable, passing it in as a
pointer, and f() checks it before using it for an access. Here we
see, for example, GCC -O0 optimising away the if and the write
*p=7, even in executions where the ADDRESS_PFI_1PG constant is the
same as the printf’d address of j. We believe that compiler be-
haviour should be permitted, and hence that this program should
be deemed to have UB — or, in other words, that code should
not normally be allowed to rely on implementation facts about the
allocation addresses of C variables.

The PNVI-* semantics deems this to be UB, because at the
point of the (int*)i cast the j storage instance does not yet exist
(let alone, for PNVI-ae and PNVI-ae-udi, having been exposed by
having one of its addresses taken and cast to integer), so the cast
gives a pointer with empty provenance; any execution that goes
into the if would thus flag UB. The PVI semantics flags UB for
the simple reason that j is created with the empty provenance, and hence p inherits that.

// pointer_from_integer_1ig.c

1 #include <stdio.h>
2 #include <stdint.h>
3 #include "charon_address_guesses.h"
4 void f(uintptr_t i) {
5 int j=5;
6 int *p = (int*)i;
7 if (p==&j)
8 *p=7;
9 printf("j=%d &j=%p\n",j,(void*)&j);

10 }
11 int main() {
12 uintptr_t j = ADDRESS_PFI_1IG;
13 f(j);
14 }

Varying to do the cast to int* in f() instead of main(), passing
in an integer i instead of a pointer, this becomes defined in PNVI-
plain, as j exists at the point when the abstract machine does
the (int*)i cast. But in PNVI-ae and PNVI-ae-udi, the storage
instance of j is not exposed, so the cast to int* gives a pointer with
empty provenance and the access via it is UB. This example is also
UB in PVI.

At present we do not see any strong reason why making this
defined would not be acceptable — it amounts to requiring com-
pilers to be conservative for the results of integer-to-pointer casts
where they cannot see the source of the integer, which we imagine
to be a rare case — but this does not match current O2 or O3
compilation for GCC, Clang, or ICC.

https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#Common-Function-Attributes
https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#Common-Function-Attributes
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_1pg.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_1ig.c

ISO/IEC TS 6010:2023 (E) draft N3005 27

Allocation-address nondeterminism Note that both of the previous examples take the address of j to guard
their *p=7 accesses. Removing the conditional guards gives the left and middle tests below, that one would surely
like to forbid:

// pointer_from_integer_1p.c

1 #include <stdio.h>
2 #include <stdint.h>
3 #include "

charon_address_guesses.h"
4 void f(int *p) {
5 int j=5;
6 *p=7;
7 printf("j=%d\n",j);
8 }
9 int main() {

10 uintptr_t i = ADDRESS_PFI_1P
;

11 int *p = (int*)i;
12 f(p);
13 }

// pointer_from_integer_1i.c

1 #include <stdio.h>
2 #include <stdint.h>
3 #include "

charon_address_guesses.h"
4 void f(uintptr_t i) {
5 int j=5;
6 int *p = (int*)i;
7 *p=7;
8 printf("j=%d\n",j);
9 }

10 int main() {
11 uintptr_t j =

ADDRESS_PFI_1I;
12 f(j);
13 }

// pointer_from_integer_1ie.c

1 #include <stdio.h>
2 #include <stdint.h>
3 #include "

charon_address_guesses.h"
4 void f(uintptr_t i) {
5 int j=5;
6 uintptr_t k = (uintptr_t)&j

;
7 int *p = (int*)i;
8 *p=7;
9 printf("j=%d\n",j);

10 }
11 int main() {
12 uintptr_t j =

ADDRESS_PFI_1I;
13 f(j);
14 }

Both are forbidden in PVI for the same reason as before, and the first is forbidden in PNVI-*, again because j

does not exist at the cast point.
But the second forces us to think about how much allocation-address nondeterminism should be quantified

over in the basic definition of undefined behaviour. For evaluation-order and concurrency nondeterminism, one
would normally say that if there exists any execution that flags UB, then the program as a whole has UB (for the
moment ignoring UB that occurs only on some paths following I/O input, which is another important question
that the current ISO text does not address).

This view of UB seems to be unfortunate but inescapable. If one looks just at a single execution, then (at least
between input points) we cannot temporally bound the effects of an UB, because compilers can and do re-order
code w.r.t. the C abstract machine’s sequencing of computation. In other words, UB may be flagged at some
specific point in an abstract-machine trace, but its consequences on the observed implementation behaviour might
happen much earlier (in practice, perhaps not very much earlier, but we do not have any good way of bounding how
much). But then if one execution might have UB, and hence exhibit (in an implementation) arbitrary observable
behaviour, then anything the standard might say about any other execution is irrelevant, because it can always
be masked by that arbitrary observable behaviour.

Accordingly, our semantics nondeterministically chooses an arbitrary address for each storage instance, sub-
ject only to alignment and no-overlap constraints (ultimately one would also need to build in constraints from
programmer linking commands). This is equivalent to noting that the ISO standard does not constrain how im-
plementations choose storage instance addresses in any way (subject to alignment and no-overlap), and hence that
programmers of standard-conforming code cannot assume anything about those choices. Then in PNVI-plain, the
..._1i.c example is UB because, even though there is one execution in which the guess is correct, there is another
(in fact many others) in which it is not. In those, the cast to int* gives a pointer with empty provenance, so the
access flags UB — hence the whole program is UB, as desired. In PNVI-ae and PNVI-ae-udi, the ..._1i.c example
is UB for a different reason: the storage instance of j is not exposed before the cast (int*)i, and so the result of
that cast has empty provenance and the access *p=7 flags UB, in every execution. However, if j is exposed, as in
the example on the right, these models still make it UB, now for the same reason as PNVI-plain.

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_1p.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_1i.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_1ie.c

ISO/IEC TS 6010:2023 (E) draft N3005 28

Can a function access local variables of its parent? This too should be forbidden in general. The example
on the left below is forbidden by PVI, again for the simple reason that p has the empty provenance, and by

// pointer_from_integer_2.c

1 #include <stdio.h>
2 #include <stdint.h>
3 #include "charon_address_guesses.h"
4 void f() {
5 uintptr_t i=ADDRESS_PFI_2;
6 int *p = (int*)i;
7 *p=7;
8 }
9 int main() {

10 int j=5;
11 f();
12 printf("j=%d\n",j);
13 }

// pointer_from_integer_2g.c

1 #include <stdio.h>
2 #include <stdint.h>
3 #include "charon_address_guesses.h"
4 void f() {
5 uintptr_t i=ADDRESS_PFI_2G;
6 int *p = (int*)i;
7 *p=7;
8 }
9 int main() {

10 int j=5;
11 if ((uintptr_t)&j == ADDRESS_PFI_2G)
12 f();
13 printf("j=%d &j=%p\n",j,(void*)&j);
14 }

PNVI-plain by allocation-address nondeterminism, as there exist abstract-machine executions in which the guessed
address is wrong. One cannot guard the access within f(), as the address of j is not available there. Guarding
the call to f() with if ((uintptr_t)&j == ADDRESS_PFI_2) (pointer_from_integer_2g.c on the right above) again makes the
example well-defined in PNVI-plain, as the address is correct and j exists at the int* cast point, but notice again
that the guard necessarily involves &j. This does not match current Clang at O2 or O3, which print j=5.

In PNVI-ae and PNVI-ae-udi, pointer_from_integer_2.c is forbidden simply because j is never exposed (and
if it were, it would be forbidden for the same reason as in PNVI-plain). PNVI-ae and PNVI-ae-udi allow
pointer_from_integer_2g.c, because the j storage instance is exposed by the (uinptr_t)&j cast.

The PNVI-address-taken and PNVI-wildcard alternatives A different obvious refinement to PNVI would
be to restrict integer-to-pointer casts to recover the provenance only of objects that have had their address taken,
recording that in the memory state. PNVI-address-exposed is based on PNVI-address-taken but with the tighter
condition that the address must also have been cast to integer.

A rather different model is to make the results of integer-to-pointer casts have a “wildcard” provenance,
deferring the check that the address matches a live object from cast-time to access-time. This would make
pointer_from_integer_1pg.c defined, which is surely not desirable.

Perhaps surprisingly, the PNVI-ae and PNVI-ae-udi variants seem not to make much difference to the allowed
tests, because the tests one might write tend to already be UB due to allocation-address nondeterminism, or to
already take the address of an object to use it in a guard. These variants do have the conceptual advantage of
identifying these UBs without requiring examination of multiple executions, but the disadvantage that whether
an address has been taken is a fragile syntactic property, e.g. not preserved by dead code elimination.

The problem with lost address-takens and escapes Our PVI proposal allows computations that erase the
numeric value (and hence a concrete view of the “semantic dependencies”) of a pointer, but retain provenance.
This makes examples like that below [Richard Smith, personal communication], in which the code correctly guesses
a storage instance address (which has the empty provenance) and adds that to a zero-valued quantity (with the
correct provenance), allowed in PVI. We emphasise that we do not think it especially desirable to allow such
examples; this is just a consequence of choosing a straightforward provenance-via-integer semantics that allows
the bytewise copying and the bitwise manipulation of pointers above. In other words, it is not clear how it could
be forbidden simply in PVI.

// provenance_lost_escape_1.c

1 #include <stdio.h>
2 #include <string.h>
3 #include <stdint.h>
4 #include "charon_address_guesses.h"
5 int x=1; // assume allocation ID @1, at ADDR_PLE_1
6 int main() {
7 int *p = &x;
8 uintptr_t i1 = (intptr_t)p; // (@1,ADDR_PLE_1)
9 uintptr_t i2 = i1 & 0x00000000FFFFFFFF;//

10 uintptr_t i3 = i2 & 0xFFFFFFFF00000000;// (@1 ,0x0)
11 uintptr_t i4 = i3 + ADDR_PLE_1; // (@1,ADDR_PLE_1)
12 int *q = (int *)i4;
13 printf("Addresses: p=%p\n",(void*)p);
14 if (memcmp (&i1, &i4, sizeof(i1)) == 0) {
15 *q = 11; // does this have defined behaviour?
16 printf("x=%d *p=%d *q=%d\n",x,*p,*q);
17 }
18 }

However, in implementations
some algebraic optimisations may
be done before alias analysis, and
those optimisations might erase the
&x, replacing it and all the calcu-
lation of i3 by 0x0 (a similar ex-
ample would have i3 = i1-i1). But
then alias analysis would be unable
to see that *q could access x, and
so report that it could not, and
hence enable subsequent optimisa-
tions that are unsound w.r.t. PVI
for this case. The basic point is that
whether a variable has its address
taken or escaped in the source lan-
guage is not preserved by optimisation. A possible solution, which would need some implementation work for

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_2.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_2g.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_2g.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_2g.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_2g.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_1pg.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_lost_escape_1.c

ISO/IEC TS 6010:2023 (E) draft N3005 29

implementations that do track provenance through integers, but perhaps acceptably so, would be to require those
initial optimisation passes to record the address-takens involved in computations they erase, so that that could
be passed in explicitly to alias analysis. In contrast to the difficulties of preserving dependencies to avoid thin-air
concurrency, this does not forbid optimisations that remove dependencies; it merely requires them to describe
what they do.

In PNVI-plain, the example is also allowed, but for a simpler reason that is not affected by such integer
optimisation: the object exists at the int* cast. Implementations that take a conservative view of all pointers
formed from integers would automatically be sound w.r.t. this. At present ICC is not, at O2 or O3.

PNVI-ae and PNVI-ae-udi are more like PVI here: they allow the example, but only because the address of p is
both taken and cast to an integer type. If these semantics were used for alias analysis in an intermediate language
after such optimisation, this would likewise require the optimsation passes to record which addresses have been
taken and cast to integer (or otherwise exposed) in eliminated code, to be explicitly passed in to alias analysis.

Should PNVI allow one-past integer-to-pointer casts? For PNVI*, one has to choose whether an integer
that is one-past a live object (and not strictly within another) can be cast to a pointer with valid provenance,
or whether this should give an empty-provenance pointer value. Lee observes that the latter may be necessary
to make some optimisation sound [personal communication], and we imagine that this is not a common idiom in
practice, so for PNVI-plain and PNVI-ae we follow the stricter semantics.

PNVI-ae-udi, however, is designed to permit a cast of a one-past pointer to integer and back to recover the
original provenance, replacing the integer-to-pointer semantic check that x is properly within the footprint of the
storage instance by a check that it is properly within or one-past. That makes the following example allowed in
PNVI-ae-udi, while it is forbidden in PNVI-ae and PNVI-plain.

// provenance_roundtrip_via_intptr_t_onepast.c

1 #include <stdio.h>
2 #include <inttypes.h>
3 int x=1;
4 int main() {
5 int *p = &x;
6 p=p+1;
7 intptr_t i = (intptr_t)p;
8 int *q = (int *)i;
9 q=q-1;

10 *q = 11; // is this free of undefined behaviour?
11 printf("*p=%d *q=%d\n",*p,*q);
12 }

The downside of this is that one has to handle pointer-to-integer casts for integer values that are ambiguously
both one-past one storage instance and at the start of the next. The PNVI-ae-udi approach to that is to leave the
provenance of pointer values resulting from such casts unknown until the first operation (e.g. an access, pointer
arithmetic, or pointer relational comparison) that disambiguates them. This makes the following two, each of
which uses the result of the cast in one consistent way, well defined:

// pointer_from_int_disambiguation_1.c

1 #include <stdio.h>
2 #include <string.h>
3 #include <stdint.h>
4 #include <inttypes.h>
5 int y=2, x=1;
6 int main() {
7 int *p = &x+1;
8 int *q = &y;
9 uintptr_t i = (uintptr_t)p;

10 uintptr_t j = (uintptr_t)q;
11 if (memcmp (&p, &q, sizeof(p)) == 0) {
12 int *r = (int *)i;
13 *r=11; // is this free of UB?
14 printf("x=%d y=%d *p=%d *q=%d *r=%d\n",x,y

,*p,*q,*r);
15 }
16 }

// pointer_from_int_disambiguation_2.c

1 #include <stdio.h>
2 #include <string.h>
3 #include <stdint.h>
4 #include <inttypes.h>
5 int y=2, x=1;
6 int main() {
7 int *p = &x+1;
8 int *q = &y;
9 uintptr_t i = (uintptr_t)p;

10 uintptr_t j = (uintptr_t)q;
11 if (memcmp (&p, &q, sizeof(p)) == 0) {
12 int *r = (int *)i;
13 r=r-1; // is this free of UB?
14 *r=11; // and this?
15 printf("x=%d y=%d *p=%d *q=%d *r=%d\n"

,x,y,*p,*q,*r);
16 }
17 }

while making the following, which tries to use the result of the cast to access both objects, UB.

https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_roundtrip_via_intptr_t_onepast.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_int_disambiguation_1.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_int_disambiguation_2.c

ISO/IEC TS 6010:2023 (E) draft N3005 30

// pointer_from_int_disambiguation_3.c

1 #include <stdio.h>
2 #include <string.h>
3 #include <stdint.h>
4 #include <inttypes.h>
5 int y=2, x=1;
6 int main() {
7 int *p = &x+1;
8 int *q = &y;
9 uintptr_t i = (uintptr_t)p;

10 uintptr_t j = (uintptr_t)q;
11 if (memcmp (&p, &q, sizeof(p)) == 0) {
12 int *r = (int *)i;
13 *r=11;
14 r=r-1; // is this free of UB?
15 *r=12; // and this?
16 printf("x=%d y=%d *p=%d *q=%d *r=%d\n",x,y,*p

,*q,*r);
17 }
18 }

In this, the *r=11 will resolve the provenance of the value in one way, making the r-1 UB.

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_int_disambiguation_3.c

ISO/IEC TS 6010:2023 (E) draft N3005 31

A.6 Testing the example behaviour in Cerberus

We have implemented executable versions of the PNVI-plain, PNVI-ae, and PNVI-ae-udi models in Cer-
berus [MGD+19, MML+16], closely following the detailed semantics of the accompanying note. This makes it
possible to interactively or exhaustively explore the behaviour of the examples, confirming that they are allowed
or not as intended.

test

intended behaviour observed behaviour
Cerberus (decreasing allocator)

test family PNVI-plain PNVI-ae PNVI-ae-udi PNVI-plain PNVI-ae PNVI-ae-udi

1

provenance_basic_global_xy.c

UB

not triggered
provenance_basic_global_yx.c UB (line 9)
provenance_basic_auto_xy.c not triggered
provenance_basic_auto_yx.c UB (line 9)

2 cheri_03_ii.c UB

3

pointer_offset_from_ptr_subtraction_global_xy.c

UB (pointer subtraction)
pointer_offset_from_ptr_subtraction_global_yx.c
pointer_offset_from_ptr_subtraction_auto_xy.c
pointer_offset_from_ptr_subtraction_auto_yx.c

4

provenance_equality_global_xy.c

defined, nondet

not triggered
provenance_equality_global_yx.c
provenance_equality_auto_xy.c not triggered
provenance_equality_auto_yx.c
provenance_equality_global_fn_xy.c not triggered
provenance_equality_global_fn_yx.c

5 provenance_roundtrip_via_intptr_t.c defined defined

6

provenance_basic_using_uintptr_t_global_xy.c

defined

not triggered
provenance_basic_using_uintptr_t_global_yx.c defined
provenance_basic_using_uintptr_t_auto_xy.c not triggered
provenance_basic_using_uintptr_t_auto_yx.c defined

7

pointer_offset_from_int_subtraction_global_xy.c

defined

defined
pointer_offset_from_int_subtraction_global_yx.c defined
pointer_offset_from_int_subtraction_auto_xy.c defined
pointer_offset_from_int_subtraction_auto_yx.c defined

8
pointer_offset_xor_global.c

defined
defined

pointer_offset_xor_auto.c defined
9 provenance_tag_bits_via_uintptr_t_1.c defined defined
10 pointer_arith_algebraic_properties_2_global.c defined defined
11 pointer_arith_algebraic_properties_3_global.c defined defined
12 pointer_copy_memcpy.c defined defined
13 pointer_copy_user_dataflow_direct_bytewise.c defined defined
13 provenance_tag_bits_via_repr_byte_1.c defined defined
15 pointer_copy_user_ctrlflow_bytewise.c defined defined
16 pointer_copy_user_ctrlflow_bitwise.c defined defined

17

provenance_equality_uintptr_t_global_xy.c

defined

not triggered
provenance_equality_uintptr_t_global_yx.c defined (true)
provenance_equality_uintptr_t_auto_xy.c not triggered
provenance_equality_uintptr_t_auto_yx.c defined (true)

18

provenance_union_punning_2_global_xy.c defined UB (line 16, deref) UB (line 16, store) not triggered
provenance_union_punning_2_global_yx.c defined UB (line 16, deref) UB (line 16, store) defined UB (line 16, deref) UB (line 16, store)
provenance_union_punning_2_auto_xy.c defined UB (line 16, deref) UB (line 16, store) not triggered
provenance_union_punning_2_auto_yx.c defined UB (line 16, deref) UB (line 16, store) defined UB (line 16, deref) UB (line 16, store)

19 provenance_union_punning_3_global.c defined defined

20
provenance_via_io_percentp_global.c

filesystem and scanf() are not currently supported by Cerberusprovenance_via_io_bytewise_global.c
provenance_via_io_uintptr_t_global.c

21

pointer_from_integer_1pg.c UB (line 7) UB in one exec (line 7)
pointer_from_integer_1ig.c defined (j = 7) UB (line 8) defined (j = 7) UB (line 8)
pointer_from_integer_1p.c UB (line 6) UB (line 6)
pointer_from_integer_1i.c defined (j = 7) UB (line 7) defined (j = 7) UB (line 7)
pointer_from_integer_1ie.c defined (j = 7) defined (j = 7)
pointer_from_integer_2.c defined (j = 7) UB (line 7) defined (j = 7) UB (line 7)
pointer_from_integer_2g.c defined (j = 7) defined (j = 7)
provenance_lost_escape_1.c defined defined

22 provenance_roundtrip_via_intptr_t_onepast.c UB (line 10) defined UB (line 10) defined

23

pointer_from_int_disambiguation_1.c
defined (y = 11)

defined (y = 11)
pointer_from_int_disambiguation_1_xy.c not triggered
pointer_from_int_disambiguation_2.c

UB (line 14) defined
UB (line 14) defined (x = 11)

pointer_from_int_disambiguation_2_xy.c not triggered
pointer_from_int_disambiguation_3.c

UB (line 15) UB (line 15)
UB (line 15)

pointer_from_int_disambiguation_3_xy.c not triggered

green = Cerberus behaviour matches intent

grey = Cerberus’ allocator doesn’t trigger the interesting behaviour

UB (except with permissive_pointer_arith switch)

UB (pointer subtraction)
Or

UB (out-of-bound store with permissive_pointer_arith switch)

defined (ND except with strict pointer equality switch)

defined (ND except with strict pointer equality switch)

defined (ND except with strict pointer equality switch)

(bold = tests mentioned in the document)
blue = Cerberus behaviour matches intent (witch permissive_pointer_arith switch)

ISO/IEC TS 6010:2023 (E) draft N3005 32

A.7 Testing the example behaviour in mainstream C implementations

We have also run the examples in various existing C implementations, including GCC and Clang at various
optimisation levels.

Our test cases are typically written to illustrate a particular semantic question as concisely as possible. Some
are “natural” examples, of desirable C code that one might find in the wild, but many are intentionally pathological
or are corner cases, to explore just where the defined/undefined-behaviour boundary is; we are not suggesting that
all these should be supported.

Making the tests concise to illustrate semantic questions also means that most are not written to trigger inter-
esting compiler behaviour, which might only occur in a larger context that permits some analysis or optimisation
pass to take effect. Moreover, following the spirit of C, conventional implementations cannot and do not report all
instances of undefined behaviour. Hence, only in some cases is there anything to be learned from the experimental
compiler behaviour. For any executable semantics or analysis tool, on the other hand, all the tests should have
instructive outcomes.

Some tests rely on address coincidences for the interesting execution; for these we sometimes include multiple
variants, tuned to the allocation behaviour in the implementations we consider. Where this has not been done,
some of the experimental data is not meaningful.

The detailed data is available at https://www.cl.cam.ac.uk/∼pes20/cerberus/
supplementary-material-pnvi-star/generated html pnvi star/, and summarised in the table below.

Compilers

Page 2

test

Observed behaviour (compilers), sound w.r.t PNVI-*? (relying on UB or ND?)

gcc-8.3 clang-7.0.1 icc-19

test family PNVI-plain PNVI-ae PNVI-ae-udi PNVI-plain PNVI-ae PNVI-ae-udi PNVI-plain PNVI-ae PNVI-ae-udi

1

provenance_basic_global_xy.c y (n) y (n) y (y for O2+)

provenance_basic_global_yx.c y (y for O2+) not triggered not triggered

provenance_basic_auto_xy.c y (n) y (n) y (y for O2+)

provenance_basic_auto_yx.c y (n) y (n) y (y for O2+)

2 cheri_03_ii.c y (n) y (n) y (n)

3

pointer_offset_from_ptr_subtraction_global_xy.c

y (n) y (n)

y (n)

pointer_offset_from_ptr_subtraction_global_yx.c y (n)

pointer_offset_from_ptr_subtraction_auto_xy.c y (y for O2+)

pointer_offset_from_ptr_subtraction_auto_yx.c y (y for O2+)

4

provenance_equality_global_xy.c y (n)

y (n) y (n)

provenance_equality_global_yx.c y (y for O2+)

provenance_equality_auto_xy.c y (y for O2+)

provenance_equality_auto_yx.c y (n)

provenance_equality_global_fn_xy.c y (n)

provenance_equality_global_fn_yx.c y (y for O2+)

5 provenance_roundtrip_via_intptr_t.c y (n) y (n) y (n)

6

provenance_basic_using_uintptr_t_global_xy.c y (n) y (n) n (y)

provenance_basic_using_uintptr_t_global_yx.c n (y) not triggered not triggered

provenance_basic_using_uintptr_t_auto_xy.c y (n) not triggered n (y)

provenance_basic_using_uintptr_t_auto_yx.c y (n) y (n) n (y)

7

pointer_offset_from_int_subtraction_global_xy.c

y (n) y (n) y (n)
pointer_offset_from_int_subtraction_global_yx.c

pointer_offset_from_int_subtraction_auto_xy.c

pointer_offset_from_int_subtraction_auto_yx.c

8
pointer_offset_xor_global.c

y (n) y (n) y (n)
pointer_offset_xor_auto.c

9 provenance_tag_bits_via_uintptr_t_1.c y (n) y (n) y (n)

10 pointer_arith_algebraic_properties_2_global.c y (n) y (n) y (n)

11 pointer_arith_algebraic_properties_3_global.c y (n) y (n) y (n)

12 pointer_copy_memcpy.c y (n) y (n) y (n)

13 pointer_copy_user_dataflow_direct_bytewise.c y (n) y (n) y (n)

13 provenance_tag_bits_via_repr_byte_1.c y (n) y (n) y (n)

15 pointer_copy_user_ctrlflow_bytewise.c y (n) y (n) y (n)

16 pointer_copy_user_ctrlflow_bitwise.c y (n) y (n) y (n)

17

provenance_equality_uintptr_t_global_xy.c

y (n) y (n) y (n)
provenance_equality_uintptr_t_global_yx.c

provenance_equality_uintptr_t_auto_xy.c

provenance_equality_uintptr_t_auto_yx.c

18

provenance_union_punning_2_global_xy.c y (n) y (n) y (y for O2+) n (y)

provenance_union_punning_2_global_yx.c y (y for O2+) n (y) not triggered not triggered

provenance_union_punning_2_auto_xy.c y (n)
y (n)

y (y for O2+) n (y)

provenance_union_punning_2_auto_yx.c y (n) y (y for O2+) n (y)

19 provenance_union_punning_3_global.c y (n) y (n) y (n)

20

provenance_via_io_percentp_global.c

NO OPT NO OPT NO OPTprovenance_via_io_bytewise_global.c

provenance_via_io_uintptr_t_global.c

21

pointer_from_integer_1pg.c y (y for O0+) y (y for O2+) y (y for O2+)

pointer_from_integer_1ig.c n (y) y (y for O2+) n (y) y (y for O2+) n (y for O2+)

pointer_from_integer_1p.c

can't test with charon
pointer_from_integer_1i.c

pointer_from_integer_1ie.c

pointer_from_integer_2.c

pointer_from_integer_2g.c y (n) n (y) y (n)

provenance_lost_escape_1.c y (n) y (n) n (y for O2+)

22 provenance_roundtrip_via_intptr_t_onepast.c y (n) y (n) y (n)

23

pointer_from_int_disambiguation_1.c n (y) not triggered not triggered

pointer_from_int_disambiguation_1_xy.c not triggered y (n) n (y for O2+)

pointer_from_int_disambiguation_2.c y (n) not triggered not triggered

pointer_from_int_disambiguation_2_xy.c not triggered y (n) y (n)

pointer_from_int_disambiguation_3.c y (n) not triggered not triggered

pointer_from_int_disambiguation_3_xy.c not triggered y (n) y (y for O2+)

(bold = tests mentioned in the document)

https://www.cl.cam.ac.uk/~pes20/cerberus/supplementary-material-pnvi-star/generated_html_pnvi_star/
https://www.cl.cam.ac.uk/~pes20/cerberus/supplementary-material-pnvi-star/generated_html_pnvi_star/

ISO/IEC TS 6010:2023 (E) draft N3005 33

B Detailed semantics (informative)

This annex gives detailed mathematical semantics for four variants of C provenance semantics:

� PNVI-plain: a semantics that does not track provenance via integers, but instead, at integer-to-pointer cast
points, checks whether the given address points within a live object and, if so, recreates the corresponding
provenance.

� PNVI-ae (PNVI exposed-address): a variant of PNVI that allows integer-to-pointer casts to recreate
provenance only for storage instances that have previously been exposed. A storage instance is deemed
exposed by a cast of a pointer to it to an integer type, by a read (at non-pointer type) of the representation
of the pointer, or by an output of the pointer using %p.

� PNVI-ae-udi (PNVI exposed-address user-disambiguation): a further refinement of PNVI-ae that
supports roundtrip casts, from pointer to integer and back, of pointers that are one-past a storage instance.
This is the currently preferred option in the C memory object model study group.

� PVI: a semantics that tracks provenance via integer computation, associating a provenance
with all integer values (not just pointer values), preserving provenance through integer/
pointer casts, and making some particular choices for the provenance results of integer and pointer
+/- integer operations; or

We write PNVI-* for PNVI-plain, PNVI-ae, and PNVI-ae-udi. The PNVI-plain and PVI semantics were described
in the POPL 2019/N2311 paper [MGD+19]. PNVI-ae and PNVI-ae-udi have emerged from discussions in the C
memory object model study group.

Changes for PNVI-ae from PNVI-plain are highlighted. Additional changes for PNVI-ae-udi are highlighted.
This should be read together with the two companion notes, one giving a series of examples (N2363), and

another giving detailed diffs to the C standard text (N2362).
The PNVI-ae and PNVI-ae-udi variants of PNVI permit bytewise copy of a pointer to an initially unexposed

object, but leaves it marked as exposed. Additional machinery may well be desirable for PNVI-ae and PNVI-ae-udi
to give programmers more control of the provenance of the results of byte manipulations, and of what is left marked
as exposed. The design of that machinery should ideally be based on the treatment of representation-byte-accessed
pointer values by existing compiler alias analyses and optimisations.

B.1 The PNVI-ae-udi, PNVI-ae, PNVI-plain, and PVI semantics

These semantic definitions are manually typeset mathematics simplified from the executable-as-test-oracle Cer-
berus source (expressed in the pure-functional Lem [MOG+14] definition language). We have removed most
subobject details, function pointers, and some options. Neither the typeset models or the Lem source consider
linking, or pointers constructed via I/O (e.g. via %p or representation-byte I/O).

The memory object semantics can be combined with a semantics for the thread-local semantics of the rest
of C (expressed in Cerberus as a translation from C source to the Core intermediate language, together with an
operational semantics for Core) to give a complete semantics for a large fragment of sequential C.

For simplicity, we assume that pointer representations are the two’s complement representation of their ad-
dresses (and identical to the two’s complement representations of their conversions to sufficiently wide integer
types), assume NULL pointers have address (and representation) 0, and allow NULL pointers to be constructed
from any empty-provenance integer zero, not just integer constant expressions.

At present, the mathematical model does not include the ISO semantics that makes all pointers to an object
or region invalid at the end of its lifetime, and it permits equality comparison between pointers irrespective of
whether the objects of their provenances are live, but it does permit pointer subtraction, relational comparison,
array offset, member offset, and casts to integer only for pointers to live objects for which the address is within or
one past the object footprint. These are all debatable choices. One could instead check only that the addresses
are within or one past the original object footprint (and not check the object is live), or go further towards a
concrete-address view of pointer values and not check that either. Sketching out some of the options:

� zombie-pointers-become-indeterminate For the current ISO semantics, at the end of every storage
instance’s lifetime any pointer value referring to it becomes invalid. After that, every memory footprint
containing a pointer value with that provenance (result of the store of such a pointer value) has an indeter-
minate representation. With this, the live-object evaluations and checks for equality, relational comparison,
subtraction, array offset member offset, and casts to integers all become moot.

� zombie-pointers-allow-equality-only This is what the maths below details.

� zombie-pointers-allow-all-in-bounds-arithmetic For this, we would retain metadata for the bounds
of lifetime-ended pointers and check against that for non-load/store operations.

ISO/IEC TS 6010:2023 (E) draft N3005 34

� zombie-pointers-allow-all-arithmetic For this, we would remove the lifetime and bounds checks for
non-load/store operations.

� all-pointers-allow-all-arithmetic This would make all the non-load/store operations operate just on
abstract addresses, ignoring provenance and storage instance metadata.

B.1.1 The memory object model interface

In Cerberus, the memory object model is factored out from Core with a clean interface, roughly as in [MML+16,
Fig. 2]. This provides functions for memory operations:

� allocate object (for objects with automatic or static storage duration, i.e. global and local variables),

� allocate region (for the results of malloc, calloc, and realloc, i.e. heap-allocated regions),

� kill (for lifetime end of both kinds of allocation),

� load, and

� store,

and for pointer/integer operations: arithmetic, casts, comparisons, offseting pointers by struct-member offsets, etc.
The interface involves types pointer value (p), integer value (x), floating value, and mem value (v), which are
abstract as far as Core is concerned. Distinguishing pointer and integer values gives more precise internal types.

In PNVI-ae, PNVI, and PVI, a provenance π is either @i where i is a storage-instance ID, or the empty
provenance @empty. In PNVI-ae-udi a provenance can also be a symbolic storage instance ID ι (iota), initially
associated to two storage instance IDs and later resolved to one or the other.

A pointer value can either be null or a pair (π, a) of a provenance π and address a. In PNVI*, an integer
value is simply a mathematical integer (within the appropriate range for the relevant C type), while in PVI, an
integer value is a pair (π, n) of a provenance π and a mathematical integer n.

Memory values are the storable entities, either a pointer, integer, floating-point, array, struct, or union value,
or unspec for unspecified values, each together with their C type.

B.2 The memory object model state

In both PVI and PNVI*, a memory state is a pair (A,M). The A is a partial map from storage-instance IDs to
either killed or storage-instance metadata (n, τopt, a, f, k, t):

� size n,

� optional C type τ (or none for allocated regions),

� base address a,

� permission flag f∈{readWrite, readOnly},

� kind k∈{object, region}, and

� for PNVI-ae and PNVI-ae-udi, a taint flag t∈{unexposed, exposed}.

In PNVI-ae-udi, A also maps all symbolic storage instance IDs ι, to sets of either one or two (non-symbolic)
storage instance IDs. One might also need to record a partial equivalence relation over symbolic storage instance
IDs, to cope with the pointer subtraction and relational comparison cases where one learns that two provenances
are equal but both remain ambiguous, but that is debatable and not spelt out in this document.

The M is a partial map from addresses to abstract bytes, which are triples of a provenance π, either a byte
b or unspec, and an optional integer pointer-byte index j (or none). The last is used in PNVI* to distinguish
between loads of pointer values that were written as whole pointer writes vs those that were written byte-wise or
in some other way.

B.2.1 Mappings between abstract values and representation abstract-byte sequences

The M models the memory state in terms of low-level abstract bytes, but store and load take and return the
higher-level memory values. We relate the two with functions repr(v), mapping a memory value to a list of abstract
bytes, and abst(τ, bs), mapping a list of abstract bytes bs to its interpretation as a memory value with C type τ .

The repr(v) function is defined by induction over the structure of its memory value parameter and returns a
list of sizeof(τ) abstract bytes, where τ is the C type of the parameter. The base cases are values with scalar types
(integer, floating and pointers) and unspecified values. For an unspecified value of type τ , it returns a list with

ISO/IEC TS 6010:2023 (E) draft N3005 35

abstract bytes of the form (@empty, unspec, none). Non-null pointer values are represented with lists of abstract
bytes that each have the provenance of the pointer value, the appropriate part of the two’s complement encoding
of the address, and the 0.. sizeof(τ)−1 index of each byte. Null pointers are represented with lists of abstract bytes
of the form (@empty, 0, none). In PVI, integer values are represented similarly to pointer values except that the
third component of each abstract byte is none. In PNVI*, integer values are represented by lists of abstract bytes,
with each of their first components always the empty provenance, and each of their third components again none.
Floating-point values are similar, in all the models, except that the provenance of the abstract bytes is always
empty. For array and struct/union values the function is inductively applied to each subvalue and the resulting
byte-lists concatenated. The layout of structs and unions follow an implementation-defined ABI, with padding
bytes like those of unspecified values.

The abst(τ, bs) function is defined by induction over τ . The base cases are again the scalar types. For
these, sizeof(τ) abstract bytes are consumed from bs and a scalar memory value is constructed from their second
components: if any abstract byte has an unspec value, an unspecified value is constructed; otherwise, depending on
τ , a pointer, integer or floating-point value is constructed using the two’s complement or floating-point encoding.
For pointers with address 0, the provenance is empty. For non-0 pointer values and integer values, in PVI the
provenance is constructed as follows: if at least one abstract byte has non-empty provenance and all others have
either the same or empty provenance, that provenance is taken, otherwise the empty provenance is taken. In
PNVI*, when constructing a pointer value, if the third components of the bytes all carry the appropriate index,
and all have the same provenance (which will be guaranteed if pointer types all have the same size), the provenance
of the result is that provenance. Otherwise, the A part of the memory state is examined to find whether a live
storage instance exists with a footprint containing the pointer value that is being constructed. If so, in PNVI-plain,
its storage instance ID is used for the provenance of the pointer value, otherwise the empty provenance is used.
In PNVI-ae and PNVI-ae-udi, when constructing a pointer value, if A has to be examined then, matching the
relevant integer-to-pointer cast semantics below, the storage instance must have been exposed, otherwise the result
have the empty provenance. In PNVI-ae-udi, if there are two such live storage instances, with IDs i1 and i2, the
resulting pointer value is given a fresh symbolic storage instance ID ι, and A is updated to map ι to {i1, i2}. This
can only happen if the two storage instances are adjacent and the address is one-past the first and at the start of
the second. For array/struct types, abst() recurses on the progressively shrinking list of abstract bytes.

B.2.2 Memory operations

The successful semantics of memory operations is expressed as a transition relation between memory states, with
transitions labelled by the operation (including its arguments) and return value:

(A,M)
label−−−→ (A′,M ′)

For example, the transitions

(A,M)
load(τ,p)=v−−−−−−−→ (A′,M ′)

describe the semantics of a load(τ, p) in memory state (A,M), returning value v and with resulting memory state
(A′,M ′). The semantics also defines when each operation flags an out-of-memory (OOM) or undefined behaviour
(UB) in a memory state (A,M).

Storage instance creation When a new storage instance is created, either with allocate region (for the results
of malloc, calloc, and realloc, i.e. heap-allocated regions), or with allocate object (for objects with automatic or
static storage duration, i.e. global and local variables), in non-const and const variants: a fresh storage-instance
ID i is chosen; an address a is chosen from newAlloc(A, al, n), defined to be the set of addresses of blocks of size n
aligned by al that do not overlap with 0 or any other allocation in A; and the pointer value p = (@i, a) is returned.
In all three cases the storage-instance metadata A is updated with a new record for i, and this is initially marked
as unexposed. In the allocate object case the size n of the allocation is the representation size of the C type τ . In
the allocate region(al, τ, readOnly(v)) case, the last of the three rules, the memory M is updated to contain the

ISO/IEC TS 6010:2023 (E) draft N3005 36

representation of v at the addresses a..a+ sizeof(τ)− 1.

[label: allocate region(al, n) = p]

i /∈ dom(A) a ∈ newAlloc(A, al, n)
p = (@i, a)

A,M → A[i 7→ (n, none, a, readWrite, region, unexposed)],M

[label: allocate object(al, τ, readWrite) = p]

i /∈ dom(A) a ∈ newAlloc(A, al, n)
n = sizeof(τ) p = (@i, a)

A,M → A(i 7→ (n, τ, a, readWrite, object, unexposed)),M

[label: allocate object(al, τ, readOnly(v)) = p]

i /∈ dom(A) a ∈ newAlloc(A, al, n)
n = sizeof(τ) p = (@i, a)

A,M → A(i 7→ (n, τ, a, readOnly, object, unexposed)),M([a..a+ n− 1] 7→ repr(v))

Storage instance lifetime end When the storage instance of a pointer value (@i, a) is killed, either by a
free() for a heap-allocated region or at the end of lifetime of an object with automatic storage duration, the
storage-instance metadata A of storage instance i is updated to record that i has been killed.

[label: kill(p, k)]
p = (@i, a) k = k′

A(i) = (n, , a, f, k′,)

A,M → A(i 7→ killed),M

Load To load a value v of type τ from a pointer value p = (@i, a), there must be a live storage instance for i
in A, the footprint of τ at a must be within the footprint of that allocation, and the value v must be the abstract
value obtained from the appropriate memory bytes from M .

[label: load(τ, p) = v]
p = (@i, a) A(i) = (n, , a′, f, k,)
[a..a+ sizeof(τ)− 1] ⊆ [a′..a′ + n− 1]
v = abst(τ,M [a..a+ sizeof(τ)− 1])

A,M → A,M

For PNVI-ae and PNVI-ae-udi, if the recursive-on-τ computation of abst(τ,M [a..a+sizeof(τ)− 1]) involves a call
of abst at any non-pointer scalar type for a region of M including an abstract byte with non-empty provenance,
and the corresponding storage instance is live, it is marked as exposed. This applies e.g. for reads of pointer values
via char* pointers, and for union type punning reads at uintptr_t of pointer values.

Store To store a value v of type τ to a pointer value p = (@i, a), there must be a live storage instance for i
in A, which must be writable, and the footprint of τ at a must be within the footprint of that allocation. The
memory M is updated with the representation bytes of the value v.

[label: store(τ, p, v)]
p = (@i, a) A(i) = (n, , a′, readWrite, k,)

[a..a+ sizeof(τ)− 1] ⊆ [a′..a′ + n− 1]

A,M → A,M([a..a+ sizeof(τ)− 1] 7→ repr(v))

For PNVI-ae-udi, the kill, load, and store rules above must be adapted. If p = (ι, a) and A(ι) = {i}, the other
premises and conclusion of the appropriate above rule apply. If A(ι) = {i1, i2} and the premises are satisfied for
one of the two, say ij , the rest of the rule applies except that in the final state A is additionally updated to map
ι to {ij}.

The memory operations flag out-of-memory (OOM) and undefined behaviour (UB) as follows:

ISO/IEC TS 6010:2023 (E) draft N3005 37

allocate region(al, n) / allocate object(al, τ, readwrite) / allocate object(al, τ, readOnly(v)):
OOM out of memory if newAlloc(A, al, n) = {} or newAlloc(A, al, sizeof(τ)) = {}

load(τ, p) / store(τ, p, v) / kill(p):
UB null pointer if p = null

UB empty provenance if p = (@empty, a)
UB killed provenance if p = (@i, a) and A(i) = killed

load(τ, p) / store(τ, p, v):
UB out of bounds if p = (@i, a), A(i) = (n, , a′, f, k,), and [a..a+ sizeof(τ)− 1] ̸⊆ [a′..a′ + n− 1]

store(τ, p, v):
UB read-only if p = (@i, a) and A(i) = (n, , a′, readOnly, k,)

kill(p):
UB non-alloc-address if p = (@i, a), A(i) = (n, , a′, f, k,), and a ̸= a′

For PNVI-ae-udi, the rules above must be adapted. In the case where p = (ι, a) and A(ι) = {i}, the semantics
is exactly as for p = (i, a), while if A(ι) = {i1, i2}, one has UB only if the conditions above apply to both i1 and
i2.

B.2.3 Pointer / Integer operations

Pointer subtraction Pointers p = (@i, a) and p′ = (@i′, a′) can be subtracted if they have the same provenance
(i = i′), there is a live storage instance for i in A, and both a and a′ are within or one-past the footprint of that
allocation (in ISO C the last will always hold, otherwise UB would have been flagged in earlier pointer arithmetic).
Otherwise UB. The result is the numerical difference a−a′ divided by sizeof(dearray(τ))), where dearray(τ) returns
τ if it is not an array type, and otherwise returns its element type. Note that this disallows subtraction for which
one or both arguments are null pointers, which is the ISO semantics but may be a debatable choice.

This rule is stated for PNVI and PNVI-ae, returning pure integer. For PVI, diff ptrval constructs the same
integer but with @empty provenance. For PNVI-ae-udi, because subtraction of pointers with different provenance
should be UB:

� if both the two pointers have either a provenance @i (resp. @i′) or a symbolic storage instance ID ι (resp. ι′)
mapped by A to a singleton {i} (resp. {i′}), then i = i′, otherwise UB.

� if one of the two pointers has a symbolic storage instance ID ι, mapped by A to {i1, i2}, while the other
either has a provenance @i′ or an ι′ mapped to a singleton {i′}, then i′ must be either i1 or i2, and ι is
resolved to that in the A of the final state. Otherwise UB.

� If both pointers are ambiguous, say mapped to {i1, i2} and {i′1, i′2}, then if those two sets share exactly one
element which satisfies the other rule preconditions, both symbolic storage instance IDs are resolved to that.
Otherwise UB.

� If both pointers are ambiguous and those sets share two elements that satisfy the other conditions (which we
believe can only happen if the addresses are equal), then subtraction is permitted but the symbolic storage
instance IDs are left unresolved. Otherwise UB.

For example, suppose p and q have been produced by separate casts from an integer which is ambiguously
one-past one allocation and at the start of another. Then after p-q or p<q we know they must have been the
same provenance, but we still don’t know which. (Alternatively, we could change the semantics to record an
identity relation over symbolic storage instance IDs, and additional modifications to the rules below beyond
what is in this draft, but that seems to be unwarranted complexity).

[label: diff ptrval(τ, p, p′) = x]
p = (@i, a) p′ = (@i′, a′) i = i′ A(i) = (n, , â, f, k,)

x = (a− a′)/ sizeof(dearray(τ)) a ∈ [â..â+ n] a′ ∈ [â..â+ n]

A,M → A,M

Pointer relational comparison Pointers p = (@i, a) and p′ = (@i′, a′) can be compared with a relational
operator (<, <=, etc.) if they have the same provenance (i = i′). The result is the boolean result of the mathematical
comparison of a and a′. To make this analogous to pointer subtraction, we also require (though this is debatable)
that there is a live storage instance for i in A, and both a and a′ are within or one-past the footprint of that
allocation. Otherwise UB. Note that this disallows relational comparison against null pointers; a debatable choice.
For PNVI-ae-udi, this has to be adapted in much the same way as the pointer subtraction rule above.

[label: rel op ptrval(p, p′, op) = b]
p = (@i, a) p′ = (@i′, a′) i = i′ A(i) = (n, , â, f, k,)

b = op(a, a′) a ∈ [â..â+ n] a′ ∈ [â..â+ n] op ∈ {≤, <,>,≥}
A,M → A,M

ISO/IEC TS 6010:2023 (E) draft N3005 38

Relational comparison is used in practice between pointers to different objects. A variant which would allow that,
which we call allow-inter-object-relational-operators true, removes the i = i′ test above and (in the
zombie-pointers-become-indeterminate and zombie-pointers-allow-equality-only variants) addition-
ally checks that i′ maps to a live object with in-range address.

Pointer equality comparison Pointers p and p′ can always be compared with an equality operator (=, !=).
The result is true if they are either both null or both non-null and have the same provenance and address; nonde-
terministically either a = a′ or false if they are both non-null and have different provenances; and false otherwise.
For PNVI-ae-udi, because equality comparison is permitted (without UB) irrespective of the provenances of the
pointers, if the two pointers both have determined single provenances after looking up any symbolic IDs in A, this
should give true, otherwise the middle (nondeterministic) clause should apply. The final A should not resolve any
symbolic IDs.

[label: eq op ptrval(p, p′) = b]
b = true if p = p′

b ∈ {(a = a′), false} if p = (π, a), p′ = (π′, a′), and π ̸= π′

b = false otherwise

A,M → A,M

Note that the above nondeterminism appears to be necessary to admit the observable behaviour of current com-
pilers, but a simpler provenance-oblivious semantics is arguably desirable:

[label: eq op ptrval(p, p′) = b]
b = true if p = p′ = null

b = true if p = (π, a), p′ = (π′, a′), and a = a′

b = false otherwise

A,M → A,M

We call these two options pointer-equality-provenance-nondet true and false.

Pointer array offset Given a pointer p at C type τ , the result of offsetting p by integer x (either by array
indexing or explicit pointer/integer addition) is as follows, where x = n in PNVI*, or x = (π′, n) in PVI. For the
operation to succeed, p must be some non-null (@i, a). Then there must be a live storage instance for i, and the
numeric result of the addition of a+n∗ sizeof(τ) must be within or one-past the footprint of that storage instance.
Otherwise the operation flags UB. For PNVI-ae-udi, if p is ambiguous (i.e., p = (ι, a) and A(ι) = {i1, i2} then if
x is non-zero this should only be defined behaviour for (at most) one of the two, and then ι should be resolved to
that one in the final state. If x = 0 it does not resolve the ambiguity.

iso array offset ptrval(A, p, τ, x) =

(@i, a′)

if p = (@i, a) and

a′ = a+ n ∗ sizeof(τ) and
A(i) = (n′′, , a′′, , ,) and

a′ ∈ [a′′..a′′ + n′′]

UB: out of bounds if all except the last conjunct

above hold

UB: empty prov if p = (@empty, a)

UB: killed prov if p = (@i, a) and A(i) = killed

UB: null pointer if p = null

Pointer member offset Given a non-null pointer p at C type τ , which points to the start of a struct or union
type object (ISO C suggests this has to exist, writing “The value is that of the named member of the object to
which the first expression points”) with a member m, if p is (π, a), the result of offsetting the pointer to member
m has the same provenance π and the suitably offset a.

If p is null, the result is a pointer with empty provenance and the integer offset of m within τ ’s representation
(this is de facto C behaviour, in the sense that the GCC torture tests rely on it; it does not exactly match ISO C).

For the first case, p should point to the start of an object of type τ , with UB otherwise, but without a
subobject-aware effective-type semantics, we cannot check that here. Instead, we just check that there is a live
storage instance of p’s provenance such that the resulting address is within or one-past its a footprint. That makes

ISO/IEC TS 6010:2023 (E) draft N3005 39

this analogous to pointer array offset.

member offset ptrval(p, τ,m) =

(π, a′),

if p = (@i, a) and

a′ = a+ offsetof ival(τ,m) and

A(i) = (n′′, , a′′, , ,) and

a′ ∈ [a′′..a′′ + n′′]

(@empty, offsetof ival(τ,m)), if p = null.

Casts (PNVI-plain) In PNVI-plain, a cast of a pointer value p to an integer value (at type τ) just converts
null pointers to zero and non-null pointer values to the address a of the pointer, if that is representable in τ ,
otherwise flagging UB. The provenance of the pointer is discarded. At present we require that the object is live
and that its address is within bounds.

cast ptrval to ival(τ, p)=

0, if p = null;

a, if p = (@i, a) and

A(i) = (n′′, , a′′, , ,) and

a ∈ [a′′..a′′ + n′′] and a ∈ value range(τ)

UB, otherwise

In PNVI-plain, an integer-to-pointer cast of 0 returns the null pointer. For a non-0 integer x, casting to a
pointer to τ , if there is a storage instance i in the current memory model state (A,M) for which the address of
the pointer would be properly within the footprint of the storage instance, it returns a pointer (@i, x) with the
provenance of that storage instance. (The “properly within” prevents the one-past ambiguous case.) If there is
no such storage instance, it returns a pointer with empty provenance.

cast ival to ptrval(τ, x)

=

null, if x = 0

(@i, x), if A(i) = (n, , a, f, k,) and x ∈ [a..a+ n− 1]

(@empty, x), if there is no such i

Casts (PNVI-ae) In PNVI-ae, the result of a cast of a pointer value p to an integer value is exactly as in PNVI-
plain. In addition, for a cast of pointer value p = (@i, a) with provenance @i, where A(i) = (n, τopt, a, f, k, t) is
the storage instance metadata for i, the memory state (A,M) is updated to (A(i 7→ (n, τopt, a, f, k, exposed)),M)
to mark the that storage instance as exposed.

In PNVI-ae, an integer-to-pointer cast of 0 returns the null pointer. For a non-0 integer x, casting to a pointer
to τ , if there is a storage instance i in the current memory model state (A,M) for which the address of the pointer
would be properly within the footprint of the storage instance, and storage instance i is exposed, it returns a
pointer (@i, x) with the provenance of that storage instance. If there is no such storage instance, it returns a
pointer with empty provenance.

cast ival to ptrval(τ, x)

=

null, if x = 0

(@i, x), if A(i) = (n, , a, f, k, exposed) and x ∈ [a..a+ n− 1]

(@empty, x), if there is no such i

Casts (PNVI-ae-udi) In PNVI-ae-udi, a cast of a pointer value p to an integer is just like PNVI-ae.
Unlike PNVI-ae, PNVI-ae-udi permits a cast of a one-past pointer to integer and back to recover the original

provenance, replacing the integer-to-pointer check that x is properly within the footprint of the storage instance
by a check that it is properly within or one-past:

cast ival to ptrval(τ, x)

=

null, if x = 0

(@i, x), if A(i) = (n, , a, f, k, exposed) and x ∈ [a..a+ n]

(@empty, x), if there is no such i

But then a PNVI-ae-udi cast of an integer value to a pointer can create a pointer with ambiguous provenance (as
in the definition of repr) : if it could be within or one-past two live storage instances, with IDs i1 and i2, and
both storage instances have been marked as exposed, the resulting pointer value is given a fresh symbolic storage
instance ID ι, and A is updated to map ι to {i1, i2}. This can only happen if the two storage instances are adjacent
and the address is one-past the first and at the start of the second.

ISO/IEC TS 6010:2023 (E) draft N3005 40

Casts (PVI)

cast ival to ptrval(τ, x) =

{
null, if x = (@empty, 0)

(π, n), otherwise, where x = (π, n)

cast ptrval to ival(τ, p) =

(@empty, 0), if p = null;

(π, a), if p = (π, a) and a ∈ value range(τ)

UB, otherwise

Integer operations (PVI) In PVI one also has to define the provenance results of all the other operations
returning integer values. Below we do so for the basic operations, though this would also be needed for all the
integer-returning library functions. Most would give integers with empty provenance. One might or might not
also want to require that the objects of those provenances are live.

π ⊕ π′ =

π, if π = π′ or π′ = @empty;

π′, if π = @empty;

@empty, otherwise.

op ival(op, (π, n), (π′,m)) = (π ⊕ π′, op(n,m)), where op ∈ {+, ∗, /,%,&, |,∧}

op ival(−, (π, n), (π′,m)) =

(@empty, n−m), if π = @i and π′ = @i′, whether i = i′ or not;

(@i, n−m), if π = @i and π′ = @empty;

(@empty, n−m), if π = @empty.

eq ival((π, n), (π′,m)) = (n = m)
lt ival((π, n), (π′,m)) = (n < m)
le ival((π, n), (π′,m)) = (n ≤ m)

B.2.4 No-expose annotation

For PNVI-ae and PNVI-ae-udi, to permit implementations, e.g. of memcpy-like functions, to operate on representation
bytes but without needlessly leaving all the storage instances that were pointed to in those bytes exposed, we
envisaged some “no-expose” annotation that users could apply to such code. But now it’s not so clear how that
could work. We can turn off exposure during execution of annotated code easily enough (though Jens points
out that this might not be the right thing for code which is passed a function pointer). But if the user-memcpy
code copies bytes via a char * pointer, then the resulting abstract types in memory still have empty provenance
(because we’re not tracking provenance via the intervening integer values), so when a pointer value is read (after
the user-memcpy) from the copy, it will still get empty provenance.

B.2.5 Provenance of other operations

In addition to the operations defined above, some operations are desugared/elaborated to simpler expressions by
the Cerberus pipeline. Their PVI results have provenance as follows; their PNVI* results are the same except that
there integers have no provenance:

� the result of address-of (&) has the provenance of the object associated with the lvalue, for non-function-
pointers, or empty for function pointers.

� prefix increment and decrement operators follow the corresponding pointer or integer arithmetic rules.
� the conditional operator has the provenance of the second or third operand as appropriate; simple assignment
has the provenance of the expression; compound assignment follows the pointer or integer arithmetic rules;
the comma operator has the provenance of the second operand.

� integer unary +, unary -, and ˜ operators preserve the original provenance; logical negation ! has a value
with empty provenance.

� sizeof and _Alignof operators give values with empty provenance.
� bitwise shifts has the provenance of their first operand.
� Jens Gustedt highlights that atomic operations have their own specific provenance properties, not yet dis-
cussed here, as do some library functions.

ISO/IEC TS 6010:2023 (E) draft N3005 41

C Modifications to ISO/IEC 9899:2018 (normative)

Implementations that conform to this technical specification, shall behave as if the modifications described in this
annex were applied to ISO/IEC 9899:2018. This annex is organized as follows:

� If possible, numbers of clauses refer to the clauses of ISO/IEC 9899:2018.

� Two new sub-clauses are introduced in clause 3 with numbers 3.17 (“provenance”) and 3.20 (“storage in-
stance”). The given context of ISO/IEC 9899:2018 and the numbering indicates the places of insertion.

� The subclause (now 3.21.2) “indeterminate value” is modified and renamed to “indeterminate representa-
tion”.

� The subclause (now 3.21.4) “trap representation” is modified and renamed to “non-value representation”.

� Clause 6.2.4 of ISO/IEC 9899:2018 is renamed from ”Storage durations of objects” to ”
:::::::
Storage

:::::::::
durations

:::
and

::::::
object

::::::::
lifetimes”.

� Clause 7.22.3 of ISO/IEC 9899:2018 is renamed from ”Memory management functions” to ”
:::::::
Storage

:::::::::::
management

:::::::::
functions”.

� Page numbers in the footer correspond to an approximation of the page number in ISO/IEC 9899:2018.

� Page numbers in the top right corner correspond to the page numbering within this document, here.

� Additions to the text are marked as
::::::
shown.

� Deletions of text are marked as shown.

42modifications to ISO/IEC 9899:2018, § 3.20 page 6, draft — June 15, 2022 C17..TS 6010

contains four separate memory locations: The member a, and bit-fields d and e.ee are each separate memory locations,
and can be modified concurrently without interfering with each other. The bit-fields b and c together constitute the fourth
memory location. The bit-fields b and c cannot be concurrently modified, but b and a, for example, can be.

3.15
1 object

region of data storage in the execution environment, the contents of which can represent values
2 Note 1 to entry: When referenced, an object can be interpreted as having a particular type; see 6.3.2.1.

3.16
1 parameter

formal parameter

DEPRECATED: formal argument

object declared as part of a function declaration or definition that acquires a value on entry to the
function, or an identifier from the comma-separated list bounded by the parentheses immediately
following the macro name in a function-like macro definition

3.17
1 pointer provenance

::::::::::
provenance

:

::
an

::::::
entity

::::
that

::
is

:::::::::
associated

:::
to

:
a
:::::::
pointer

:::::
value

:::
in

:::
the

:::::::
abstract

:::::::::
machine,

::::::
which

::
is

::::::
either

::::::
empty,

::
or

::::
the

:::::::
identity

::
of

::
a

:::::::
storage

:::::::
instance

:

3.18
1 recommended practice

specification that is strongly recommended as being in keeping with the intent of the standard, but
that might be impractical for some implementations

3.19
1 runtime-constraint

requirement on a program when calling a library function
2 Note 1 to entry: Despite the similar terms, a runtime-constraint is not a kind of constraint as defined by 3.8, and need not be

diagnosed at translation time.

3 Note 2 to entry: Implementations that support the extensions in Annex K are required to verify that the runtime-constraints
for a library function are not violated by the program; see K.3.1.4.

4 Note 3 to entry: Implementations that support Annex L are permitted to invoke a runtime-constraint handler when they
perform a trap.

3.20
1 storage instance

:::
the

:::::::::::::::::
inclusion-maximal

::::::
region

:::
of

::::
data

:::::::
storage

:::
in

:::
the

::::::::::
execution

::::::::::::
environment

::::
that

::
is

:::::::
created

::::::
when

:::::
either

:::
an

:::::
object

::::::::::
definition

::
or

:::
an

:::::::::
allocation

::
is

:::::::::::
encountered

:

2 Note 1 to entry:
::::::
Storage

:::::::
instances

::
are

::::::
created

:::
and

::::::::
destroyed

:::::
when

::::::
specific

:::::::
language

:::::::
constructs

:::::
(6.2.4)

:::
are

:::
met

::::::
during

::::::
program

::::::::
execution,

:::::::
including

:::::::
program

:::::
startup,

::
or
:::::
when

:::::
specific

::::::
library

:::::::
functions

:::::
(7.22.3)

:::
are

:::::
called.

3 Note 2 to entry:
:
A
:::::

given
:::::
storage

:::::::
instance

:::
may

::
or

:::
may

:::
not

::::
have

:
a
:::::::
memory

::::::
address,

:::
and

:::
may

::
or
::::
may

:::
not

::
be

:::::::
accessible

::::
from

::
all

:::::
threads

::
of
::::::::
execution.

4 Note 3 to entry:
::::::
Storage

:::::::
instances

:::
have

:::::::
identities

:::::
which

:::
are

:::::
unique

:::::
across

::
the

:::::::
program

::::::::
execution.

5 Note 4 to entry:
:
A
::::::

storage
::::::
instance

::::
with

:
a
:::::::

memory
::::::
address

:::::::
occupies

:
a
:::::
region

::
of

:::
zero

::
or
:::::

more
::::
bytes

::
of

::::::::
contiguous

::::
data

:::::
storage

::
in

:::
the

:::::::
execution

::::::::::
environment.

6 Note 5 to entry:
:::
One

::
or

::::
more

:::::
objects

:::
may

::
be

:::::::::
represented

:::::
within

:::
the

::::
same

::::::
storage

::::::
instance,

::::
such

::
as

:::
two

::::::::
subobjects

:::::
within

::
an

::::
object

::
of

:::::::
structure

::::
type,

:::
two

:::::::::::
const-qualified

::::::::
compound

::::::
literals

:::
with

:::::::
identical

::::
object

:::::::::::
representation,

::
or

:::
two

:::::
string

:::::
literals

::::
where

:::
one

::
is

:::
the

::::::
terminal

:::::::
character

:::::::
sequence

::
of

::
the

:::::
other.

modifications to ISO/IEC 9899:2018, § 3.20 page 6 General

43modifications to ISO/IEC 9899:2018, § 3.23 page 7, draft — June 15, 2022 C17..TS 6010

3.21
1 value

precise meaning of the contents of an object when interpreted as having a specific type

3.21.1
1 implementation-defined value

unspecified value where each implementation documents how the choice is made

3.21.2
1 indeterminate representation

either
:::::
object

::::::::::::::
representation

::::
that

::::::
either

:::::::::
represents

:
an unspecified value or a trap

:
is
::

a
::::::::::
non-value

representation

3.21.3
1 unspecified value

valid value of the relevant type where this document imposes no requirements on which value is
chosen in any instance An unspecified value cannot be a trap representation.

3.21.4
1 non-value representation

an object representation that need
::::
does

:
not represent a value of the object type

3.21.5
1 perform a trap

interrupt execution of the program such that no further operations are performed
2 Note 1 to entry: In this document, when the word "trap" is not immediately followed by "representation", this is the

intended usage.2)

3 Note 2 to entry: Implementations that support Annex L are permitted to invoke a runtime-constraint handler when they
perform a trap.

3.22
1 ⌈x⌉

ceiling of x

the least integer greater than or equal to x

2 EXAMPLE ⌈2.4⌉ is 3, ⌈−2.4⌉ is −2.

3.23
1 ⌊x⌋

floor of x

the greatest integer less than or equal to x

2 EXAMPLE ⌊2.4⌋ is 2, ⌊−2.4⌋ is −3.

2)For example, "Trapping or stopping (if supported) is disabled . . . " (F.8.2). Note that fetching a trap
:::::::
non-value representa-

tion might perform a trap but is not required to (see 6.2.6.1).

General modifications to ISO/IEC 9899:2018, § 3.23 page 7

44modifications to ISO/IEC 9899:2018, § 5.1.2.3 page 12, draft — June 15, 2022 C17..TS 6010

of those operations are all side effects,12) which are changes in the state of the execution environment.
Evaluation of an expression in general includes both value computations and initiation of side effects.
Value computation for an lvalue expression includes determining the identity of the designated
object.

3 Sequenced before is an asymmetric, transitive, pair-wise relation between evaluations executed by a
single thread, which induces a partial order among those evaluations. Given any two evaluations
A and B, if A is sequenced before B, then the execution of A shall precede the execution of B.
(Conversely, if A is sequenced before B, then B is sequenced after A.) If A is not sequenced before or
after B, then A and B are unsequenced. Evaluations A and B are indeterminately sequenced when A is
sequenced either before or after B, but it is unspecified which.13) The presence of a sequence point
between the evaluation of expressions A and B implies that every value computation and side effect
associated with A is sequenced before every value computation and side effect associated with B. (A
summary of the sequence points is given in Annex C.)

4 In the abstract machine, all expressions are evaluated as specified by the semantics. An actual
implementation need not evaluate part of an expression if it can deduce that its value is not used and
that no needed side effects are produced (including any caused by calling a function or accessing a
volatile object).

5 When the processing of the abstract machine is interrupted by receipt of a signal, the values of
objects that are neither lock-free atomic objects nor of type volatile sig_atomic_t are unspecified,
as is the state of the floating-point environment. The value

:::::::::::::
representation

:
of any object modified by

the handler that is neither a lock-free atomic object nor of type volatile sig_atomic_t becomes
indeterminate when the handler exits, as does the state of the floating-point environment if it is
modified by the handler and not restored to its original state.

6 The least requirements on a conforming implementation are:

— Accesses to volatile objects are evaluated strictly according to the rules of the abstract machine.

— At program termination, all data written into files shall be identical to the result that execution
of the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place as specified in 7.21.3.
The intent of these requirements is that unbuffered or line-buffered output appear as soon as
possible, to ensure that prompting messages actually appear prior to a program waiting for
input.

This is the observable behavior of the program.

7 What constitutes an interactive device is implementation-defined.

8 More stringent correspondences between abstract and actual semantics may be defined by each
implementation.

9 EXAMPLE 1 An implementation might define a one-to-one correspondence between abstract and actual semantics: at every
sequence point, the values of the actual objects would agree with those specified by the abstract semantics. The keyword
volatile would then be redundant.

10 Alternatively, an implementation might perform various optimizations within each translation unit, such that the actual
semantics would agree with the abstract semantics only when making function calls across translation unit boundaries. In
such an implementation, at the time of each function entry and function return where the calling function and the called
function are in different translation units, the values of all externally linked objects and of all objects accessible via pointers
therein would agree with the abstract semantics. Furthermore, at the time of each such function entry the values of the
parameters of the called function and of all objects accessible via pointers therein would agree with the abstract semantics. In
this type of implementation, objects referred to by interrupt service routines activated by the signal function would require
explicit specification of volatile storage, as well as other implementation-defined restrictions.

12)The IEC 60559 standard for binary floating-point arithmetic requires certain user-accessible status flags and control
modes. Floating-point operations implicitly set the status flags; modes affect result values of floating-point operations.
Implementations that support such floating-point state are required to regard changes to it as side effects — see Annex F for
details. The floating-point environment library <fenv.h> provides a programming facility for indicating when these side
effects matter, freeing the implementations in other cases.

13)The executions of unsequenced evaluations can interleave. Indeterminately sequenced evaluations cannot interleave, but
can be executed in any order.

modifications to ISO/IEC 9899:2018, § 5.1.2.3 page 12 Environment

45modifications to ISO/IEC 9899:2018, § 5.2.4.2.1 page 20, draft — June 15, 2022 C17..TS 6010

— 12 pointer, array, and function declarators (in any combinations) modifying an arithmetic,
structure, union, or void type in a declaration

— 63 nesting levels of parenthesized declarators within a full declarator

— 63 nesting levels of parenthesized expressions within a full expression

— 63 significant initial characters in an internal identifier or a macro name(each universal charac-
ter name or extended source character is considered a single character)

— 31 significant initial characters in an external identifier (each universal character name specify-
ing a short identifier of 0000FFFF or less is considered 6 characters, each universal character
name specifying a short identifier of 00010000 or more is considered 10 characters, and each
extended source character is considered the same number of characters as the corresponding
universal character name, if any)19)

— 4095 external identifiers in one translation unit

— 511 identifiers with block scope declared in one block

— 4095 macro identifiers simultaneously defined in one preprocessing translation unit

— 127 parameters in one function definition

— 127 arguments in one function call

— 127 parameters in one macro definition

— 127 arguments in one macro invocation

— 4095 characters in a logical source line

— 4095 characters in a string literal (after concatenation)

— 65535 bytes in an object (in a hosted environment only)

— 15 nesting levels for #included files

— 1023 case labels for a switch statement (excluding those for any nested switch statements)

— 1023 members in a single structure or union

— 1023 enumeration constants in a single enumeration

— 63 levels of nested structure or union definitions in a single struct-declaration-list

5.2.4.2 Numerical limits
1 An implementation is required to document all the limits specified in this subclause, which are

specified in the headers <limits.h> and <float.h>. Additional limits are specified in <stdint.h>.

Forward references: integer types <stdint.h> (7.20).

5.2.4.2.1 Sizes of integer types <limits.h>
1 The values given below shall be replaced by constant expressions

:
.
::
If

:::
the

:::::
value

::::
and

:::::::::
promoted

:::::
type

:
is
:::

in
:::
the

::::::
range

::
of

::::
the

::::
type

:::::::::
intmax_t

::::
(for

::
a

::::::
signed

:::::
type)

:::
or

::::::::::
uintmax_t

::::
(for

:::
an

:::::::::
unsigned

:::::
type),

::::
see

:::::::
7.20.1.5,

:::
the

::::::::::
expression

:::::
shall

::
be

:
suitable for use in #if preprocessing directives.

Moreover, except for CHAR_BIT and MB_LEN_MAX, the following shall be replaced by expressions that
have the same type as would an expression that is an object of the corresponding type converted
according to the integer promotions. Their implementation-defined values shall be equal or greater
in magnitude (absolute value) to those shown, with the same sign.

— number of bits for smallest object that is not a bit-field (byte)

19)See "future language directions" (6.11.3).

modifications to ISO/IEC 9899:2018, § 5.2.4.2.1 page 20 Environment

46modifications to ISO/IEC 9899:2018, § 6.2.4 page 30, draft — June 15, 2022 C17..TS 6010

Forward references: enumeration specifiers (6.7.2.2), labeled statements (6.8.1), structure and union
specifiers (6.7.2.1), structure and union members (6.5.2.3), tags (6.7.2.3), the goto statement (6.8.6.1).

An object has a that determines its lifetime. There are four storage durations: static, thread,
automatic, and allocated. Allocated storage is described in ??.

6.2.4 Storage durations and object lifetimes
1 The lifetime of an object is the portion of program execution during which storage is guaranteed

:::
has

::
a

::::
start

::::
and

:::
an

::::
end,

::::::
which

:::::
both

:::::::::
constitute

:::::
side

::::::
effects

::
in

:::
the

::::::::
abstract

:::::
state

::::::::
machine,

::::
and

::
is
::::
the

::
set

:::
of

::
all

:::::::::::
evaluations

::::
that

:::::::
happen

:::::
after

:::
the

:::::
start

::::
and

::::::
before

:::
the

:::::
end.

:::
An

::::::
object

::::::
exists,

:::
has

::
a

:::::::
storage

:::::::
instance

::::
that

::
is

:::::::::::
guaranteed to be reserved for it. An object exists,

:
,33) has a constant address,34)

:
if

::::
any,

and retains its last-stored value throughout its lifetime.35) If

2
:::
The

::::::::
lifetime

::
of

:
an object is referred to outside of its lifetime, the behavior is undefined. The value

of a pointer becomes indeterminate when the object it points to (or just past) reaches the end of
its lifetime

::::::::::
determined

:::
by

:::
its

:
storage duration

:
.
::::::

There
::::

are
::::
four

::::::::
storage

::::::::::
durations:

::::::
static,

:::::::
thread,

:::::::::
automatic,

::::
and

:::::::::
allocated.

:::::::::
Allocated

:::::::
storage

::::
and

:::
its

::::::::
duration

:::
are

:::::::::
described

:::
in

:::::
7.22.3.

3 An
::::
The

:::::::
storage

:::::::
instance

:::
of

::
an

:
object whose identifier is declared without the storage-class specifier

_Thread_local, and either with external or internal linkage or with the storage-class specifier
static, has static storage duration . Its

:
,
::
as

:::
do

:::::::
storage

::::::::
instances

:::
for

::::::
string

::::::
literals

::::
and

:::::
some

::::::::::
compound

::::::
literals.36)

:::
The

:::::::
object’s

:
lifetime is the entire execution of the program and its stored value is initialized

only once, prior to program startup.

4 An
::::
The

:::::::
storage

:::::::
instance

:::
of

::
an

:
object whose identifier is declared with the storage-class specifier

_Thread_local has thread storage duration. Its
::::
The

:::::::
object’s lifetime is the entire execution of the

thread for which it is created, and its stored value is initialized when the thread is started. There is a
distinct object

:::::::
instance

::
of

::::
the

:::::
object

::::
and

:::::::
distinct

::::::::::
associated

:::::::
storage

::::::::
instance per thread, and use of

the declared name in an expression refers to the object associated with the thread evaluating the
expression. The result of attempting to indirectly access an object with thread storage duration from
a thread other than the one with which the object is associated is implementation-defined.

5 An
::::
The

:::::::
storage

:::::::
instance

:::
of

::
an

:
object whose identifier is declared with no linkage and without the

storage-class specifier static has automatic storage duration, as do
::::::
storage

:::::::::
instances

::
of

::::::::::
temporary

::::::
objects

::::
and

:
some compound literals. The result of attempting to indirectly access an object with

automatic storage duration from a thread other than the one with which the object is associated is
implementation-defined.

6 For such an object that does not have a variable length array type, its lifetime extends from entry
into the block with which it is associated until execution of that block ends in any way. (Entering an
enclosed block or calling a function suspends, but does not end, execution of the current block.) If
the block is entered recursively, a new instance of the object

::::
and

:::::::::
associated

:::::::
storage

:
is created each

time. The initial value
:::
The

::::::
initial

:::::::::::::
representation

:
of the object is indeterminate. If an initialization is

specified for the object, it is performed each time the declaration or compound literal is reached in
the execution of the block; otherwise, the value

:::::::::::::
representation

::
of

:::
the

::::::
object becomes indeterminate

each time the declaration is reached.

7 For such an object that does have a variable length array type, its lifetime extends from the declaration
of the object until execution of the program leaves the scope of the declaration.37) If the scope is
entered recursively, a new instance of the object

:::
and

::::::::::
associated

:::::::
storage is created each time. The

initial value
:::
The

::::::
initial

:::::::::::::
representation

:
of the object is indeterminate.

8 A non-lvalue expression with structure or union type, where the structure or union contains a
33)

::::
String

::::::
literals,

::::::::
compound

::::::
literals

::
or

:::::
certain

:::::
objects

::::
with

::::::::
temporary

::::::
lifetime

::::
may

::::
share

::
a

:::::
storage

:::::::
instance

:::
with

:::::
other

:::
such

::::::
objects.

34)The term "constant address" means that two pointers to the object constructed at possibly different times will compare
equal. The address can be different during two different executions of the same program.

35)In the case of a volatile object, the last store need not be explicit in the program.
36)

:::
Such

:::
are

:::
for

::::::
example

:::::::::
compound

:::::
literals

::::
that

::
are

::::::::
evaluated

::
in

:::
file

::::
scope

:::
or

:::
that

:::
are

:::::
const

:::::::
qualified

:::
and

::::
have

::::
only

::::::
constant

:::::::::
expressions

:
as
:::::::::

initializers.
37)Leaving the innermost block containing the declaration, or jumping to a point in that block or an embedded block prior

to the declaration, leaves the scope of the declaration.

modifications to ISO/IEC 9899:2018, § 6.2.4 page 30 Language

47modifications to ISO/IEC 9899:2018, § 6.2.5 page 33, draft — June 15, 2022 C17..TS 6010

optionally specified name and possibly distinct type.

— A function type describes a function with specified return type. A function type is characterized
by its return type and the number and types of its parameters. A function type is said to
be derived from its return type, and if its return type is T, the function type is sometimes
called "function returning T". The construction of a function type from a return type is called
"function type derivation".

— A pointer type may be derived from a function type or an object type, called the referenced
type. A pointer type describes an object whose value provides a reference to an entity
of the referenced type.

:
If
::::

the
::::
type

:::
is

::
an

::::::
object

:::::
type,

::::
the

:::::::
pointer

::::
also

:::::::
carries

::
a

:::::::::
provenance

:
,
:

::::::::
typically

::::::::::
identifying

::::
the

:::::::
storage

:::::::
instance

::::::::
holding

:::
the

::::::::::::::
corresponding

::::::
object,

::
if
::::
any;

:::
its

::::::
value

:
is
:

valid
:
if

::::
and

::::
only

::
if
::
it
::::
has

:
a
:::::::::::
non-empty

:::::::::::
provenance,

:::::
there

::
is

::
a

::::
live

:::::::
storage

::::::::
instance

:::
for

::::
that

:::::::::::
provenance,

::::
and

:::
the

:::::::
address

::
is

:::::
either

:::::::
within

::
or

::::::::
one-past

:::
the

:::::::::
addresses

::
of

::::
that

:::::::
storage

::::::::
instance.

::
A

:::::::::::::::::
pointer-to-function

::
is

:::::
valid

::
if

:
it
::::::
refers

::
to

:
a
:::::
valid

::::::::
function

:::::::::
defintion

::
of

:::
the

:::::::::
program.

::::::::
Pointers

:::::::::::
additionally

::::
may

:::::
have

::
a
:::::::
special

:::::
value

:
null

:::
that

::
is
::::::::
different

:::::
from

::::
the

:::::::
address

:::
of

::::
any

:::::::
storage

:::::::
instance

::::
and

::::
has

:::
no

:::::::::::
provenance

:::
(for

::::::
object

:::::::::
pointers),49)

::
or

:::::
from

:::
the

:::::::
address

:::
of

::::
any

::::::::
function

::
of

:::
the

::::::::
program

::::
(for

::::::::
function

:::::::::
pointers).

::
If

:
a
:::::::
pointer

::::::
value

::
is

:::::::
neither

:::::
valid

:::
nor

:::::
null,

:
it
::
is
:
invalid

:
. A pointer type derived from the referenced type T is sometimes called "pointer to T". The
construction of a pointer type from a referenced type is called "pointer type derivation". A
pointer type is a complete object type.50)

::::::
Under

::::::
certain

:::::::::::::
circumstances

:
a
:::::::
pointer

::::::
value

:::
can

:::::
have

::
an

::::::::
address

::::
that

:
is
::::
the

::::
end

:::::::
address

::
of

::::
one

:::::::
storage

::::::::
instance

::::
and

:::
the

::::
start

::::::::
address

::
of

::::::::
another.

::
It

::::
(and

::::
any

:::::::
pointer

:::::
value

::::::::
derived

:::::
from

::
it

::
by

:::::::
means

::
of

::::::::::
arithmetic

::::::::::
operations)

:::::
shall

:::::
then

:::
not

:::
be

::::
used

::
in

::::::
ways

::::
that

::::::
require

:::
(in

::::::::
different

::::::::
usages)

:::::
more

::::
than

::::
one

::
of

:::::
these

::::::::::::
provenances

— An atomic type describes the type designated by the construct _Atomic(type-name). (Atomic
types are a conditional feature that implementations need not support; see 6.10.8.3.)

These methods of constructing derived types can be applied recursively.

21 Arithmetic types and pointer types are collectively called scalar types. Array and structure types are
collectively called aggregate types.51)

22 An array type of unknown size is an incomplete type. It is completed, for an identifier of that type,
by specifying the size in a later declaration (with internal or external linkage). A structure or union
type of unknown content (as described in 6.7.2.3) is an incomplete type. It is completed, for all
declarations of that type, by declaring the same structure or union tag with its defining content later
in the same scope.

23 A type has known constant size if the type is not incomplete and is not a variable length array type.

24 Array, function, and pointer types are collectively called derived declarator types. A declarator type
derivation from a type T is the construction of a derived declarator type from T by the application of
an array-type, a function-type, or a pointer-type derivation to T.

25 A type is characterized by its type category, which is either the outermost derivation of a derived
type (as noted above in the construction of derived types), or the type itself if the type consists of no
derived types.

26 Any type so far mentioned is an unqualified type. Each unqualified type has several qualified versions
of its type,52) corresponding to the combinations of one, two, or all three of the const, volatile,

49)
:
A
::::::
pointer

::::
object

:::
can

::
be

:::
null

::
by

::::::
implicit

::
or

::::::
explicit

:::::::::
initialization

::
or

::::::::
assignment

::::
with

:
a
:::
null

::::::
pointer

::::::
constant

::
or

::
by

::::::
another

:::
null

:::::
pointer

:::::
value.

::
A

:::::
pointer

:::::
value

:::
can

::
be

:::
null

:
if
::
it

:
is
:::::
either

:
a
:::
null

::::::
pointer

::::::
constant

::
or

::
the

:::::
result

::
of

::
an

:::::
lvalue

::::::::
conversion

::
of

:
a

:::
null

:::::
pointer

:::::
object.

::
A
:::
null

::::::
pointer

:::
will

:::
not

:::::
appear

::
as

:::
the

::::
result

::
of

::
an

:::::::
arithmetic

::::::::
operation.

:
50)

:::
The

::::::::
provenance

::
of

:
a
::::::
pointer

::::
value

:::
and

::
the

:::::::
property

:::
that

::::
such

:
a
:::::
pointer

:::::
value

:
is
::::
valid

::
or

::
not

:::
are

:::::::
generally

:::
not

::::::::
observable.

:
In
::::::::

particular,
::
in

::
the

:::::
course

::
of
:::
the

::::
same

::::::
program

::::::::
execution

::
the

::::
same

::::::
pointer

::::
object

::::
with

:::
the

::::
same

::::::::::
representation

::::
bytes

:::::
(6.2.6)

:::
may

::::::::
sometimes

:::::::
represent

::::
valid

::::::
values

::
but

::::
with

:::::::
different

:::::::::
provenance

:::
(and

::::
thus

::::
refer

::
to

::::::
different

::::::
objects).

:::::::::
Sometimes

:::
the

::::
object

:::::::::::
representation

:::
may

::::
even

::
be

:::::::::::
indeterminate,

::::::
namely

::::
when

:::
the

::::::
lifetime

::
of

::
the

::::::
storage

::::::
instance

:::
has

:::::
ended

:::
and

::
no

::::
new

:::::
storage

::::::
instance

::::
uses

::
the

::::
same

:::::::
address..

:::
Yet,

:::
this

:::::::::
information

::
is

:::
part

::
of

::
the

::::::
abstract

::::
state

::::::
machine

:::
and

::::
may

:::::
restrict

:::
the

::
set

::
of

::::::::
operations

:::
that

:::
can

::
be

::::::::
performed

::
on

::
the

::::::
pointer.

51)Note that aggregate type does not include union type because an object with union type can only contain one member at
a time.

52)See 6.7.3 regarding qualified array and function types.

Language modifications to ISO/IEC 9899:2018, § 6.2.5 page 33

48modifications to ISO/IEC 9899:2018, § 6.2.6.1 page 34, draft — June 15, 2022 C17..TS 6010

and restrict qualifiers. The qualified or unqualified versions of a type are distinct types that
belong to the same type category and have the same representation and alignment requirements.53)

A derived type is not qualified by the qualifiers (if any) of the type from which it is derived.

27 Further, there is the _Atomic qualifier. The presence of the _Atomic qualifier designates an atomic
type. The size, representation, and alignment of an atomic type need not be the same as those of
the corresponding unqualified type. Therefore, this document explicitly uses the phrase "atomic,
qualified or unqualified type" whenever the atomic version of a type is permitted along with the
other qualified versions of a type. The phrase "qualified or unqualified type", without specific
mention of atomic, does not include the atomic types.

28 A pointer to void shall have the same representation and alignment requirements as a pointer to a
character type.53) Similarly, pointers to qualified or unqualified versions of compatible types shall
have the same representation and alignment requirements. All pointers to structure types shall
have the same representation and alignment requirements as each other. All pointers to union types
shall have the same representation and alignment requirements as each other. Pointers to other
types need not

:
It

::
is

::::::
imple

:::::
men

:::
ta

:::::::::::
tion-defined

::::::::
whether

:::::
other

:::::::
groups

::
of

:::::::
pointer

:::::
types

:
have the same

representation or alignment requirements.54)

29 EXAMPLE 1 The type designated as "float *" has type "pointer to float". Its type category is pointer, not a floating type.
The const-qualified version of this type is designated as "float * const" whereas the type designated as "const float *"
is not a qualified type — its type is "pointer to const-qualified float" and is a pointer to a qualified type.

30 EXAMPLE 2 The type designated as "struct tag (*[5])(float)" has type "array of pointer to function returning
struct tag". The array has length five and the function has a single parameter of type float. Its type category is array.

Forward references: compatible type and composite type (6.2.7), declarations (6.7).

6.2.6 Representations of types
6.2.6.1 General

1 The representations of all types are unspecified except as stated in
::::
6.2.5

::::
and

:::
in

:
this subclause.

:::
An

::::::
object

::
is

:::::::::::
represented

:::
(or

:::::
held)

:::
by

::
a

:::::::
storage

::::::::
instance

:::
(or

::::
part

::::::::
thereof)

::::
that

::
is

::::::
either

:::::::
created

:::
by

::
an

:::::::::
allocation

::::
(for

:::::::::
allocated

:::::::
storage

::::::::::
duration),

::
at

::::::::
program

:::::::
startup

::::
(for

::::::
static

:::::::
storage

:::::::::
duration),

:::
at

::::::
thread

:::::::
startup

:::
(for

:::::::
thread

::::::
storage

::::::::::
duration),

::
or

::::::
when

:::
the

:::::::
lifetime

::
of

::::
the

:::::
object

::::::
starts

:::
(for

::::::::::
automatic

::::::
storage

::::::::::
duration).

2
:::
An

:::::::::::
addressable

:::::::
storage

::::::::
instance55)

::
of

::::
size

::
m

:::::::::
provides

::::::
access

::
to

::
a

::::
byte

:::::
array

::
of

:::::::
length

::
m.

:::::
Each

:::::
byte

::
of

:::
the

:::::
array

::::
has

:::
an

:
abstract address

:
,
::::::
which

::
is

::
a

:::::
value

:::
of

::::
type

:::::::::::
uintptr_t

::::
that

::
is

:::::::::::
determined

::
in

:::
an

::::::
imple

:::::
men

::
ta

:::::::::::
tion-defined

:::::::
manner

:::
by

::::::::::::::::
pointer-to-integer

:::::::::::
conversion.

:::::
The

:::::::
abstract

::::::::::
addresses

::
of

::::
the

:::::
bytes

:::
are

::::::::::
increasing

:::::
with

:::
the

:::::::::
ordering

::::::
within

::::
the

::::::
array,

::::
and

:::::
they

::::
shall

:::
be

:::::::
unique

::::
and

:::::::::
constant

::::::
during

::::
the

::::::::
lifetime.

::::
The

::::::::
address

::
of

::::
the

::::
first

:::::
byte

::
of

::::
the

:::::
array

:::
is

:::
the

:
start address

::
of

::::
the

:::::::
storage

::::::::
instance,

:::
the

::::::::
address

::::
one

::::::::
element

:::::::
beyond

::::
the

:::::
array

::
at

::::::
index

:::
m

::
is

:::
its end address .

:::::
The

::::::::
abstract

:::::::::
addresses

::
of

::::
the

:::::
bytes

::
of

:::
all

:::::::
storage

:::::::::
instances

:::
of

:
a
:::::::::

program
:::::::::
execution

:::::
form

:::
its

:
address space .

:::
A

::::::
storage

::::::::
instance

:::
Y

::::::
follows

:::::::
storage

::::::::
instance

::
X

:
if

:::
the

:::::
start

:::::::
address

:::
of

::
Y

::
is

:::::::
greater

::
or

::::::
equal

::::
than

::::
the

:::
end

::::::::
address

::
of

:::
X ,

:::::
and

:
it
:::::::

follows
::::::::::
immediately

:
if
:::::

they
:::
are

::::::
equal.

:::
If

:::
the

::::::::
lifetime

::
of

::::
any

::::
two

::::::::
distinct

::::::::::
addressable

:::::::
storage

:::::::::
instances

::
X

::::
and

::
Y

:::::::::
overlaps,

::::::
either

::
Y

:::::::
follows

::
X

::
or

:::
X

:::::::
follows

::
Y

::
in

:::
the

::::::::
address

:::::
space.

::::::
This

:::::::::
document

::::::::
imposes

:::
no

::::::
other

::::::::::
constraints

::::::
about

:::::
such

:::::::
relative

::::::::
position

::
of

::::::::::::
addressable

::::::
storage

:::::::::
instances

:::::::::
whenever

:::::
they

:::
are

:::::::
created.56)

3
:::
The

::::::
object

:::::::::::::
representation

::
of

::
a

:::::::
pointer

:::::
object

:::::
does

:::
not

::::::::::
necessarily

::::::::::
determine

::::::::::
provenance

::
of

::
a
:::::::
pointer

:::::
value;

:::
at

:::::::::
different

::::::
points

:::
of

:::
the

:::::::::
program

::::::::::
execution,

::::::::
identical

::::::
object

:::::::::::::::
representations

::
of

::::::::
pointer

::::::
values

::::
may

:::::
refer

::
to

:::::::
distinct

:::::::
storage

:::::::::
instances.

:::::::
Unless

::::::
stated

:::::::::
otherwise,

::
a
:::::::
storage

::::::::
instance

::::::::
becomes

::::::
exposed

:::::
when

:
a
:::::::

pointer
::::::

value
::
p

::
of

::::::::
effective

:::::
type

::
T*:::::

with
::::
this

:::::::::::
provenance

::
is

:::::
used

::
in

::::
the

:::::::::
following

53)The same representation and alignment requirements are meant to imply interchangeability as arguments to functions,
return values from functions, and members of unions.

54)
::
An

::::::::::::
implementation

::::
might

:::::::
represent

:::
all

::::::
pointers

::
the

::::
same

::::
and

:::
with

:::
the

::::
same

:::::::
alignment

:::::::::::
requirements.

55)
::
All

::::::
storage

:::::::
instances

:::
that

:::
do

::
not

:::::::
originate

::::
from

:::
an

::::
object

::::::::
definition

::::
with

:::::::
register

::::::
storage

::::
class

::
are

:::::::::
addressable

:::
by

::::
using

:::
the

:::::
pointer

::::
value

::::
that

:::
was

:::::::
returned

::
by

:::
their

::::::::
allocation

:::
(for

:::::::
allocated

:::::
storage

:::::::
duration)

::
or

::
by

:::::::
applying

:::
the

::::::::
address-of

::::::
operator

:
&
::::::
(6.5.3.2)

::
to

:::
the

::::
object

:::
that

::::
gave

:::
rise

::
to

::::
their

:::::::
definition

:::
(for

::::
other

:::::
storage

:::::::::
durations).

56)
:::
This

:::::
means

:::
that

:::
no

::::::
relative

::::::
ordering

:::::::
between

::::::
storage

:::::::
instances

:::
and

:::
the

:::::
objects

::::
they

:::::::
represent

:::
can

::
be

:::::::
deduced

::::
from

::::::
syntactic

::::::::
properties

::
of

::
the

:::::::
program

::::
(such

::
as

:::::::::
declaration

::::
order

::
or

::::
order

:::::
inside

:
a
::::::::
parameter

:::
list)

::
or

::::::::
sequencing

::::::::
properties

::
of

::
the

:::::::
execution

:::::
(such

::
as

:::
one

:::::::::
instantiation

::::::::
happening

:::::
before

::::::
another).

:

modifications to ISO/IEC 9899:2018, § 6.2.6.1 page 34 Language

49modifications to ISO/IEC 9899:2018, § 6.2.6.1 page 35, draft — June 15, 2022 C17..TS 6010

::::::::
contexts:57)

—
::::
Any

::::
byte

::
of

::::
the

:::::
object

::::::::::::::
representation

::
of

:
p
::
is
:::::
used

::
in

:::
an

::::::::::
expression.58)

—
:::
The

:::::
byte

::::::
array

::::::::::
pointed-to

:::
by

::::
the

::::
first

:::::::::
argument

:::
of

::
a
::::
call

:::
to

:::
the

::::::::
fwrite

::::::
library

:::::::::
function

::::::::
intersects

:::::
with

:::
an

:::::
object

:::::::::::::
representation

:::
of

::
p.

—
:
p
::
is

:::::::::
converted

:::
to

::
an

:::::::
integer.

:

—
:
p
:::

is
:::::
used

:::
as

:::
an

:::::::::
argument

:::
to

::
a
:
%p

::::::::::
conversion

::::::::
specifier

:::
of

::::
the

:::::::
printf

:::::::
family

:::
of

:::::::
library

:::::::::
functions.59)

::::::::::::
Nevertheless,

::
if

:::
the

::::::
object

:::::::::::::
representation

::
of

:
p
::
is
:::::
read

:::::::
through

:::
an

::::::
lvalue

::
of

:
a
:::::::
pointer

:::::
type

::
S*::::

that
::::
has

:::
the

:::::
same

:::::::::::::
representation

::::
and

::::::::::
alignment

::::::::::::
requirements

:::
as

:::
T*,

::::
that

::::::
lvalue

::::
has

::::
the

:::::
same

:::::::::::
provenance

::
as

::
p

::::
and

:::
the

:::::::::::
provenance

:::::
does

::::
not

:::::::
thereby

:::::::
become

:::::::::
exposed.60)

::::::::
Exposure

:::
of

::
a

:::::::
storage

::::::::
instance

::
is

::::::::::
irreversible

::::
and

::::::::::
constitutes

:
a
:::::
side

:::::
effect

::
in

:::
the

::::::::
abstract

::::
state

:::::::::
machine.

:

4
::::::
Unless

::::::
stated

:::::::::
otherwise,

:::::::
pointer

::::::
value

:
p
::
is
::::::::::
synthesized

:
if

::
it

::
is

::::::::::
constructed

:::
by

::::
one

::
of

:::
the

::::::::::
following:61)

—
::::
Any

::::
byte

::
of

::::
the

:::::
object

::::::::::::::
representation

::
of

:
p
::
is
::::::::
changed

:

•
::
by

:::
an

:::::::
explicit

::::
byte

::::::::::
operation,

•
::
by

:::::
type

::::::::
punning

:::::
with

:
a
::::::::::::

non-pointer
::::::
object

::
or

:::::
with

::
a

:::::::
pointer

:::::
object

:::::
that

::::
only

::::::::
partially

::::::::
overlaps,

:

•
::
or

:::
by

::
a
::::

call
:::

to
::::::::
memcpy

:::
or

:::::::
similar

::::::::
function

:::::
that

:::::
does

::::
not

::::::
write

::::
the

::::::
entire

:::::::
pointer

:::::::::::::
representation

::
or

::::::
where

:::
the

:::::::
source

:::::
object

:::::
does

:::
not

:::::
have

:::
an

::::::::
effective

:::::::
pointer

:::::
type.

—
:::
The

::::::
object

:::::::::::::
representation

:::
of

:
p
:::::::::
intersects

:::::
with

:
a
::::
byte

::::::
array

:::::::::
pointed-to

:::
by

:::
the

::::
first

:::::::::
argument

:::
of

:
a
::::
call

::
to

:::
the

::::::
fread

::::::
library

:::::::::
function.

—
:
p
::
is

:::::::::
converted

:::::
from

:::
an

:::::::
integer

:::::
value.

:

—
:
p
::
is

:::::
used

::
as

:::
an

:::::::::
argument

::
to

::
a %p

:::::::::
conversion

::::::::
specifier

:::
of

:::
the

::::::
scanf

::::::
family

::
of

:::::::
library

:::::::::
functions.

::::::
Special

::::::::::
provisions

::
in

::::
the

:::::::::
respective

:::::::
clauses

::::::
clarify

:::::
when

:::::
such

::
a

:::::::::::
synthesized

::::::
pointer

::
is
::
a
::::
null,

::::::
valid,

::
or

:::::::
invalid.

:

5 Except for bit-fields, objects are composed of contiguous sequences of one or more bytes, the number,
order, and encoding of which are either explicitly specified or implementation-defined.

6 Values stored in unsigned bit-fields and objects of type unsigned char shall be represented using a
pure binary notation.62)

7 Values stored in non-bit-field objects of any other object type consist of
:::
are

:::::::::::
represented

:::::
using

:
n×

CHAR_BIT bits, where n is the size of an object of that type, in bytes. The value may be copied into an
object of type

::::::::::
Converting

::
a
:::::::
pointer

::
of

:::::
such

::
an

::::::
object

::
to

::
a
:::::::
pointer

::
to

::
a

::::::::
character

:::::
type

::
or

:::::
void

::::::
yields

:
a
:::::::
pointer

::::
into

::::
the

::::
byte

:::::
array

:::
of

:::
the

:::::::
storage

::::::::
instance

:::::
such

::::
that

:::
the

:::::::
values

::
of

::::
the

::::
first n] (e.g., by

57)
:::::
Pointer

:::::
values

::::
with

::::::
exposed

:::::::::
provenance

:::
may

::::
alias

:
in
:::::

ways
:::
that

:::::
cannot

::
be

:::::::
predicted

::
by

:::::
simple

::::
data

::::
flow

::::::
analysis.

58)
:::
The

::::::
exposure

::
of
:::::

bytes
:
of
:::

the
:::::
object

::::::::::
representation

:::
can

::::::
happen

::::::
through

::
a

::::::::
conversion

::
of

::
the

::::::
address

::
of
:
a
::::::

pointer
:::::
object

::::::::
containing

:
p
::
to

:
a
:::::::
character

:::
type

::::
and

:
a
::::::::
subsequent

:::::
access

::
to

:::
the

::::
bytes,

::
or

::
by

::::::
reading

:::
the

::::::::::
representation

::
of
:
a
::::::

pointer
::::
value

::
p

::::::
through

:
a
:::::
union

:::
with

:
a
::::
type

:::
that

:
is
:::
not

:
a
::::::
pointer

:::
type

:::
(for

::::::
example

::
an

::::::
integer

::::
type)

::
or

:::
with

:
a
::::::
pointer

:::
type

:::
that

:::
has

:
a
:::::::
different

::::
object

:::::::::::
representation

:::
than

:::
the

::::::
original

::::::
pointer.

59)
:::::
Passing

:
a
::::::

pointer
::::
value

::
to

:
a
:
%s

::::::::
conversion,

::::
does

::
not

::::::
expose

::
the

::::::
storage

:::::::
instance.

60)
:::
This

:::::
means

:::
that

::::::
pointer

:::::::
members

::
in

:
a
:::::
union

:::
can

::
be

:::
used

::
to
::::::::
reinterpret

::::::::::::
representations

:
of
:::::::

different
:::::::
character

:::
and

::::
void

::::::
pointers,

:::::::
different

:::::
struct

:::::::
pointers,

::::::
different

:::::
union

::::::
pointers

::
or

:::::::
pointers

:::
with

::::::::
differently

:::::::
qualified

::::
target

:::::
types.

61)
::::::::
Synthesized

::::::
pointer

:::::
values

:::
may

::::
alias

::
in

::::
ways

:::
that

:::::
cannot

::
be

::::::::
predicted

::
by

:::::
simple

:::
data

::::
flow

::::::
analysis.

62)A positional representation for integers that uses the binary digits 0 and 1, in which the values represented by successive
bits are additive, begin with 1, and are multiplied by successive integral powers of 2, except perhaps the bit with the highest
position. (Adapted from the American National Dictionary for Information Processing Systems.) A byte contains CHAR_BIT bits,
and the values of type unsigned char range from 0 to 2CHAR

_BIT − 1.

Language modifications to ISO/IEC 9899:2018, § 6.2.6.1 page 35

50modifications to ISO/IEC 9899:2018, § 6.2.6.2 page 36, draft — June 15, 2022 C17..TS 6010

memcpy); the resulting set of bytes
::::
bytes

::::::::::
determine

:::
the

::::::
value

::
of

::::
the

::::::
object;

:::
the

::::::::
position

::
of

::::
the

::::
first

::::
byte

::
of

:::::
these

:::
in

:::
the

:::::
byte

:::::
array

::
is

::::
the byte offset

::
of

:::
the

::::::
object

:::
in

::
its

:::::::
storage

:::::::::
instance,

:::
the

::::::::::
converted

:::::::
address

::
is

::::::
called

:::
the byte address

:
of

::::
the

::::::
object,

::::
and

:::
the

::::::
range

::
of

:::::
bytes

::::::
within

::::
the

::::
byte

:::::
array

:
is called

the object representation of the value.
:::
The

::::::
object

:::::::::::::
representation

:::::
may

::
be

:::::
used

::
to

:::::
copy

::::
the

:::::
value

:::
of

:::
the

:::::
object

::::
into

::::::::
another

::::::
object

::::
(e.g.,

:::
by

::::::::
memcpy).

:
Values stored in bit-fields consist of m bits, where

m is the size specified for the bit-field. The object representation is the set
:::::
range

:
of m bits the

bit-field comprises in the addressable storage unit holding it. Two values (other than NaNs) with
the same object representation compare equal, but values that compare equal may have different
object representations.

::::
The

:::::
object

:::::::::::::::
representations

::
of

::::::::
pointers

::::
and

::::
how

:::::
they

:::::
relate

:::
to

:::
the

::::::::
abstract

:::::::::
addresses

::::
they

:::::::::
represent

:::
are

:::
not

:::::::
further

:::::::::
specified

::
by

::::
this

::::::::::
document.

:

8 Certain object representations need not represent a value of the object type. If the stored value of an
object has such a representation and is read by an lvalue expression that does not have character
type, the behavior is undefined. If such a representation is produced by a side effect that modifies
all or any part of the object by an lvalue expression that does not have character type, the behavior
is undefined.63) Such a representation is called a trap representation.

:::::::::
non-value

::::::::::::::
representation.

:

9 When a value is stored in an object of structure or union type, including in a member object, the bytes
of the object representation that correspond to any padding bytes take unspecified values.64) The
value

::::::
object

:::::::::::::
representation of a structure or union object is never a trap

:::::::::
non-value representation,

even though the value of
::::
byte

::::::
range

:::::::::::::
corresponding

::
to

:
a member of the structure or union object

may be a trap representation
:::::::::
non-value

:::::::::::::
representation

:::
for

::::
that

::::::::
member.

10 When a value is stored in a member of an object of union type, the bytes of the object representation
that do not correspond to that member but do correspond to other members take unspecified values.

11 Where an operator is applied to a value that has more than one object representation, which object
representation is used shall not affect the value of the result.65) Where a value is stored in an object
using a type that has more than one object representation for that value, it is unspecified which
representation is used, but a trap

::::::::
non-value

:
representation shall not be generated.

12 Loads and stores of objects with atomic types are done with memory_order_seq_cst semantics.

Forward references: declarations (6.7), expressions (6.5),
:::::::
address

:::
and

::::::::::
indirection

:::::::::
operators

::::::::
(6.5.3.2),

lvalues, arrays, and function designators (6.3.2.1), order and consistency (7.17.3),
:::::::

integer
::::::
types

:::::::
capable

::
of

:::::::
holding

::::::
object

::::::::
pointers

:::::::::
(7.20.1.4),

::::::::::::
input/output

::::::
(7.21).

6.2.6.2 Integer types
1 For unsigned integer types other than unsigned char, the bits of the object representation shall be

divided into two groups: value bits and padding bits (there need not be any of the latter). If there are
N value bits, each bit shall represent a different power of 2 between 1 and 2N−1, so that objects of
that type shall be capable of representing values from 0 to 2N − 1 using a pure binary representation;
this shall be known as the value representation. The values of any padding bits are unspecified.66)

2 For signed integer types, the bits of the object representation shall be divided into three groups:
value bits, padding bits, and the sign bit. There need not be any padding bits; signed char shall
not have any padding bits. There shall be exactly one sign bit. Each bit that is a value bit shall have
the same value as the same bit in the object representation of the corresponding unsigned type (if
there are M value bits in the signed type and N in the unsigned type, then M ≤ N). If the sign bit is
zero, it shall not affect the resulting value. If the sign bit is one, the value shall be modified in one of
the following ways:

63)Thus, an automatic variable can be initialized to a trap representation without causing undefined behavior, but the value
of the variable cannot be used until a proper value is stored in it.

64)Thus, for example, structure assignment need not copy any padding bits.
65)It is possible for objects x and y with the same effective type T to have the same value when they are accessed as objects

of type T, but to have different values in other contexts. In particular, if == is defined for type T, then x == y does not imply
that memcmp(&x, &y, sizeof (T))== 0. Furthermore, x == y does not necessarily imply that x and y have the same value;
other operations on values of type T might distinguish between them.

66)Some combinations of padding bits might generate trap
:::::::
non-value representations, for example, if one padding bit is a

parity bit. Regardless, no arithmetic operation on valid values can generate a trap
:::::::
non-value

:
representation other than as

part of an exceptional condition such as an overflow, and this cannot occur with unsigned types. All other combinations of
padding bits are alternative object representations of the value specified by the value bits.

modifications to ISO/IEC 9899:2018, § 6.2.6.2 page 36 Language

51modifications to ISO/IEC 9899:2018, § 6.2.7 page 37, draft — June 15, 2022 C17..TS 6010

— the corresponding value with sign bit 0 is negated (sign and magnitude);

— the sign bit has the value −(2M) (two’s complement);

— the sign bit has the value −(2M − 1) (ones’ complement).

Which of these applies is implementation-defined, as is whether the value with sign bit 1 and all
value bits zero (for the first two), or with sign bit and all value bits 1 (for ones’ complement), is
a trap

:::::::::
non-value representation or a normal value. In the case of sign and magnitude and ones’

complement, if this representation is a normal value it is called a negative zero.

3 If the implementation supports negative zeros, they shall be generated only by:

— the &, |, ^,~ ,<< , and >> operators with operands that produce such a value;

— the+ ,- ,* , /, and % operators where one operand is a negative zero and the result is zero;

— compound assignment operators based on the above cases.

It is unspecified whether these cases actually generate a negative zero or a normal zero, and whether
a negative zero becomes a normal zero when stored in an object.

4 If the implementation does not support negative zeros, the behavior of the &, |, ^, ~ , << , and >>
operators with operands that would produce such a value is undefined.

5 The values of any padding bits are unspecified.67) A valid (non-trap) object representation of a
signed integer type

::::
that

:::::::::
represents

::
a
:::::
value

:
where the sign bit is zero is a valid object representation

of the corresponding unsigned type, and shall represent the same value. For any integer type, the
object representation where all the bits are zero shall be a representation of the value zero in that
type.

6 The precision of an integer type is the number of bits it uses to represent values, excluding any sign
and padding bits. The width of an integer type is the same but including any sign bit; thus for
unsigned integer types the two values are the same, while for signed integer types the width is one
greater than the precision.

6.2.7 Compatible type and composite type
1 Two types have compatible type if their types are the same. Additional rules for determining whether

two types are compatible are described in 6.7.2 for type specifiers, in 6.7.3 for type qualifiers, and in
6.7.6 for declarators.68) Moreover, two structure, union, or enumerated types declared in separate
translation units are compatible if their tags and members satisfy the following requirements: If
one is declared with a tag, the other shall be declared with the same tag. If both are completed
anywhere within their respective translation units, then the following additional requirements
apply: there shall be a one-to-one correspondence between their members such that each pair of
corresponding members are declared with compatible types; if one member of the pair is declared
with an alignment specifier, the other is declared with an equivalent alignment specifier; and if
one member of the pair is declared with a name, the other is declared with the same name. For
two structures, corresponding members shall be declared in the same order. For two structures or
unions, corresponding bit-fields shall have the same widths. For two enumerations, corresponding
members shall have the same values.

2 All declarations that refer to the same object or function shall have compatible type; otherwise, the
behavior is undefined.

3 A composite type can be constructed from two types that are compatible; it is a type that is compatible
with both of the two types and satisfies the following conditions:

67)Some combinations of padding bits might generate trap representations, for example, if one padding bit is a parity bit.
Regardless, no arithmetic operation on valid values can generate a trap

:::::::
non-value representation other than as part of an

exceptional condition such as an overflow. All other combinations of padding bits are alternative object representations of the
value specified by the value bits.

68)Two types need not be identical to be compatible.

Language modifications to ISO/IEC 9899:2018, § 6.2.7 page 37

52modifications to ISO/IEC 9899:2018, § 6.3.2.1 page 42, draft — June 15, 2022 C17..TS 6010

Otherwise, if the type of the operand with signed integer type can represent all of the
values of the type of the operand with unsigned integer type, then the operand with
unsigned integer type is converted to the type of the operand with signed integer type.
Otherwise, both operands are converted to the unsigned integer type corresponding to
the type of the operand with signed integer type.

2 The values of floating operands and of the results of floating expressions may be represented in
greater range and precision than that required by the type; the types are not changed thereby.77)

6.3.2 Other operands
6.3.2.1 Lvalues, arrays, and function designators

1 An lvalue is an expression (with an object type other than void) that potentially designates an
object;78) if an lvalue does not designate an object when it is evaluated, the behavior is undefined.
When an object is said to have a particular type, the type is specified by the lvalue used to designate
the object. A modifiable lvalue is an lvalue that does not have array type, does not have an incomplete
type, does not have a const-qualified type, and if it is a structure or union, does not have any
member (including, recursively, any member or element of all contained aggregates or unions) with
a const-qualified type.

2 Except when it is the operand of the sizeof operator, the unary & operator, the++ operator, the--
operator, or the left operand of the . operator or an assignment operator, an lvalue that does not have
array type is converted to the value stored in the designated object (and is no longer an lvalue); this
is called lvalue conversion. If the lvalue has qualified type, the value has the unqualified version of the
type of the lvalue; additionally, if the lvalue has atomic type, the value has the non-atomic version of
the type of the lvalue; otherwise, the value has the type of the lvalue. If

:::
The

::::::::
behavior

::
is

::::::::::
undefined

:
if
:
the lvalue has an incomplete typeand does not have array type, the behavior is undefined. If

:
,
::
if

:::
the

:::::
object

::::::::::::::
representation

::
is

:
a
::::::::::
non-value

:::::::::::::
representation

:::
for

:::
the

:::::
type,79)

:
or

::
if
:
the lvalue designates an

object of automatic storage duration that could have been declared with the register storage class
(never had its address taken), and that object is uninitialized (not declared with an initializer and no
assignment to it has been performed prior to use), the .

:

3
::::::::::::
Additionally,

:
if
::::
the

::::
type

::
is

::
a

:::::::
pointer

::::
type

:::
T*,

::
a
:::::::
pointer

:::::
value

::::
and

:::
an

::::::::::
associated

:::::::::::
provenance,

::
if

::::
any,

:
is
:::::::::::
determined

:::
as

:::::::
follows:

:

—
:
If
::::
the

:::::
object

::::::::::::::
representation

:::::::::
represents

::
a

::::
null

:::::::
pointer

:::
the

:::::
result

::
is
::
a

::::
null

:::::::
pointer.

:

—
:
If
::::

the
::::

last
::::::

store
:::
to

::::
the

:::::::::::::
representation

::::::
array

:::::
was

:::::
with

::
a
::::::::

pointer
:::::
type

:::
S*:::::

that
::::
has

::::
the

:::::
same

:::::::::::::
representation

::::
and

::::::::::
alignment

::::::::::::
requirements

:::
as

:::
T*,

::::
the

:::::
result

::
is
::::

the
:::::
same

::::::::
address

::::
and

::::::::::
provenance

:::
as

:::
the

::::::
stored

::::::
value.

—
::::::::::
Otherwise,

:::
the

::::::
object

:::::::::::::
representation

:::
of

:::
the

:::::::
lvalue

::::
shall

:::::::::
represent

::
a
::::
byte

::::::::
address

:::::::
within

:::
(or

::::::::
one-past)

::::
the

::::::
object

:::::::::::::
representation

:::
of

:::
an

::::::::
exposed

:::::::
storage

::::::::
instance,

:::::
such

::::
that

::::
the

:::::::::
exposure

:::::::::
happened

::::::
before

::::
this

::::::
lvalue

::::::::::
conversion,

::::
and

:::
the

::::::
result

:::
has

::::
that

::::::::
address

::::
and

:::::::::::
provenance.80)

:::
The

:
behavior is undefined

::
if

:::
the

:::::::
pointer

::::::
object

:::
has

:::
an

:::::::::::::
indeterminate

::::::::::::::
representation,

::
in

::::::::::
particular

:
if
::::
the

:::::
lvalue

:::::::::::
conversion

::::
does

::::
not

:::::::
happen

::::::
during

::::
the

:::::::
lifetime

::
of

:::
the

:::::::::::
provenance

::::
that

::::
was

::::::::::
associated

::
to

:::
the

:::::::
stored

:::::::
pointer

::::::
value,

:::
the

::::::::::::
represented

:::::::
address

::
is
::::

not
::
a

:::::
valid

::::::::
address

:::
(or

:::::::::
one-past)

:::
for

::::
the

:::::::::
associated

:::::::::::
provenance,

:::
or

:::
the

:::::::::::
represented

:::::::
address

::
is
::::
not

::::::::
correctly

:::::::
aligned

:::
for

:::
the

:::::
type.

4 Except when it is the operand of the sizeof operator, or the unary & operator, or is a string literal
used to initialize an array, an expression that has type "array of type" is converted to an expression

77)The cast and assignment operators are still required to remove extra range and precision.
78)The name "lvalue" comes originally from the assignment expression E1 = E2, in which the left operand E1 is required to

be a (modifiable) lvalue. It is perhaps better considered as representing an object "locator value". What is sometimes called
"rvalue" is in this document described as the "value of an expression".

An obvious example of an lvalue is an identifier of an object. As a further example, if E is a unary expression that is a
pointer to an object,*E is an lvalue that designates the object to which E points.

79)
:::::::
Character

::::
types

::::
have

:::
no

:::::::
non-value

::::::::::::
representation,

:::
thus

::::::
reading

:::::::::::
representation

::::
bytes

::
of
:::

an
:::::::::
addressable

:::
live

::::::
storage

::::::
instance

:
is
::::::
always

::::::
defined.

80)
:
If
:::
the

:::::
address

::::::::::
corresponds

:
to
::::
more

::::
than

:::
one

:::::::::
provenance,

::::
only

:::
one

:
of
::::
these

::::
shall

::
be

::::
used

::
in

::
the

::::::
sequel,

::
see

::::
6.2.5.

modifications to ISO/IEC 9899:2018, § 6.3.2.1 page 42 Language

53modifications to ISO/IEC 9899:2018, § 6.3.2.3 page 43, draft — June 15, 2022 C17..TS 6010

with type "pointer to type" that points to the initial element of the array object and is not an lvalue.
If the array object has register storage class, the behavior is undefined.

5 A function designator is an expression that has function type. Except when it is the operand of the
sizeof operator,81) or the unary & operator, a function designator with type "function returning
type" is converted to an expression that has type "pointer to function returning type".

Forward references: address and indirection operators (6.5.3.2), assignment operators (6.5.16),
common definitions <stddef.h> (7.19), initialization (6.7.9), postfix increment and decrement
operators (6.5.2.4), prefix increment and decrement operators (6.5.3.1), the sizeof and _Alignof
operators (6.5.3.4), structure and union members (6.5.2.3).

6.3.2.2 void

1 The (nonexistent) value of a void expression (an expression that has type void) shall not be used in any
way, and implicit or explicit conversions (except to void) shall not be applied to such an expression.
If an expression of any other type is evaluated as a void expression, its value or designator is
discarded. (A void expression is evaluated for its side effects.)

6.3.2.3 Pointers
1 A pointer to void may be converted to or from a pointer to any object type. A pointer to any object

type may be converted to a pointer to void and back again; the result shall compare equal to the
original pointer.

2 For any qualifier q, a pointer to a non-q-qualified type may be converted to a pointer to the q-qualified
version of the type; the values stored in the original and converted pointers shall compare equal.

3 An integer constant expression with the value 0, or such an expression cast to type void *, is called
a null pointer constant.82) If a null pointer constant is converted to a pointer type, the resulting
pointer, called a null pointer, is guaranteed to compare unequal to a pointer to any object or function.

4 Conversion of a null pointer to another pointer type yields a null pointer of that type. Any two null
pointers shall compare equal.

5 An integer may be converted to any pointer type.
:
If

:::
the

:::::::
source

:::::
type

::
is

:::::::
signed,

:::
the

:::::::::
operand

::
is

:::
first

::::::::::
converted

::
to

:::
the

::::::::::::::
corresponding

:::::::::
unsigned

::::
type.

::::
The

::::::
result

::
is

::::
then

:::::::::::
determined

::
in

::::
the

:::::::::
following

:::::
order:

:

—
:::
The

::::::::
operand

::::::
value

:::::
could

:::::
have

:::::
been

:::
the

::::::
result

::
of

:::
the

:::::::::::
conversion

::
of

::
a

::::
null

:::::::
pointer

::::::
value.

::::
The

:::::
result

::
is

:
a
::::
null

::::::::
pointer.

—
:::
The

:::::::::
operand

:::::
value

:::
is

:::
an

:::::::
abstract

::::::::
address

:::::::
within

::
or

:::::
one

::::
past

::
a
::::
live

::::
and

::::::::
exposed

::::::::
storage

::::::::
instance,

:::::
such

::::
that

::::
the

::::::::
exposure

::::::::::
happened

::::::
before

::::
this

:::::::::::::::::
integer-to-pointer

:::::::::::
conversion.

:::::
The

::::::::::
conversion

::::::::::
synthesizes

::
a
:::::::
pointer

:::::
value

:::::
with

::::
that

::::::::
address,

::::::::::
provenance

::::
and

::::::
target

:::::
type.83)

—
:::
The

:::::::
pointer

::::::
value

::
is

:::::::
invalid.

Except as previously specified, the result is implementation-defined, might not be correctly aligned,
might not point to an entity of the referenced type, and might be a trap representation

::::::
might

::
be

::::::::
invalid,

::::
and

::::::
might

::::::::
produce

:::
an

:::::::::::::
indeterminate

::::::::::::::
representation

:::::
when

:::::::
stored

::::
into

:::
an

::::::
object.The

mapping functions for converting a pointer to an integer or an integer to a pointer are intended to
be consistent with the addressing structure of the execution environment.

6 Any pointer type may be converted to an integer type. Except as previously specified
:::
For

::
a

::::
null

::::::
pointer, the result is

::::::
chosen

:::::
from

::
a
:::::::::::

non-empty
:::
set

:::
of

:
implementation-defined . If the result

cannot be represented in the integer type
::::::
values.84)

::
If

:::
the

:::::::
pointer

::::::
value

::
is

::::::
valid,

:::
its

:::::::::::
provenance

:
is
::::::::::
henceforth

:::::::::
exposed.

::::::
Except

:::
as

::::::::::
previously

:::::::::
specified,

:::
the

:::::
result

::
is
::::
the

:::::::
abstract

::::::::
address

::::::
(which

::::
has

81)Because this conversion does not occur, the operand of the sizeof operator remains a function designator and violates
the constraints in 6.5.3.4.

82)The macro NULL is defined in <stddef.h> (and other headers) as a null pointer constant; see 7.19.
83)

:
If
:::
the

:::::
address

::::::::::
corresponds

:
to
::::
more

::::
than

:::
one

:::::::::
provenance,

::::
only

:::
one

:
of
::::
these

::::
shall

::
be

::::
used

::
in

::
the

::::::
sequel,

::
see

::::
6.2.5.

84)
:
It
:
is
:::::::::::

recommended
:::
that

::
0

:
is
:
a
:::::::
member

:
of
::::
that

::
set.

:

Language modifications to ISO/IEC 9899:2018, § 6.3.2.3 page 43

54modifications to ISO/IEC 9899:2018, § 6.3.2.3 page 44, draft — June 15, 2022 C17..TS 6010

::::
type

:::::::::::
uintptr_t)

:::::::::
converted

:::
to

:::
the

::::::
target

:::::
type.

:::
If

:::
the

::::::
target

::::
type

::::
has

::
a

::::::
width

::::
that

::
is

::::
less

::::
than

::::
the

:::::
width

::
of

:::::::::::
uintptr_t , the behavior is undefined. The result need not be in the range of values of any

integer type
:
If
::::
the

:::::
target

:::::
type

::
is

:
a
:::::::
signed

::::
type

::::
and

:::
the

:::::::
abstract

::::::::
address

::
is

:::::
larger

:::::
than

:::
the

::::::::::
maximum

:::::
value

::
of

:::::
that

::::
type

::::
the

::::::
imple

:::::
men

:::
ta

:::::::::::
tion-defined

::::::::::
conversion

:::::
from

:::::::::::
uintptr_t

::
to

::::
the

::::::
target

::::
type

:::
as

::::::::
specified

::
in

::::::
6.3.1.3

::
is
::::::::
applied.85)

:
If
::::
the

:::::::
pointer

::
is

::::
null

::
or

::::::
valid,

:::
the

:::::::
integer

:::::
result

::::::::::
converted

::::
back

:::
to

:::
the

:::::::
pointer

::::
type

:::::
shall

:::::::::
compare

:::::
equal

::
to

::::
the

:::::::
original

::::::::
pointer.86)

:::
For

::::
two

:::::
valid

:::::::
pointer

:::::::
values

::::
that

::::::::
compare

::::::
equal,

::::::::::
conversion

::
to

:::
the

:::::
same

:::::::
integer

::::
type

::::::
yields

::::::::
identical

:::::::
values.

7 A pointer to an object type may be converted to a pointer to a different object type,
:::::::::

retaining
:::
its

::::::::::
provenance. If the resulting pointer is not correctly aligned87) for the referenced type, the behavior
is undefined. Otherwise, when converted back again, the result shall compare equal to the original
pointer. When a pointer to an object is converted to a pointer to a character type

::
or

::::::
void , the result

points to the lowest addressed byte of the object. Successive increments of the result, up to the size
of the object, yield pointers to the remaining bytes

:
is

:::
the

:::::
byte

:::::::
address

:
of the object.

8 A pointer to a function of one type may be converted to a pointer to a function of another type and
back again; the result shall compare equal to the original pointer. If a converted pointer is used to
call a function whose type is not compatible with the referenced type, the behavior is undefined.

Forward references: cast operators (6.5.4), equality operators (6.5.9), integer types capable of
holding object pointers (7.20.1.4), simple assignment (6.5.16.1).

9 NOTE
:
If
:::
the

:::::
result

:
p
::
of

::
an

:::::
lvalue

::::::::
conversion

::
or
:::::::::::::

integer-to-pointer
:::::::::

conversion
:
is
:::

the
:::
end

::::::
address

::
of
:::

an
::::::
exposed

::::::
storage

::::::
instance

::
A

:::
and

::
the

::::
start

::::::
address

::
of

::::::
another

::::::
exposed

:::::
storage

:::::::
instance

:
B
::::

that
::::::
happens

::
to

:::::
follow

:::::::::
immediately

::
in

:::
the

::::::
address

::::
space,

::
a

::::::::
conforming

:::::::
program

::::
must

:::
only

:::
use

:::
one

::
of

::::
these

:::::::::
provenances

::
in

:::
any

:::::::::
expressions

:::
that

::
are

::::::
derived

::::
from

::
p,

::
see

::::
6.2.5.

:

:::
The

:::::::
following

::::
three

::::
cases

::::::::
determine

:
if
:
p
::
is

::::
used

:::
with

:::
one

::
of

::
A

::
or

:
B
:::
and

::::
must

:::::
hence

:::
not

::
be

:::
used

::::::::
otherwise:

:

—
::::::::
Operations

:::
that

:::::::
constitute

::
a
::
use

::
of
::
p

:::
with

:::::
either

:
A
::
or

::
B

:::
and

::
do

:::
not

::::::
prohibit

:
a
:::
use

::::
with

::
the

:::::
other:

•
:::
any

:::::::
relational

::::::
operator

::
or

::::::
pointer

::::::::
subtraction

:::::
where

:::
the

::::
other

::::::
operand

::
q

:::
may

::::
have

::::
both

:::::::::
provenances,

::::
that

:
is

::::
where

::
q
:
is
:::
also

:::
the

::::
result

::
of
:
a
::::::

similar
::::::::
conversion

:::
and

:::::
where

::::::
p == q;

•
:::::
q == p

:::
and

::::::
q != p

::::::::
regardless

:
of
:::
the

:::::::::
provenance

:
of
::
q;

•
::::::
addition

::
or

::::::::
subtraction

::
of

:::
the

::::
value

::
0;

•
::::::::
conversion

::
to

:::::
integer.

:

::
For

:::
the

::::
latter,

::
A

:::
and

::
B

::::
must

::::
have

:::
been

:::::::
exposed

:::::
before,

:::
and

::
so

:::
any

:::::
choice

:
of
:::::::::
provenance,

::::
that

:::::
would

:::::::
otherwise

::::
have

::::::
exposed

:::
one

::
of

::
the

::::::
storage

:::::::
instances,

::
is

:::::::
consistent

::::
with

:::
any

::::
other

:::
use.

:

—
::::::::
Operations

:::
that,

::
if
:::::::
otherwise

::::
well

::::::
defined,

:::::::
constitute

:
a
:::

use
::
of

:
p
::::
with

::
A

:::
and

::::::
prohibit

:::
any

:::
use

:::
with

::
B:

:

•
:::
Any

:::::::
relational

:::::::
operator

::
or

:::::
pointer

:::::::::
subtraction

::::
where

:::
the

::::
other

:::::::
operand

:
q
:::
has

::::::::
provenance

::
A
:::
and

:::::
cannot

::::
have

::::::::
provenance

::
B.

:

•
::::
p + n

:::
and

:::::
p[n],

:::::
where

:
n
:
is
::
an

::::::
integer

:::::
strictly

:::
less

::::
than

:
0.
:

•
:::::
p - n,

:::::
where

:
n
:
is
::
an

::::::
integer

:::::
strictly

::::::
greater

:::
than

::
0.

—
::::::::
Operations

:::
that,

::
if
:::::::
otherwise

::::
well

::::::
defined,

:::::::
constitute

:
a
:::

use
::
of

:
p
::::
with

::
B

:::
and

::::::
prohibit

:::
any

:::
use

:::
with

::
A:
:

•
:::
Any

:::::::
relational

:::::::
operator

::
or

:::::
pointer

:::::::::
subtraction

::::
where

:::
the

::::
other

:::::::
operand

:
q
:::
has

::::::::
provenance

::
B
:::
and

:::::
cannot

::::
have

::::::::
provenance

::
A.

:

•
::::
p + n

:::
and

:::::
p[n],

:::::
where

:
n
:
is
::
an

::::::
integer

:::::
strictly

:::::
greater

::::
than

::
0.

•
:::::
p - n,

:::::
where

:
n
:
is
::
an

::::::
integer

:::::
strictly

:::
less

::::
than

:
0.
:

•
::::::::
operations

:::
that

:::::
access

:::
an

::::
object

:::
in

::
B,

::::
that

::
is

::::::::
indirection

:
(
::*p::

or
:::::
p[n]

::
for

:::::::
n == 0)

:::
and

:::::::
member

:::::
access

:
(

:::::::::
p->member).

85)
::::
Thus,

::
the

:::::
result

:
is
:::
an

:::::
imple

::::
men

::
ta
:::::::::
tion-defined

::::
value

::
or
::
an

:::::
imple

::::
men

::
ta
:::::::::
tion-defined

:::::
signal

:
is
:::::
raised.

86)
:::::::
Although

:::
such

::
a
::::::::
round-trip

::::::::
conversion

:::
may

:::
be

::
the

::::::
identity

:::
for

::
the

::::::
pointer

:::::
value,

::
the

::::
side

::::
effect

::
of

:::::::
exposing

:
a
::::::
storage

::::::
instance

:::
still

::::
takes

::::
place.

87)In general, the concept "correctly aligned" is transitive: if a pointer to type A is correctly aligned for a pointer to type B,
which in turn is correctly aligned for a pointer to type C, then a pointer to type A is correctly aligned for a pointer to type C.

modifications to ISO/IEC 9899:2018, § 6.3.2.3 page 44 Language

55modifications to ISO/IEC 9899:2018, § 6.4.6 page 56, draft — June 15, 2022

values.98) If the program attempts to modify such an array, the behavior is undefined.
8 EXAMPLE 1 This pair of adjacent character string literals

"\x12" "3"

produces a single character string literal containing the two characters whose values are’\x12’ and’3’ , because escape
sequences are converted into single members of the execution character set just prior to adjacent string literal concatenation.

9 EXAMPLE 2 Each of the sequences of adjacent string literal tokens

"a" "b" L"c"
"a" L"b" "c"
L"a" "b" L"c"
L"a" L"b" L"c"

is equivalent to the string literal

L"abc"

Likewise, each of the sequences

"a" "b" u"c"
"a" u"b" "c"
u"a" "b" u"c"
u"a" u"b" u"c"

is equivalent to

u"abc"

Forward references: common definitions <stddef.h> (7.19), the mbstowcs function (7.22.8.1),
Unicode utilities <uchar.h> (7.28).

6.4.6 Punctuators
Syntax

1 punctuator: one of
[] () { } . ->
++ -- & * + - ~ !
/ % << >> < > <= >= == != ^ | && ||
? : ; ...
= *= /= %= += -= <<= >>= &= ^= |=
, # ##
<: :> <% %> %: %:%:

Semantics
2 A punctuator is a symbol that has independent syntactic and semantic significance. Depending on

context, it may specify an operation to be performed (which in turn may yield a value or a function
designator, produce a side effect, or some combination thereof) in which case it is known as an
operator (other forms of operator also exist in some contexts). An operand is an entity on which an
operator acts.

3 In all aspects of the language, the six tokens99)

<: :> <% %> %: %:%:

behave, respectively, the same as the six tokens

98)
:::
This

:::::
allows

::::::::::::
implementations

::
to
::::
share

::::::
storage

:::::::
instances

::
for

:::::
string

:::::
literals

:::
and

:::::::
constant

::::::::
compound

:::::
literals

::::::
(6.5.2.5)

::::
with

::
the

::::
same

::
or

:::::::::
overlapping

::::::::::::
representations.

99)These tokens are sometimes called "digraphs".

modifications to ISO/IEC 9899:2018, § 6.4.6 page 56 Language

56modifications to ISO/IEC 9899:2018, § 6.5 page 59, draft — June 15, 2022 C17..TS 6010

6.5 Expressions
1 An expression is a sequence of operators and operands that specifies computation of a value,104) or

that designates an object or a function, or that generates side effects, or that performs a combination
thereof. The value computations of the operands of an operator are sequenced before the value
computation of the result of the operator.

2 If a side effect on a scalar object is unsequenced relative to either a different side effect on the
same scalar object or a value computation using the value of the same scalar object, the behavior
is undefined. If there are multiple allowable orderings of the subexpressions of an expression, the
behavior is undefined if such an unsequenced side effect occurs in any of the orderings.105)

3 The grouping of operators and operands is indicated by the syntax.106) Except as specified later,
side effects and value computations of subexpressions are unsequenced.107)

4 Some operators (the unary operator ~ , and the binary operators << , >>, &, ^, and |, collectively
described as bitwise operators) are required to have operands that have integer type. These operators
yield values that depend on the internal representations of integers, and have implementation-
defined and undefined aspects for signed types.

5 If an exceptional condition occurs during the evaluation of an expression (that is, if the result is not
mathematically defined or not in the range of representable values for its type), the behavior is
undefined.

6 The effective type of an object for an access to its stored value is the declared type of the object, if
any.108) If a value is stored into an object having no declared type through an lvalue having a type
that is not a character type, then the type of the lvalue becomes the effective type of the object for
that access and for subsequent accesses that do not modify the stored value. If a value is copied into
an object having no declared type using memcpy or memmove, or is copied as an array of character
type, then the effective type of the modified object for that access and for subsequent accesses that
do not modify the value is the effective type of the object from which the value is copied, if it has
one. For all other accesses to an object having no declared type, the effective type of the object is
simply the type of the lvalue used for the access.

7 An object shall have its stored value accessed only by an lvalue expression that has one of the
following types:109)

— a type compatible with the effective type of the object,

— a qualified version of a type compatible with the effective type of the object,

104)Annex H documents the extent to which the C language supports the ISO/IEC 10967–1 standard for language-
independent arithmetic (LIA–1).
105)This paragraph renders undefined statement expressions such as

i = ++i + 1;
a[i++] = i;

while allowing

i = i + 1;
a[i] = i;

106)The syntax specifies the precedence of operators in the evaluation of an expression, which is the same as the order of the
major subclauses of this subclause, highest precedence first. Thus, for example, the expressions allowed as the operands
of the binary + operator (6.5.6) are those expressions defined in 6.5.1 through 6.5.6. The exceptions are cast expressions
(6.5.4) as operands of unary operators (6.5.3), and an operand contained between any of the following pairs of operators:
grouping parentheses () (6.5.1), subscripting brackets [] (6.5.2.1), function-call parentheses () (6.5.2.2), and the conditional
operator ?: (6.5.15).

Within each major subclause, the operators have the same precedence. Left- or right-associativity is indicated in each
subclause by the syntax for the expressions discussed therein.
107)In an expression that is evaluated more than once during the execution of a program, unsequenced and indeterminately

sequenced evaluations of its subexpressions need not be performed consistently in different evaluations.
108)Allocated objects have

::
An

:::::
object

:::
with

:::::::
allocated

::::::
storage

::::::
duration

:::
has

::
no

:::::::::
declaration

:::
and

:::
thus

:
no declared type.

109)The intent of this list is to specify those circumstances in which an object can or cannot be aliased.

Language modifications to ISO/IEC 9899:2018, § 6.5 page 59

57modifications to ISO/IEC 9899:2018, § 6.5.2.3 page 63, draft — June 15, 2022 C17..TS 6010

of the arguments after promotion are not compatible with the types of the parameters, the behavior
is undefined. If the function is defined with a type that does not include a prototype, and the types
of the arguments after promotion are not compatible with those of the parameters after promotion,
the behavior is undefined, except for the following cases:

— one promoted type is a signed integer type, the other promoted type is the corresponding
unsigned integer type, and the value is representable in both types;

— both types are pointers to qualified or unqualified versions of a character type or void.

7 If the expression that denotes the called function has a type that does include a prototype, the
arguments are implicitly converted, as if by assignment, to the types of the corresponding parameters,
taking the type of each parameter to be the unqualified version of its declared type. The ellipsis
notation in a function prototype declarator causes argument type conversion to stop after the last
declared parameter. The default argument promotions are performed on trailing arguments.

8 No other conversions are performed implicitly; in particular, the number and types of arguments are
not compared with those of the parameters in a function definition that does not include a function
prototype declarator.

9 If the function is defined with a type that is not compatible with the type (of the expression) pointed
to by the expression that denotes the called function, the behavior is undefined.

10 There is a sequence point after the evaluations of the function designator and the actual arguments
but before the actual call. Every evaluation in the calling function (including other function calls)
that is not otherwise specifically sequenced before or after the execution of the body of the called
function is indeterminately sequenced with respect to the execution of the called function.116)

11 Recursive function calls shall be permitted, both directly and indirectly through any chain of other
functions.

12 EXAMPLE In the function call

(*pf[f1()]) (f2(), f3() + f4())

the functions f1, f2, f3, and f4 can be called in any order. All side effects have to be completed before the function pointed
to by pf[f1()] is called.

Forward references: function declarators (including prototypes) (6.7.6.3), function definitions
(6.9.1), the return statement (6.8.6.4), simple assignment (6.5.16.1).

6.5.2.3 Structure and union members
Constraints

1 The first operand of the . operator shall have an atomic, qualified, or unqualified structure or union
type, and the second operand shall name a member of that type.

2 The first operand of the-> operator shall have type "pointer to atomic, qualified, or unqualified
structure" or "pointer to atomic, qualified, or unqualified union", and the second operand shall
name a member of the type pointed to.

Semantics
3 A postfix expression followed by the . operator and an identifier designates a member of a structure

or union object. The value is that of the named member,117) and is an lvalue if the first expression is
an lvalue. If the first expression has qualified type, the result has the so-qualified version of the type
of the designated member.

4 A postfix expression followed by the-> operator and an identifier designates a member of a structure
or union object.

:::
The

:::::::
pointer

::::::
value

::::
shall

:::
be

:::::
valid,

::::
not

::
be

::::
the

::::
end

:::::::
address

::
of

:::
its

:::::::::::
provenance,

::::
and

:::
be

116)In other words, function executions do not "interleave" with each other.
117)If the member used to read the contents of a union object is not the same as the member last used to store a value in the

object, the appropriate part of the object representation of the value is reinterpreted as an object representation in the new
type as described in 6.2.6 (a process sometimes called "type punning"). This might be a trap

:::::::
non-value

:
representation.

Language modifications to ISO/IEC 9899:2018, § 6.5.2.3 page 63

58modifications to ISO/IEC 9899:2018, § 6.5.2.3 page 64, draft — June 15, 2022

::::::::
correctly

:::::::
aligned

:::
for

::::
the

::::::::
structure

:::
or

::::::
union

:::::
type.

:
The value is that of the named member of the

object to which the first expression points, and is an lvalue.118) If the first expression is a pointer to
a qualified type, the result has the so-qualified version of the type of the designated member.

5 Accessing a member of an atomic structure or union object results in undefined behavior.119)

6 One special guarantee is made in order to simplify the use of unions: if a union contains several
structures that share a common initial sequence (see below), and if the union object currently contains
one of these structures, it is permitted to inspect the common initial part of any of them anywhere
that a declaration of the completed type of the union is visible. Two structures share a common initial
sequence if corresponding members have compatible types (and, for bit-fields, the same widths) for a
sequence of one or more initial members.

7 EXAMPLE 1 If f is a function returning a structure or union, and x is a member of that structure or union, f().x is a valid
postfix expression but is not an lvalue.

8 EXAMPLE 2 In:

struct s { int i; const int ci; };
struct s s;
const struct s cs;
volatile struct s vs;

the various members have the types:

s.i int
s.ci const int
cs.i const int
cs.ci const int
vs.i volatile int
vs.ci volatile const int

9 EXAMPLE 3 The following is a valid fragment:

union {
struct {

int alltypes;
} n;
struct {

int type;
int intnode;

} ni;
struct {

int type;
double doublenode;

} nf;
} u;
u.nf.type = 1;
u.nf.doublenode = 3.14;
/* ... */
if (u.n.alltypes == 1)

if (sin(u.nf.doublenode) == 0.0)
/* ... */

The following is not a valid fragment (because the union type is not visible within function f):

struct t1 { int m; };
struct t2 { int m; };
int f(struct t1 *p1, struct t2 *p2)
{

if (p1->m < 0)

118)If &E is a valid pointer expression (where & is the "address-of" operator, which generates a pointer to its operand), the
expression (&E)->MOS is the same as E.MOS.
119)For example, a data race would occur if access to the entire structure or union in one thread conflicts with access to a

member from another thread, where at least one access is a modification. Members can be safely accessed using a non-atomic
object which is assigned to or from the atomic object.

modifications to ISO/IEC 9899:2018, § 6.5.2.3 page 64 Language

59modifications to ISO/IEC 9899:2018, § 6.5.2.5 page 66, draft — June 15, 2022 C17..TS 6010

list.121)

4 If the type name specifies an array of unknown size, the size is determined by the initializer list as
specified in 6.7.9, and the type of the compound literal is that of the completed array type. Otherwise
(when the type name specifies an object type), the type of the compound literal is that specified by
the type name. In either case, the result is an lvalue.

5 The value of the compound literal is that of an unnamed object initialized by the initializer list. If
the compound literal occurs outside the body of a function, the object has static storage duration;
otherwise, it has automatic storage duration associated with the enclosing block.

6 All the semantic rules for initializer lists in 6.7.9 also apply to compound literals.122)

7 String literals, and compound literals with const-qualified types, need not designate distinct ob-
jects.This allows implementations to share storage for string literals and constant compound literals
with the same or overlapping representations. 123)

8 EXAMPLE 1 The file scope definition

int *p = (int []){2, 4};

initializes p to point to the first element of an array of two ints, the first having the value two and the second, four. The
expressions in this compound literal are required to be constant. The unnamed object has static storage duration.

9 EXAMPLE 2 In contrast, in

void f(void)
{

int *p;
/*...*/
p = (int [2]){*p};
/*...*/

}

p is assigned the address of the first element of an array of two ints, the first having the value previously pointed to by p and
the second, zero. The expressions in this compound literal need not be constant. The unnamed object has automatic storage
duration.

10 EXAMPLE 3 Initializers with designations can be combined with compound literals. Structure objects created using
compound literals can be passed to functions without depending on member order:

drawline((struct point){.x=1, .y=1},
(struct point){.x=3, .y=4});

Or, if drawline instead expected pointers to struct point:

drawline(&(struct point){.x=1, .y=1},
&(struct point){.x=3, .y=4});

11 EXAMPLE 4 A read-only compound literal can be specified through constructions like:

(const float []){1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6}

12 EXAMPLE 5 The following three expressions have different meanings:

"/tmp/fileXXXXXX"
(char []){"/tmp/fileXXXXXX"}
(const char []){"/tmp/fileXXXXXX"}

The first always has static storage duration and has type array of char, but need not be modifiable; the last two have
automatic storage duration when they occur within the body of a function, and the first of these two is modifiable.

121)Note that this differs from a cast expression. For example, a cast specifies a conversion to scalar types or void only, and
the result of a cast expression is not an lvalue.
122)For example, subobjects without explicit initializers are initialized to zero.
123)

:::
This

:::::
allows

::::::::::::
implementations

::
to

::::
share

::::::
storage

:::::::
instances

::
for

:::::
string

:::::
literals

:::
and

::::::
constant

::::::::
compound

:::::
literals

::::
with

:::
the

::::
same

::
or

:::::::::
overlapping

:::::::::::
representations.

:

modifications to ISO/IEC 9899:2018, § 6.5.2.5 page 66 Language

60modifications to ISO/IEC 9899:2018, § 6.5.3.1 page 67, draft — June 15, 2022 C17..TS 6010

13 EXAMPLE 6 Like string literals, const-qualified compound literals can be placed into read-only memory and can even be
shared. For example,

(const char []){"abc"} == "abc"

might yield 1 if the literals’ storage
::::::
instance is shared.

14 EXAMPLE 7 Since compound literals are unnamed, a single compound literal cannot specify a circularly linked object. For
example, there is no way to write a self-referential compound literal that could be used as the function argument in place of
the named object endless_zeros below:

struct int_list { int car; struct int_list *cdr; };
struct int_list endless_zeros = {0, &endless_zeros};
eval(endless_zeros);

15 EXAMPLE 8 Each compound literal creates only a single object in a given scope:

struct s { int i; };

int f (void)
{

struct s *p = 0, *q;
int j = 0;

again:
q = p, p = &((struct s){ j++ });
if (j < 2) goto again;

return p == q && q->i == 1;
}

The function f() always returns the value 1.

16 Note that if an iteration statement were used instead of an explicit goto and a labeled statement, the lifetime of the unnamed
object would be the body of the loop only, and on entry next time around p would have an indeterminate value, which
would result in undefined behavior

:::::::::::
representation.

:::
The

::::::
behavior

::
of
:::
the

:::::
lvalue

::::::::
conversion

::
of

:
p
::
in

::
the

:::::::::
assignment

:
to
::
q
:::::
would

:::
then

::
be

::::::::
undefined.

Forward references: type names (6.7.7), initialization (6.7.9).

6.5.3 Unary operators
Syntax

1 unary-expression:
postfix-expression
++ unary-expression
- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)
_Alignof (type-name)

unary-operator: one of
& * + - ˜ !

6.5.3.1 Prefix increment and decrement operators
Constraints

1 The operand of the prefix increment or decrement operator shall have atomic, qualified, or unquali-
fied real or pointer type, and shall be a modifiable lvalue.

Language modifications to ISO/IEC 9899:2018, § 6.5.3.1 page 67

61modifications to ISO/IEC 9899:2018, § 6.5.3.3 page 68, draft — June 15, 2022 C17..TS 6010

Semantics
2 The value of the operand of the prefix++ operator is incremented. The result is the new value of the

operand after incrementation. The expression++E is equivalent to (E+=1). See the discussions of
additive operators and compound assignment for information on constraints, types, side effects,
and conversions and the effects of operations on pointers.

3 The prefix-- operator is analogous to the prefix++ operator, except that the value of the operand is
decremented.

Forward references: additive operators (6.5.6), compound assignment (6.5.16.2).

6.5.3.2 Address and indirection operators
Constraints

1 The operand of the unary & operator shall be either a function designator, the result of a [] or unary
* operator, or an lvalue that designates an object that is not a bit-field and is not declared with the
register storage-class specifier.

2 The operand of the unary* operator shall have pointer type.

Semantics
3 The unary & operator yields the address of its operand. If the operand has type "type", the result has

type "pointer to type". If the operand is the result of a unary* operator, neither that operator nor
the & operator is evaluated and the result is as if both were omitted, except that the constraints on
the operators still apply and the result is not an lvalue. Similarly, if the operand is the result of a []
operator, neither the & operator nor the unary* that is implied by the [] is evaluated and the result
is as if the & operator were removed and the [] operator were changed to a+ operator. Otherwise,
the result is a pointer to the object or function designated by its operand.

4 The unary* operator denotes indirection. If the operand points to a function, the result is a function
designator; if it points to an object, the result is an lvalue designating the object. If the operand
has type "pointer to type", the result has type "type". If an invalid value has been assigned to the
pointer , the behavior of the unary * operator is undefined

:::
The

:::::::
pointer

::::::
value

::::
shall

:::
be

::::::
valid,

:::
not

:::
be

:::
the

::::
end

:::::::
address

::
of

:::
its

:::::::::::
provenance,

::::
and

:::
be

::::::::
correctly

:::::::
aligned

:::
for

:
"
::::
type

:
".124)

Forward references: storage-class specifiers (6.7.1), structure and union specifiers (6.7.2.1).

6.5.3.3 Unary arithmetic operators
Constraints

1 The operand of the unary+ or- operator shall have arithmetic type; of the~ operator, integer type;
of the ! operator, scalar type.

Semantics
2 The result of the unary+ operator is the value of its (promoted) operand. The integer promotions

are performed on the operand, and the result has the promoted type.

3 The result of the unary- operator is the negative of its (promoted) operand. The integer promotions
are performed on the operand, and the result has the promoted type.

4 The result of the~ operator is the bitwise complement of its (promoted) operand (that is, each bit in
the result is set if and only if the corresponding bit in the converted operand is not set). The integer
promotions are performed on the operand, and the result has the promoted type. If the promoted
type is an unsigned type, the expression~E is equivalent to the maximum value representable in
that type minus E.

5 The result of the logical negation operator ! is 0 if the value of its operand compares unequal to

124)Thus, &*E is equivalent to E (even if E is a null pointer), and &(E1[E2]) to ((E1)+(E2)). It is always true that if E is a
function designator or an lvalue that is a valid operand of the unary & operator,*&E is a function designator or an lvalue
equal to E. If*P is an lvalue and T is the name of an object pointer type,*(T)P is an lvalue that has a type compatible with
that to which T points.

Among the invalid values for dereferencing a pointer by the unary* operator are a null pointer, an address inappropriately
aligned for the type of object pointed to, and the address of an object after the end of its lifetime

:
,
:
or
:::

any
:::::

other
:::::
invalid

::::
value.

modifications to ISO/IEC 9899:2018, § 6.5.3.3 page 68 Language

62modifications to ISO/IEC 9899:2018, § 6.5.6 page 71, draft — June 15, 2022 C17..TS 6010

6.5.6 Additive operators
Syntax

1 additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

Constraints
2 For addition, either both operands shall have arithmetic type, or one operand shall be a pointer to a

complete object type and the other shall have integer type. (Incrementing is equivalent to adding 1.)

3 For subtraction, one of the following shall hold:

— both operands have arithmetic type;

— both operands are pointers to qualified or unqualified versions of compatible complete object
types; or

— the left operand is a pointer to a complete object type and the right operand has integer type.

(Decrementing is equivalent to subtracting 1.)

Semantics
4 If both operands have arithmetic type, the usual arithmetic conversions are performed on them.

5 The result of the binary+ operator is the sum of the operands.

6 The result of the binary- operator is the difference resulting from the subtraction of the second
operand from the first.

7 For the purposes of these operators, a pointer to an object that is not an element of an array behaves
the same as a pointer to the first element of an array of length one with the type of the object as its
element type.

8 When an expression that has integer type is added to or subtracted from a pointer, the result has the
type of the pointer operand. If the pointer operand points to an element of an array object, and the
array is large enough, the result points to an element offset from the original element such that the
difference of the subscripts of the resulting and original array elements equals the integer expression.
In other words, if the expression P points to the i-th element of an array object, the expressions
(P)+N (equivalently, N+(P)) and (P)-N (where N has the value n) point to, respectively, the i+ n-th
and i− n-th elements of the array object, provided they exist. Moreover, if the expression P points
to the last element of an array object, the expression (P)+1 points one past the last element of
the array object, and if the expression Q points one past the last element of an array object, the
expression (Q)-1 points to the last element of the array object. If both the pointer operand and the
result point to elements of the same array object, or one past the last element of the array object, the
evaluation shall not produce an overflow; otherwise, the behavior is undefined. If the result points
one past the last element of the array object, it shall not be used as the operand of a unary* operator
that is evaluated.

:::
The

::::::
result

:::::::
pointer

:::
has

:::
the

:::::
same

:::::::::::
provenance

:::
as

:::
the

:::::::
pointer

::::::::
operand.128)

9 When two pointers are subtracted, both shall
::
be

:::::
valid

::::
and

:
point to elements of the same array object,

or one past the last element of the array object;129) the result is the difference of the subscripts of the
two array elements. The size of the result is implementation-defined, and its type (a signed integer
type) is ptrdiff_t defined in the <stddef.h> header. If the result is not representable in an object
of that type, the behavior is undefined. In other words, if the

128)
:
If
:::
the

:::::
pointer

:::::::
operand

:
P
:::
had

::::
been

::
the

:::::
result

::
of

::
an

:::::::::::::
integer-to-pointer

::
or

:::::
scanf

::::::::
conversion

:::
that

:::::
could

:::
have

::::
two

::::::
possible

:::::::::
provenances,

:::
and

:::
the

:::::
integer

::::
value

:::::
added

::
or

::::::::
subtracted

:
is
:::
not

:
0,
:::

the
:::::::::
provenance

:
S
::
for

:::
the

::::::
additive

:::::::
operation

::::
(and

::::::::
henceforth

::::
other

::::::::
operations

:::
with

::
P)

::::
must

::
be

::::
such

:::
that

:::
the

::::
result

:::
lies

::
in

:
S
:::
(or

::
one

:::::::
beyond).

129)
:::
This

::::::
implies

:::
that

:::
they

:::
also

::::
have

:::
the

::::
same

:::::::::
provenance.

Language modifications to ISO/IEC 9899:2018, § 6.5.6 page 71

63modifications to ISO/IEC 9899:2018, § 6.5.7 page 72, draft — June 15, 2022 C17..TS 6010

10 NOTE 1
:
If
:::
the

::::::::
expression

:
P
:::::
points

::
to

::
the

:::
i-th

::::::
element

::
of
::
an

:::::
array

:::::
object,

::
the

:::::::::
expressions

:::::
(P)+N

::::::::::
(equivalently,

:::::
N+(P))

:::
and

:

::::
(P)-N

::::::
(where

:
N
:::
has

::
the

:::::
value

::
n)

::::
point

::
to,

:::::::::
respectively,

:::
the

::::::
i+ n-th

:::
and

::::::
i− n-th

:::::::
elements

::
of

::
the

::::
array

:::::
object,

:::::::
provided

::::
they

::::
exist.

::::::::
Moreover,

:
if
:::
the

::::::::
expression

:
P
:::::
points

::
to

:::
the

:::
last

::::::
element

::
of

::
an

::::
array

:::::
object,

:::
the

::::::::
expression

:::::
(P)+1

:::::
points

:::
one

:::
past

:::
the

::
last

:::::::
element

:
of
:::

the
::::
array

:::::
object,

::::
and

:
if
:::
the

::::::::
expression

:
Q
:::::
points

:::
one

:::
past

:::
the

:::
last

::::::
element

::
of

::
an

:::::
array

:::::
object,

::
the

::::::::
expression

:

::::
(Q)-1

:::::
points

::
to

:::
the

::
last

::::::
element

::
of
:::
the

::::
array

:::::
object.

11 NOTE 2
:
If
:::
the expressions P and Q point to, respectively, the i-th and j-th elements of an array object, the expression

(P)-(Q) has the value i − j provided the value fits in an object of type ptrdiff_t. Moreover, if the expression P points
either to an element of an array object or one past the last element of an array object, and the expression Q points to the last
element of the same array object, the expression ((Q)+1)-(P) has the same value as ((Q)-(P))+1 and as-((P)-((Q)+1)) ,
and has the value zero if the expression P points one past the last element of the array object, even though the expression
(Q)+1 does not point to an element of the array object.Another way to approach pointer arithmetic is first to convert the
pointer(s) to character pointer(s): In this scheme the integer expression added to or subtracted from the converted pointer
is first multiplied by the size of the object originally pointed to, and the resulting pointer is converted back to the original
type. For pointer subtraction, the result of the difference between the character pointers is similarly divided by the size
of the object originally pointed to. When viewed in this way, an implementation need only provide one extra byte (which
can overlap another object in the program) just after the end of the object in order to satisfy the "one past the last element"
requirements.

12 NOTE 3
:::::

Another
::::

way
::
to

:::::::
approach

:::::
pointer

::::::::
arithmetic

:
is
:::
first

::
to
::::::
convert

:::
the

:::::::
pointer(s)

::
to

::::::
character

::::::::
pointer(s):

::
In

:::
this

::::::
scheme

::
the

::::::
integer

:::::::
expression

:::::
added

::
to

::
or

::::::::
subtracted

:::
from

:::
the

:::::::
converted

::::::
pointer

:
is
:::
first

::::::::
multiplied

::
by

:::
the

:::
size

::
of

::
the

:::::
object

:::::::
originally

:::::
pointed

:::
to,

:::
and

:::
the

:::::::
resulting

::::::
pointer

::
is

::::::::
converted

:::
back

::
to
:::

the
:::::::

original
::::
type.

:::
For

::::::
pointer

:::::::::
subtraction,

:::
the

:::::
result

::
of

:::
the

:::::::
difference

::::::
between

:::
the

:::::::
character

::::::
pointers

::
is

::::::
similarly

::::::
divided

::
by

:::
the

:::
size

::
of

:::
the

::::
object

:::::::
originally

::::::
pointed

:::
to.

::::
When

::::::
viewed

::
in

:::
this

::::
way,

::
an

::::::::::::
implementation

::::
need

:::
only

:::::::
provide

:::
one

::::
extra

:::
byte

::::::
(which

:::
can

::::::
overlap

:::::
another

:::::
object

::
in

:::
the

:::::::
program)

:::
just

:::
after

:::
the

:::
end

::
of

::
the

:::::
object

::
in

::::
order

::
to

:::::
satisfy

::
the

::::
"one

::::
past

::
the

:::
last

:::::::
element"

::::::::::
requirements.

13 EXAMPLE Pointer arithmetic is well defined with pointers to variable length array types.

{
int n = 4, m = 3;
int a[n][m];
int (*p)[m] = a; // p == &a[0]
p += 1; // p == &a[1]
(*p)[2] = 99; // a[1][2] == 99
n = p - a; // n == 1

}

14 If array a in the above example were declared to be an array of known constant size, and pointer p were declared to be a
pointer to an array of the same known constant size (pointing to a), the results would be the same.

Forward references: array declarators (6.7.6.2), common definitions <stddef.h> (7.19).

6.5.7 Bitwise shift operators
Syntax

1 shift-expression:
additive-expression
shift-expression « additive-expression
shift-expression » additive-expression

Constraints
2 Each of the operands shall have integer type.

Semantics
3 The integer promotions are performed on each of the operands. The type of the result is that of the

promoted left operand. If the value of the right operand is negative or is greater than or equal to the
width of the promoted left operand, the behavior is undefined.

4 The result of E1 << E2 is E1 left-shifted E2 bit positions; vacated bits are filled with zeros. If E1 has
an unsigned type, the value of the result is E1× 2E2, reduced modulo one more than the maximum
value representable in the result type. If E1 has a signed type and nonnegative value, and E1× 2E2 is
representable in the result type, then that is the resulting value; otherwise, the behavior is undefined.

5 The result of E1 >> E2 is E1 right-shifted E2 bit positions. If E1 has an unsigned type or if E1 has a
signed type and a nonnegative value, the value of the result is the integral part of the quotient of

modifications to ISO/IEC 9899:2018, § 6.5.7 page 72 Language

64modifications to ISO/IEC 9899:2018, § 6.5.9 page 73, draft — June 15, 2022 C17..TS 6010

E1/2E2. If E1 has a signed type and a negative value, the resulting value is implementation-defined.

6.5.8 Relational operators
Syntax

1 relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

Constraints
2 One of the following shall hold:

— both operands have real type; or

— both operands are pointers to qualified or unqualified versions of compatible object types.

Semantics
3 If both of the operands have arithmetic type, the usual arithmetic conversions are performed.

4 For the purposes of these operators, a pointer to an object that is not an element of an array behaves
the same as a pointer to the first element of an array of length one with the type of the object as its
element type.

5 When two pointers are compared, the result depends on the relative locations in the address space
of the objects pointed to. If two pointers to object types both point to the same object, or both point
one past the last element of the same array object, they compare equal. If the objects pointed to
are members of the same aggregate object, pointers to structure members declared later compare
greater than pointers to members declared earlier in the structure, and pointers to array elements
with larger subscript values compare greater than pointers to elements of the same array with
lower subscript values. All pointers to members of the same union object compare equal. If the
expression P points to an element of an array object and the expression Q points to the last element
of the same array object, the pointer expression Q+1 compares greater than P. In all other cases, the
behavior is undefined

::::
they

:::::
shall

:::::
both

::
be

:::::
valid

::::
and

:::::
have

:::
the

::::::
same

:::::::::::
provenance.

::::
The

::::::
result

::::::::
depends

::
on

::::
the

:::::::
relative

::::::::
ordering

::
of

:::::
their

:::::::
abstract

:::::::::
addresses.

6 Each of the operators< (less than), > (greater than),<= (less than or equal to), and >= (greater than or
equal to) shall yield 1 if the specified relation is true and 0 if it is false.130) The result has type int.

6.5.9 Equality operators
Syntax

1 equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

Constraints
2 One of the following shall hold:

— both operands have arithmetic type;

— both operands are pointers to qualified or unqualified versions of compatible types;

130)The expression a<b<c is not interpreted as in ordinary mathematics. As the syntax indicates, it means (a<b)<c; in other
words, "if a is less than b, compare 1 to c; otherwise, compare 0 to c".

Language modifications to ISO/IEC 9899:2018, § 6.5.9 page 73

65modifications to ISO/IEC 9899:2018, § 6.5.10 page 74, draft — June 15, 2022 C17..TS 6010

— one operand is a pointer to an object type and the other is a pointer to a qualified or unqualified
version of void; or

— one operand is a pointer and the other is a null pointer constant.

Semantics
3 The == (equal to) and != (not equal to) operators are analogous to the relational operators except

for their lower precedence.131)
:::::
None

::
of

:::
the

:::::::::
operands

::::
shall

:::
be

:::
an

::::::
invalid

:::::::
pointer

::::::
value.

:
Each of the

operators yields 1 if the specified relation is true and 0 if it is false. The result has type int. For any
pair of operands, exactly one of the relations is true.

4 If both of the operands have arithmetic type, the usual arithmetic conversions are performed. Values
of complex types are equal if and only if both their real parts are equal and also their imaginary parts
are equal. Any two values of arithmetic types from different type domains are equal if and only
if the results of their conversions to the (complex) result type determined by the usual arithmetic
conversions are equal.

5 Otherwise, at least one operand is a pointer. If one operand is a pointer and the other is a null
pointer constant, the null pointer constant is converted to the type of the pointer. If one operand is a
pointer to an object type and the other is a pointer to a qualified or unqualified version of void, the
former is converted to the type of the latter.

6 Two pointers
::
If

:::
one

::::::::
operand

::
is
:::::

null
::::
they

:
compare equal if and only if both are nullpointers, both

:::
the

:::::
other

::::::::
operand

::
is

::::
null.

:::::::::::
Otherwise,

::
if

::::
both

:::::::::
operands are pointers to the same object (including a

pointer to an object and a subobject at its beginning) or function, both
::::::::
function

::::
type

:::::
they

::::::::
compare

:::::
equal

::
if

:::
and

:::::
only

::
if

::::
they

:::::
refer

::
to

:::
the

:::::
same

::::::::
function.

:::::::::::
Otherwise,

::::
they

:
are pointers to one past the last

element of the same array object, or one is a pointer to one past the end of one array object and the
other is a pointer to the start of a different array object that happens to immediately follow the first
array object in the addressspace. Two objects can be adjacent in memory because they are adjacent
elements of a larger array or adjacent members of a structure with no padding between them,
or because the implementation chose to place them so, even though they are unrelated. If prior
invalid pointer operations (such as accesses outside array bounds) produced undefined behavior,
subsequent comparisons also produce undefined behavior.

::::::
objects

::::
and

::::::::
compare

::::::
equal

:
if
::::
and

:::::
only

:
if
:::::
they

::::
have

::::
the

:::::
same

:::::::
abstract

::::::::
address.

:

7 For the purposes of these operators, a pointer to an object that is not an element of an array behaves
the same as a pointer to the first element of an array of length one with the type of the object as its
element type.

6.5.10 Bitwise AND operator
Syntax

1 AND-expression:
equality-expression

AND-expression & equality-expression

Constraints
2 Each of the operands shall have integer type.

Semantics
3 The usual arithmetic conversions are performed on the operands.

4 The result of the binary & operator is the bitwise AND of the operands (that is, each bit in the result
is set if and only if each of the corresponding bits in the converted operands is set).

131)Because of the precedences, a<b == c<d is 1 whenever a<b and c<d have the same truth-value.

modifications to ISO/IEC 9899:2018, § 6.5.10 page 74 Language

66modifications to ISO/IEC 9899:2018, § 6.5.16.1 page 77, draft — June 15, 2022 C17..TS 6010

const void *c_vp;
void *vp;
const int *c_ip;
volatile int *v_ip;
int *ip;
const char *c_cp;

the third column in the following table is the common type that is the result of a conditional expression in which the first two
columns are the second and third operands (in either order):

c_vp c_ip const void *
v_ip 0 volatile int *
c_ip v_ip const volatile int *
vp c_cp const void *
ip c_ip const int *
vp ip void *

6.5.16 Assignment operators
Syntax

1 assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of
= *= /= %= += -= <<= >>= &= ^= |=

Constraints
2 An assignment operator shall have a modifiable lvalue as its left operand.

Semantics
3 An assignment operator stores a value in the object designated by the left operand.

:
If

::
a

::::::::
non-null

::::::
pointer

:::
is

::::::
stored

:::
by

::
an

:::::::::::
assignment

:::::::::
operator,

::::::
either

:::::::
directly

:::
or

::::::
within

::
a

::::::::
structure

:::
or

::::::
union

::::::
object,

:::
the

::::::
stored

:::::::
pointer

::::::
object

:::
has

::::
the

:::::
same

:::::::::::
provenance

::
as

:::
the

::::::::
original.

:
An assignment expression has

the value of the left operand after the assignment,133) but is not an lvalue. The type of an assignment
expression is the type the left operand would have after lvalue conversion. The side effect of
updating the stored value of the left operand is sequenced after the value computations of the left
and right operands. The evaluations of the operands are unsequenced.

6.5.16.1 Simple assignment
Constraints

1 One of the following shall hold:134)

— the left operand has atomic, qualified, or unqualified arithmetic type, and the right has
arithmetic type;

— the left operand has an atomic, qualified, or unqualified version of a structure or union type
compatible with the type of the right;

— the left operand has atomic, qualified, or unqualified pointer type, and (considering the type
the left operand would have after lvalue conversion) both operands are pointers to qualified
or unqualified versions of compatible types, and the type pointed to by the left has all the
qualifiers of the type pointed to by the right;

133)The implementation is permitted to read the object to determine the value but is not required to, even when the object
has volatile-qualified type.
134)The asymmetric appearance of these constraints with respect to type qualifiers is due to the conversion (specified in

6.3.2.1) that changes lvalues to "the value of the expression" and thus removes any type qualifiers that were applied to the
type category of the expression (for example, it removes const but not volatile from the type int volatile * const).

Language modifications to ISO/IEC 9899:2018, § 6.5.16.1 page 77

67modifications to ISO/IEC 9899:2018, § 6.7 page 83, draft — June 15, 2022 C17..TS 6010

6.7 Declarations
Syntax

1 declaration:
declaration-specifiers init-declarator-listopt ;
static_assert-declaration

declaration-specifiers:
storage-class-specifier declaration-specifiersopt
type-specifier declaration-specifiersopt
type-qualifier declaration-specifiersopt
function-specifier declaration-specifiersopt
alignment-specifier declaration-specifiersopt

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator
declarator = initializer

Constraints
2 A declaration other than a static_assert declaration shall declare at least a declarator (other than

the parameters of a function or the members of a structure or union), a tag, or the members of an
enumeration.

3 If an identifier has no linkage, there shall be no more than one declaration of the identifier (in a
declarator or type specifier) with the same scope and in the same name space, except that:

— a typedef name may be redefined to denote the same type as it currently does, provided that
type is not a variably modified type;

— tags may be redeclared as specified in 6.7.2.3.

4 All declarations in the same scope that refer to the same object or function shall specify compatible
types.

Semantics
5 A declaration specifies the interpretation and attributes of a set of identifiers. A definition of an

identifier is a declaration for that identifier that:

— for an object, causes storage
:
a
:::::::
unique

:::::::
storage

::::::::
instance to be reserved for that object;

— for a function, includes the function body;140)

— for an enumeration constant, is the (only) declaration of the identifier;

— for a typedef name, is the first (or only) declaration of the identifier.

6 The declaration specifiers consist of a sequence of specifiers that indicate the linkage, storage
duration, and part of the type of the entities that the declarators denote. The init-declarator-list is a
comma-separated sequence of declarators, each of which may have additional type information, or
an initializer, or both. The declarators contain the identifiers (if any) being declared.

7 If an identifier for an object is declared with no linkage, the type for the object shall be complete
by the end of its declarator, or by the end of its init-declarator if it has an initializer; in the case of
function parameters (including in prototypes), it is the adjusted type (see 6.7.6.3) that is required to
be complete.

Forward references: declarators (6.7.6), enumeration specifiers (6.7.2.2), initialization (6.7.9), type
names (6.7.7), type qualifiers (6.7.3).
140)Function definitions have a different syntax, described in 6.9.1.

Language modifications to ISO/IEC 9899:2018, § 6.7 page 83

68modifications to ISO/IEC 9899:2018, § 6.7.2 page 84, draft — June 15, 2022 C17..TS 6010

6.7.1 Storage-class specifiers
Syntax

1 storage-class-specifier:
typedef
extern
static
_Thread_local
auto
register

Constraints
2 At most, one storage-class specifier may be given in the declaration specifiers in a declaration, except

that _Thread_local may appear with static or extern.141)

3 In the declaration of an object with block scope, if the declaration specifiers include _Thread_local,
they shall also include either static or extern. If _Thread_local appears in any declaration of an
object, it shall be present in every declaration of that object.

4 _Thread_local shall not appear in the declaration specifiers of a function declaration.

Semantics
5 The typedef specifier is called a "storage-class specifier" for syntactic convenience only; it is

discussed in 6.7.8. The meanings of the various linkages and storage durations were discussed in
6.2.2 and 6.2.4 .

6 A declaration of an identifier for an object with storage-class specifier register suggests that
access to the object be as fast as possible. The extent to which such suggestions are effective is
implementation-defined.142)

7 The declaration of an identifier for a function that has block scope shall have no explicit storage-class
specifier other than extern.

8 If an aggregate or union object is declared with a storage-class specifier other than typedef, the
properties resulting from the storage-class specifier, except with respect to linkage, also apply to the
members of the object, and so on recursively for any aggregate or union member objects.

Forward references: type definitions (6.7.8).

6.7.2 Type specifiers
Syntax

1 type-specifier:
void
char
short
int
long
float
double
signed
unsigned
_Bool
_Complex
atomic-type-specifier

141)See "future language directions" (6.11.5).
142)The implementation can treat any register declaration simply as an auto declaration. However, whether or not

addressable
:
a storage

::::::
instance

:::
that

:::::
would

:::::::
otherwise

:::
be

::::::::
addressable

:
is actually used, the address of any part of an object

declared with storage-class specifier register cannot be computed, either explicitly (by use of the unary & operator as
discussed in 6.5.3.2) or implicitly (by converting an array name to a pointer as discussed in 6.3.2.1). Thus, the only operator
that can be applied to an array declared with storage-class specifier register is sizeof.

modifications to ISO/IEC 9899:2018, § 6.7.2 page 84 Language

69modifications to ISO/IEC 9899:2018, § 6.7.2.1 page 87, draft — June 15, 2022 C17..TS 6010

incomplete until immediately after the} that terminates the list, and complete thereafter.

9 A member of a structure or union may have any complete object type other than a variably modified
type.144) In addition, a member may be declared to consist of a specified number of bits (including
a sign bit, if any). Such a member is called a bit-field;145) its width is preceded by a colon.

10 A bit-field is interpreted as having a signed or unsigned integer type consisting of the specified
number of bits.146) If the value 0 or 1 is stored into a nonzero-width bit-field of type _Bool, the
value of the bit-field shall compare equal to the value stored; a _Bool bit-field has the semantics of a
_Bool.

11 An implementation may allocate any addressable storage unit large enough to hold a bit-field. If
enough space remains, a bit-field that immediately follows another bit-field in a structure shall be
packed into adjacent bits of the same unit. If insufficient space remains, whether a bit-field that
does not fit is put into the next unit or overlaps adjacent units is implementation-defined. The
order of allocation of bit-fields within a unit (high-order to low-order or low-order to high-order) is
implementation-defined. The alignment of the addressable storage unit is unspecified.

12 A bit-field declaration with no declarator, but only a colon and a width, indicates an unnamed
bit-field.147) As a special case, a bit-field structure member with a width of 0 indicates that no
further bit-field is to be packed into the unit in which the previous bit-field, if any, was placed.

13 An unnamed member whose type specifier is a structure specifier with no tag is called an anonymous
structure; an unnamed member whose type specifier is a union specifier with no tag is called an
anonymous union. The members of an anonymous structure or union are considered to be members
of the containing structure or union. This applies recursively if the containing structure or union is
also anonymous.

14 Each non-bit-field member of a structure or union object is aligned in an implementation-defined
manner appropriate to its type.

15 Within a structure object, the non-bit-field members and the units in which bit-fields reside have
addresses that increase in the order in which they are declared. A pointer to a structure object,
suitably converted, points to its initial member (or if that member is a bit-field, then to the unit in
which it resides), and vice versa. There may be unnamed padding within a structure object, but not
at its beginning.

16 The size of a union is sufficient to contain the largest of its members. The value of at most one of the
members can be stored in a union object at any time. A pointer to a union object, suitably converted,
points to each of its members (or if a member is a bit-field, then to the unit in which it resides), and
vice versa.

17 There may be unnamed padding at the end of a structure or union.

18 As a special case, the last member of a structure with more than one named member may have an
incomplete array type; this is called a flexible array member. In most situations, the flexible array
member is ignored. In particular, the size of the structure is as if the flexible array member were
omitted except that it may have more trailing padding than the omission would imply. However,
when a . (or->) operator has a left operand that is (a pointer to) a structure with a flexible array
member and the right operand names that member, it behaves as if that member were replaced with
the longest array (with the same element type) that would not make the structure larger than the
object

::::::
storage

::::::::
instance being accessed; the offset of the array shall remain that of the flexible array

member, even if this would differ from that of the replacement array. If this array would have no
elements, it behaves as if it had one element but the behavior is undefined if any attempt is made to
access that element or to generate a pointer one past it.

144)A structure or union cannot contain a member with a variably modified type because member names are not ordinary
identifiers as defined in 6.2.3.
145)The unary & (address-of) operator cannot be applied to a bit-field object; thus, there are no pointers to or arrays of bit-field

objects.
146)As specified in 6.7.2 above, if the actual type specifier used is int or a typedef-name defined as int, then it is implemen-

tation-defined whether the bit-field is signed or unsigned.
147)An unnamed bit-field structure member is useful for padding to conform to externally imposed layouts.

Language modifications to ISO/IEC 9899:2018, § 6.7.2.1 page 87

70modifications to ISO/IEC 9899:2018, § 6.7.2.2 page 89, draft — June 15, 2022 C17..TS 6010

struct { int n; double d[8]; } *s1;
struct { int n; double d[5]; } *s2;

24 Following the further successful assignments:

s1 = malloc(sizeof (struct s) + 10);
s2 = malloc(sizeof (struct s) + 6);

they then behave as if the declarations were:

struct { int n; double d[1]; } *s1, *s2;

and:

double *dp;
dp = &(s1->d[0]); // valid

*dp = 42; // valid
dp = &(s2->d[0]); // valid

*dp = 42; // undefined behavior

25 The assignment:

*s1 = *s2;

only copies the member n; if any of the array elements are within the first sizeof (struct s) bytes of the structure, they
might be copied or simply overwritten with indeterminate values

:::
are

::
set

::
to

::
an

:::::::::::
indeterminate

:::::::::::
representation,

:::
that

::::
may

::
or

:::
may

:::
not

::::::
coincide

::::
with

:
a
::::
copy

::
of

::
the

:::::::::::
representation

::
of

::
the

:::::::
elements

::
of

::
the

:::::
source

:::::
array.

26 EXAMPLE 3 Because members of anonymous structures and unions are considered to be members of the containing structure
or union, struct s in the following example has more than one named member and thus the use of a flexible array member
is valid:

struct s {
struct { int i; };
int a[];

};

Forward references: declarators (6.7.6), tags (6.7.2.3).

6.7.2.2 Enumeration specifiers
Syntax

1 enum-specifier:
enum identifieropt { enumerator-list }
enum identifieropt { enumerator-list , }
enum identifier

enumerator-list:
enumerator
enumerator-list , enumerator

enumerator:
enumeration-constant
enumeration-constant = constant-expression

Constraints
2 The expression that defines the value of an enumeration constant shall be an integer constant

expression that has a value representable as an int.

Language modifications to ISO/IEC 9899:2018, § 6.7.2.2 page 89

71modifications to ISO/IEC 9899:2018, § 6.7.3 page 92, draft — June 15, 2022 C17..TS 6010

specify a pair of structures that contain pointers to each other. Note, however, that if s2 were already declared as a tag in an
enclosing scope, the declaration D1 would refer to it, not to the tag s2 declared in D2. To eliminate this context sensitivity, the
declaration

struct s2;

can be inserted ahead of D1. This declares a new tag s2 in the inner scope; the declaration D2 then completes the specification
of the new type.

Forward references: declarators (6.7.6), type definitions (6.7.8).

6.7.2.4 Atomic type specifiers
Syntax

1 atomic-type-specifier:
_Atomic (type-name)

Constraints
2 Atomic type specifiers shall not be used if the implementation does not support atomic types (see

6.10.8.3).

3 The type name in an atomic type specifier shall not refer to an array type, a function type, an atomic
type, or a qualified type.

Semantics
4 The properties associated with atomic types are meaningful only for expressions that are lvalues.

If the _Atomic keyword is immediately followed by a left parenthesis, it is interpreted as a type
specifier (with a type name), not as a type qualifier.

6.7.3 Type qualifiers
Syntax

1 type-qualifier:
const
restrict
volatile
_Atomic

Constraints
2 Types other than pointer types whose referenced type is an object type shall not be restrict-qualified.

3 The _Atomic qualifier shall not be used if the implementation does not support atomic types
(see 6.10.8.3).

4 The type modified by the _Atomic qualifier shall not be an array type or a function type.

Semantics
5 The properties associated with qualified types are meaningful only for expressions that are lval-

ues.153)

6 If the same qualifier appears more than once in the same specifier-qualifier list or as declaration
specifiers, either directly or via one or more typedefs, the behavior is the same as if it appeared only
once. If other qualifiers appear along with the _Atomic qualifier the resulting type is the so-qualified
atomic type.

7 If an attempt is made to modify an object defined with a const-qualified type through use of an
lvalue with non-const-qualified type, the behavior is undefined. If an attempt is made to refer to an

153)The implementation can place a const object that is not volatile in a read-only region of storage
::::::
instance. Moreover,

the implementation need not allocate
:
a storage

::::::
instance for such an object

:::
need

:::
not

::
be

:::::::::
addressable if its address is never

used.

modifications to ISO/IEC 9899:2018, § 6.7.3 page 92 Language

72modifications to ISO/IEC 9899:2018, § 6.7.6.2 page 100, draft — June 15, 2022 C17..TS 6010

operator and changing the value of the size expression would not affect the result of the operator, it
is unspecified whether or not the size expression is evaluated.

6 For two array types to be compatible, both shall have compatible element types, and if both size
specifiers are present, and are integer constant expressions, then both size specifiers shall have
the same constant value. If the two array types are used in a context which requires them to be
compatible, it is undefined behavior if the two size specifiers evaluate to unequal values.

7 EXAMPLE 1

float fa[11], *afp[17];

declares an array of float numbers and an array of pointers to float numbers.

8 EXAMPLE 2 Note the distinction between the declarations

extern int *x;
extern int y[];

The first declares x to be a pointer to int; the second declares y to be an array of int of unspecified size (an incomplete type),
the storage

::::::
instance for which is defined elsewhere.

9 EXAMPLE 3 The following declarations demonstrate the compatibility rules for variably modified types.

extern int n;
extern int m;

void fcompat(void)
{

int a[n][6][m];
int (*p)[4][n+1];
int c[n][n][6][m];
int (*r)[n][n][n+1];
p = a; // invalid: not compatible because 4 != 6
r = c; // compatible, but defined behavior only if

// n == 6 and m == n+1
}

10 EXAMPLE 4 All declarations of variably modified (VM) types have to be at either block scope or function prototype scope.
Array objects declared with the _Thread_local, static, or extern storage-class specifier cannot have a variable length
array (VLA) type. However, an object declared with the static storage-class specifier can have a VM type (that is, a pointer
to a VLA type). Finally, all identifiers declared with a VM type have to be ordinary identifiers and cannot, therefore, be
members of structures or unions.

extern int n;
int A[n]; // invalid: file scope VLA
extern int (*p2)[n]; // invalid: file scope VM
int B[100]; // valid: file scope but not VM

void fvla(int m, int C[m][m]); // valid: VLA with prototype scope

void fvla(int m, int C[m][m]) // valid: adjusted to auto pointer to VLA
{

typedef int VLA[m][m]; // valid: block scope typedef VLA

struct tag {
int (*y)[n]; // invalid: y not ordinary identifier
int z[n]; // invalid: z not ordinary identifier

};
int D[m]; // valid: auto VLA
static int E[m]; // invalid: static block scope VLA
extern int F[m]; // invalid: F has linkage and is VLA
int (*s)[m]; // valid: auto pointer to VLA
extern int (*r)[m]; // invalid: r has linkage and points to VLA
static int (*q)[m] = &B; // valid: q is a static block pointer to VLA

modifications to ISO/IEC 9899:2018, § 6.7.6.2 page 100 Language

73modifications to ISO/IEC 9899:2018, § 6.7.9 page 106, draft — June 15, 2022 C17..TS 6010

3 The type of the entity to be initialized shall be an array of unknown size or a complete object type
that is not a variable length array type.

4 All the expressions in an initializer for an object that has static or thread storage duration shall be
constant expressions or string literals.

5 If the declaration of an identifier has block scope, and the identifier has external or internal linkage,
the declaration shall have no initializer for the identifier.

6 If a designator has the form

[constant-expression]

then the current object (defined below) shall have array type and the expression shall be an integer
constant expression. If the array is of unknown size, any nonnegative value is valid.

7 If a designator has the form

. identifier

then the current object (defined below) shall have structure or union type and the identifier shall be
the name of a member of that type.

Semantics
8 An initializer specifies the initial value stored in an object.

9 Except where explicitly stated otherwise, for the purposes of this subclause unnamed members
of objects of structure and union type do not participate in initialization. Unnamed members of
structure objects have indeterminate value

:::::::::::::
representation even after initialization.

10 If an object that has automatic storage duration is not initialized explicitly, its value
:::::::::::::
representation is

indeterminate. If an object that has static or thread storage duration is not initialized explicitly, then:

— if it has pointer type, it is initialized to a null pointer;

— if it has arithmetic type, it is initialized to (positive or unsigned) zero;

— if it is an aggregate, every member is initialized (recursively) according to these rules, and any
padding is initialized to zero bits;

— if it is a union, the first named member is initialized (recursively) according to these rules, and
any padding is initialized to zero bits;

11 The initializer for a scalar shall be a single expression, optionally enclosed in braces. The initial value
of the object is that of the expression (after conversion); the same type constraints and conversions
as for simple assignment apply, taking the type of the scalar to be the unqualified version of its
declared type.

12 The rest of this subclause deals with initializers for objects that have aggregate or union type.

13 The initializer for a structure or union object that has automatic storage duration shall be either
an initializer list as described below, or a single expression that has compatible structure or union
type. In the latter case, the initial value of the object, including unnamed members, is that of the
expression.

14 An array of character type may be initialized by a character string literal or UTF–8 string literal,
optionally enclosed in braces. Successive bytes of the string literal (including the terminating null
character if there is room or if the array is of unknown size) initialize the elements of the array.

15 An array with element type compatible with a qualified or unqualified version of wchar_t, char16_t,
or char32_t may be initialized by a wide string literal with the corresponding encoding prefix (L,
u, or U, respectively), optionally enclosed in braces. Successive wide characters of the wide string
literal (including the terminating null wide character if there is room or if the array is of unknown
size) initialize the elements of the array.

16 Otherwise, the initializer for an object that has aggregate or union type shall be a brace-enclosed list
of initializers for the elements or named members.

modifications to ISO/IEC 9899:2018, § 6.7.9 page 106 Language

74modifications to ISO/IEC 9899:2018, § 6.8.1 page 111, draft — June 15, 2022 C17..TS 6010

6.8 Statements and blocks
Syntax

1 statement:
labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement

Semantics
2 A statement specifies an action to be performed. Except as indicated, statements are executed in

sequence.

3 A block allows a set of declarations and statements to be grouped into one syntactic unit. The
initializers of objects that have automatic storage duration, and the variable length array declarators
of ordinary identifiers with block scope, are evaluated and the values are stored in the objects
(including storing an indeterminate value in

:::
the

:::::::::::::
representation

:::
of objects without an initializer

::::::::
becomes

:::::::::::::
indeterminate) each time the declaration is reached in the order of execution, as if it were a

statement, and within each declaration in the order that declarators appear.

4 A full expression is an expression that is not part of another expression, nor part of a declarator
or abstract declarator. There is also an implicit full expression in which the non-constant size
expressions for a variably modified type are evaluated; within that full expression, the evaluation of
different size expressions are unsequenced with respect to one another. There is a sequence point
between the evaluation of a full expression and the evaluation of the next full expression to be
evaluated.

5 NOTE Each of the following is a full expression:

— a full declarator for a variably modified type,

— an initializer that is not part of a compound literal,

— the expression in an expression statement,

— the controlling expression of a selection statement (if or switch),

— the controlling expression of a while or do statement,

— each of the (optional) expressions of a for statement,

— the (optional) expression in a return statement.

While a constant expression satisfies the definition of a full expression, evaluating it does not depend on nor produce any
side effects, so the sequencing implications of being a full expression are not relevant to a constant expression.

Forward references: expression and null statements (6.8.3), selection statements (6.8.4), iteration
statements (6.8.5), the return statement (6.8.6.4).

6.8.1 Labeled statements
Syntax

1 labeled-statement:
identifier : statement
case constant-expression : statement
default : statement

Constraints
2 A case or default label shall appear only in a switch statement. Further constraints on such labels

are discussed under the switch statement.

3 Label names shall be unique within a function.

Language modifications to ISO/IEC 9899:2018, § 6.8.1 page 111

75modifications to ISO/IEC 9899:2018, § 6.8.5.2 page 114, draft — June 15, 2022 C17..TS 6010

7 EXAMPLE In the artificial program fragment

switch (expr)
{

int i = 4;
f(i);

case 0:
i = 17;
/* falls through into default code */

default:
printf("%d\n", i);

}

the object whose identifier is i exists with automatic storage duration (within the block) but is never initialized, and thus if
the controlling expression has a nonzero value, the call to the printf function will access an indeterminate value

::::
object

::::
with

::
an

::::::::::
indeterminate

:::::::::::
representation. Similarly, the call to the function f cannot be reached.

6.8.5 Iteration statements
Syntax

1 iteration-statement:
while (expression) statement
do statement while (expression) ;
for (expressionopt ; expressionopt ; expressionopt) statement
for (declaration expressionopt ; expressionopt) statement

Constraints
2 The controlling expression of an iteration statement shall have scalar type.

3 The declaration part of a for statement shall only declare identifiers for objects having storage class
auto or register.

Semantics
4 An iteration statement causes a statement called the loop body to be executed repeatedly until the

controlling expression compares equal to 0. The repetition occurs regardless of whether the loop
body is entered from the iteration statement or by a jump.176)

5 An iteration statement is a block whose scope is a strict subset of the scope of its enclosing block.
The loop body is also a block whose scope is a strict subset of the scope of the iteration statement.

6 An iteration statement may be assumed by the implementation to terminate if its controlling
expression is not a constant expression,177) and none of the following operations are performed in its
body, controlling expression or (in the case of a for statement) its expression-3:178)

— input/output operations

— accessing a volatile object

— synchronization or atomic operations.

6.8.5.1 The while statement
1 The evaluation of the controlling expression takes place before each execution of the loop body.

6.8.5.2 The do statement
1 The evaluation of the controlling expression takes place after each execution of the loop body.

176)Code jumped over is not executed. In particular, the controlling expression of a for or while statement is not evaluated
before entering the loop body, nor is clause-1 of a for statement.
177)An omitted controlling expression is replaced by a nonzero constant, which is a constant expression.
178)This is intended to allow compiler transformations such as removal of empty loops even when termination cannot be

proven.

modifications to ISO/IEC 9899:2018, § 6.8.5.2 page 114 Language

76modifications to ISO/IEC 9899:2018, § 6.9.1 page 118, draft — June 15, 2022 C17..TS 6010

6.9 External definitions
Syntax

1 translation-unit:
external-declaration
translation-unit external-declaration

external-declaration:
function-definition
declaration

Constraints
2 The storage-class specifiers auto and register shall not appear in the declaration specifiers in an

external declaration.

3 There shall be no more than one external definition for each identifier declared with internal linkage
in a translation unit. Moreover, if an identifier declared with internal linkage is used in an expression
(other than as a part of the operand of a sizeof or _Alignof operator whose result is an integer
constant), there shall be exactly one external definition for the identifier in the translation unit.

Semantics
4 As discussed in 5.1.1.1, the unit of program text after preprocessing is a translation unit, which

consists of a sequence of external declarations. These are described as "external" because they
appear outside any function (and hence have file scope). As discussed in 6.7, a declaration that
also causes storage

:
a
:::::::
storage

::::::::
instance to be reserved for an object or

::::::::
provides

:::
the

:::::
body

:::
of a function

named by the identifier is a definition.

5 An external definition is an external declaration that is also a definition of a function (other than an
inline definition) or an object. If an identifier declared with external linkage is used in an expression
(other than as part of the operand of a sizeof or _Alignof operator whose result is an integer
constant), somewhere in the entire program there shall be exactly one external definition for the
identifier; otherwise, there shall be no more than one.182)

6.9.1 Function definitions
Syntax

1 function-definition:
declaration-specifiers declarator declaration-listopt compound-statement

declaration-list:
declaration
declaration-list declaration

Constraints
2 The identifier declared in a function definition (which is the name of the function) shall have a

function type, as specified by the declarator portion of the function definition.183)

3 The return type of a function shall be void or a complete object type other than array type.

4 The storage-class specifier, if any, in the declaration specifiers shall be either extern or static.

5 If the declarator includes a parameter type list, the declaration of each parameter shall include an
identifier, except for the special case of a parameter list consisting of a single parameter of type void,
in which case there shall not be an identifier. No declaration list shall follow.

182)Thus, if an identifier declared with external linkage is not used in an expression, there need be no external definition for
it.

modifications to ISO/IEC 9899:2018, § 6.9.1 page 118 Language

77modifications to ISO/IEC 9899:2018, § 6.9.1 page 119, draft — June 15, 2022 C17..TS 6010

6 If the declarator includes an identifier list, each declaration in the declaration list shall have at least
one declarator, those declarators shall declare only identifiers from the identifier list, and every
identifier in the identifier list shall be declared. An identifier declared as a typedef name shall not
be redeclared as a parameter. The declarations in the declaration list shall contain no storage-class
specifier other than register and no initializations.

Semantics
7 The declarator in a function definition specifies the name of the function being defined and the

identifiers of its parameters. If the declarator includes a parameter type list, the list also specifies the
types of all the parameters; such a declarator also serves as a function prototype for later calls to the
same function in the same translation unit. If the declarator includes an identifier list,184) the types
of the parameters shall be declared in a following declaration list. In either case, the type of each
parameter is adjusted as described in 6.7.6.3 for a parameter type list; the resulting type shall be a
complete object type.

8 If a function that accepts a variable number of arguments is defined without a parameter type list
that ends with the ellipsis notation, the behavior is undefined.

9 Each parameter has automatic storage duration; its identifier is an lvalue.A parameter identifier
cannot be redeclared in the function body except in an enclosed block. The layout of the storage
for parameters is unspecified. 185)

10 On entry to the function, the size expressions of each variably modified parameter are evaluated
and the value of each argument expression is converted to the type of the corresponding parameter
as if by assignment. (Array expressions and function designators as arguments were converted to
pointers before the call.)

11 After all parameters have been assigned, the compound statement that constitutes the body of the
function definition is executed.

12 Unless otherwise specified, if the } that terminates a function is reached, and the value of the
function call is used by the caller, the behavior is undefined.

13 EXAMPLE 1 In the following:

extern int max(int a, int b)
{

return a > b ? a: b;
}

extern is the storage-class specifier and int is the type specifier; max(int a, int b) is the function declarator; and

{ return a > b ? a: b; }

183)The intent is that the type category in a function definition cannot be inherited from a typedef:

typedef int F(void); // type F is "function with no parameters
// returning int"

F f, g; // f and g both have type compatible with F
F f { /* ... */ } // WRONG: syntax/constraint error
F g() { /* ... */ } // WRONG: declares that g returns a function
int f(void) { /* ... */ } // RIGHT: f has type compatible with F
int g() { /* ... */ } // RIGHT: g has type compatible with F
F *e(void) { /* ... */ } // e returns a pointer to a function
F *((e))(void) { /* ... */ } // same: parentheses irrelevant
int (*fp)(void); // fp points to a function that has type F
F *Fp; // Fp points to a function that has type F

184)See "future language directions" (6.11.7).
185)

:
A
::::::::
parameter

:::::::
identifier

::::::
cannot

::
be

::::::::
redeclared

::
in

:::
the

::::::
function

:::::
body

:::::
except

::
in

::
an

:::::::
enclosed

:::::
block.

:::
As

:::
any

:::::
object

::::
with

:::::::
automatic

::::::
storage

:::::::
duration,

:::
each

::::::::
parameter

::::
gives

:::
rise

::
to

:
a
:::::
unique

::::::
storage

::::::
instance

::::::::::
representing

:
it.
::::

Thus
:::

the
::::::
relative

:::::
layout

:
of
:::::::::

parameters
::
in

::
the

::::::
address

::::
space

::
is

:::::::::
unspecified.

Language modifications to ISO/IEC 9899:2018, § 6.9.1 page 119

78modifications to ISO/IEC 9899:2018, § 7.1.4 page 139, draft — June 15, 2022

— If an argument to a function has an invalid value (such as a value outside the domain of the
function, or a pointer outside the address space of the program, or a null pointer, or a pointer to

:
a non-modifiable storage

:::::::
instance

:
when the corresponding parameter is not const-qualified) or

a type (after default argument promotion) not expected by a function with a variable number
of arguments, the behavior is undefined.

— If a function argument is described as being an array, the pointer actually passed to the function
shall have a value such that all address computations and accesses to objects (that would be
valid if the pointer did point to the first element of such an array) are in fact valid.

— Any function declared in a header may be additionally implemented as a function-like macro
defined in the header, so if a library function is declared explicitly when its header is included,
one of the techniques shown below can be used to ensure the declaration is not affected by
such a macro. Any macro definition of a function can be suppressed locally by enclosing
the name of the function in parentheses, because the name is then not followed by the left
parenthesis that indicates expansion of a macro function name. For the same syntactic reason,
it is permitted to take the address of a library function even if it is also defined as a macro.208)

The use of #undef to remove any macro definition will also ensure that an actual function is
referred to.

— Any invocation of a library function that is implemented as a macro shall expand to code that
evaluates each of its arguments exactly once, fully protected by parentheses where necessary,
so it is generally safe to use arbitrary expressions as arguments.209)

— Likewise, those function-like macros described in the following subclauses may be invoked in
an expression anywhere a function with a compatible return type could be called.210)

— All object-like macros listed as expanding to integer constant expressions shall additionally be
suitable for use in #if preprocessing directives.

2 Provided that a library function can be declared without reference to any type defined in a header, it
is also permissible to declare the function and use it without including its associated header.

3 There is a sequence point immediately before a library function returns.

4 The functions in the standard library are not guaranteed to be reentrant and may modify objects
with static or thread storage duration.211)

5 Unless explicitly stated otherwise in the detailed descriptions that follow, library functions shall
prevent data races as follows: A library function shall not directly or indirectly access objects
accessible by threads other than the current thread unless the objects are accessed directly or
indirectly via the function’s arguments. A library function shall not directly or indirectly modify
objects accessible by threads other than the current thread unless the objects are accessed directly
or indirectly via the function’s non-const arguments.212) Implementations may share their own

208)This means that an implementation is required to provide an actual function for each library function, even if it also
provides a macro for that function.

209)Such macros might not contain the sequence points that the corresponding function calls do.
210)Because external identifiers and some macro names beginning with an underscore are reserved, implementations can

provide special semantics for such names. For example, the identifier _BUILTIN_abs could be used to indicate generation of
in-line code for the abs function. Thus, the appropriate header could specify

#define abs(x) _BUILTIN_abs(x)

for a compiler whose code generator will accept it.
In this manner, a user desiring to guarantee that a given library function such as abs will be a genuine function can write

#undef abs

whether the implementation’s header provides a macro implementation of abs or a built-in implementation. The prototype
for the function, which precedes and is hidden by any macro definition, is thereby revealed also.
211)Thus, a signal handler cannot, in general, call standard library functions.
212)This means, for example, that an implementation is not permitted to use a static object for internal purposes without

synchronization because it could cause a data race even in programs that do not explicitly share objects between threads.

Library modifications to ISO/IEC 9899:2018, § 7.1.4 page 139

79modifications to ISO/IEC 9899:2018, § 7.1.4 page 140, draft — June 15, 2022 C17..TS 6010

internal objects between threads if the objects are not visible to users and are protected against data
races.

6 Unless otherwise specified, library functions shall perform all operations solely within the current
thread if those operations have effects that are visible to users.213)

7
::::::
Unless

::::::::::
otherwise

:::::::::
specified,

:::::::
library

:::::::::
functions

::::
by

:::::::::::
themselves

:::
do

::::
not

:::::::
expose

:::::::
storage

::::::::::
instances,

:::
but

:::::::
library

:::::::::
functions

::::
that

:::::::
execute

:::::::::::
application

:::::::
specific

:::::::::
callbacks214)

::::
may

:::::::
expose

:::::::
storage

:::::::::
instances

:::::::
through

:::::
calls

::::
into

:::::
these

:::::::::
callbacks.

8 EXAMPLE The function atoi can be used in any of several ways:

— by use of its associated header (possibly generating a macro expansion)

#include <stdlib.h>
const char *str;
/* ... */
i = atoi(str);

— by use of its associated header (assuredly generating a true function reference)

#include <stdlib.h>
#undef atoi
const char *str;
/* ... */
i = atoi(str);

or

#include <stdlib.h>
const char *str;
/* ... */
i = (atoi)(str);

— by explicit declaration

extern int atoi(const char *);
const char *str;
/* ... */
i = atoi(str);

Similarly, an implementation of memcpy is not permitted to copy bytes beyond the specified length of the destination object
and then restore the original values because it could cause a data race if the program shared those bytes between threads.
213)This allows implementations to parallelize operations if there are no visible side effects.
214)

:::
The

:::::::
following

:::::
library

:::::::
functions

:::
call

::::::::
application

::::::
specific

:::::::
functions

:::
that

::::
they

::
or

:::::
related

:::::::
functions

::::::
receive

::
as

::::::::
arguments:

:

::::::
bsearch,

:::::::::
call_once,

::::
exit

:::
(for

::::::
atexit

:::::::
handlers),

::::::
qsort,

:::::::::
quick_exit

:::
(for

::::::::::::
at_quick_exit

:::::::
handlers),

:::
and

:::::::::
thrd_exit

:::
(for

:::::
thread

:::::
specific

:::::::
storage).

modifications to ISO/IEC 9899:2018, § 7.1.4 page 140 Library

80modifications to ISO/IEC 9899:2018, § 7.5 page 155, draft — June 15, 2022 C17..TS 6010

7.5 Errors <errno.h>
1 The header <errno.h> defines several macros, all relating to the reporting of error conditions.

2 The macros are

EDOM
EILSEQ
ERANGE

which expand to integer constant expressions with type int, distinct positive values, and which are
suitable for use in #if preprocessing directives; and

errno

which expands to a modifiable lvalue225) that has type int and thread local storage duration, the
value of which is set to a positive error number by several library functions. If a macro definition is
suppressed in order to access an actual object, or a program defines an identifier with the name
errno, the behavior is undefined.

3 The value of errno in the initial thread is zero at program startup (the initial value of errno in
other threads is an indeterminatevalue

:::::::
initially

:::::::::::::
representation

::
of

::::
the

:::::
object

::::::::::::::
corresponding

::
to

::::::
errno

::
in

::::
any

:::::
other

::::::
thread

::
is

:::::::::::::
indeterminate), but is never set to zero by any library function.226) The value

of errno may be set to nonzero by a library function call whether or not there is an error, provided
the use of errno is not documented in the description of the function in this document.

4 Additional macro definitions, beginning with E and a digit or E and an uppercase letter,227) may also
be specified by the implementation.

225)The macro errno need not be the identifier of an object. It might expand to a modifiable lvalue resulting from a function
call (for example,*errno()).
226)Thus, a program that uses errno for error checking would set it to zero before a library function call, then inspect it

before a subsequent library function call. Of course, a library function can save the value of errno on entry and then set it to
zero, as long as the original value is restored if errno’s value is still zero just before the return.
227)See "future library directions" (7.31.3).

Library modifications to ISO/IEC 9899:2018, § 7.5 page 155

81modifications to ISO/IEC 9899:2018, § 7.13.2.1 page 198, draft — June 15, 2022 C17..TS 6010

Description
2 The longjmp function restores the environment saved by the most recent invocation of the setjmp

macro in the same invocation of the program with the corresponding jmp_buf argument. If there
has been no such invocation, or if the invocation was from another thread of execution, or if the
function containing the invocation of the setjmp macro has terminated execution272) in the interim,
or if the invocation of the setjmp macro was within the scope of an identifier with variably modified
type and execution has left that scope in the interim, the behavior is undefined.

3 All accessible objects have values, and all other components of the abstract machine273) have
state, as of the time the longjmp function was called, except that the values

:::::::::::::
representation

:
of

objects of automatic storage duration that are local to the function containing the invocation of
the corresponding setjmp macro that do not have volatile-qualified type and have been changed
between the setjmp invocation and longjmp call are

:
is
:
indeterminate.

Returns
4 After longjmp is completed, thread execution continues as if the corresponding invocation of the

setjmp macro had just returned the value specified by val. The longjmp function cannot cause the
setjmp macro to return the value 0; if val is 0, the setjmp macro returns the value 1.

5 EXAMPLE The longjmp function that returns control back to the point of the setjmp invocation might cause memory
::

the

:::::
storage

::::::
instance

:
associated with a variable length array object to be squandered.

#include <setjmp.h>
jmp_buf buf;
void g(int n);
void h(int n);
int n = 6;

void f(void)
{

int x[n]; // valid: f is not terminated
setjmp(buf);
g(n);

}

void g(int n)
{

int a[n]; // a may remain allocated
h(n);

}

void h(int n)
{

int b[n]; // b may remain allocated
longjmp(buf, 2); // might cause memory loss

}

272)For example, by executing a return statement or because another longjmp call has caused a transfer to a setjmp
invocation in a function earlier in the set of nested calls.
273)This includes, but is not limited to, the floating-point status flags and the state of open files.

modifications to ISO/IEC 9899:2018, § 7.13.2.1 page 198 Library

82modifications to ISO/IEC 9899:2018, § 7.14.2.1 page 200, draft — June 15, 2022 C17..TS 6010

3 When a signal occurs and func points to a function, it is implementation-defined whether the
equivalent of signal(sig, SIG_DFL); is executed or the implementation prevents some imple-
mentation-defined set of signals (at least including sig) from occurring until the current signal
handling has completed; in the case of SIGILL, the implementation may alternatively define that
no action is taken. Then the equivalent of (*func)(sig); is executed. If and when the function
returns, if the value of sig is SIGFPE, SIGILL, SIGSEGV, or any other implementation-defined value
corresponding to a computational exception, the behavior is undefined; otherwise the program will
resume execution at the point it was interrupted.

4 If the signal occurs as the result of calling the abort or raise function, the signal handler shall not
call the raise function.

5 If the signal occurs other than as the result of calling the abort or raise function, the behavior is
undefined if the signal handler refers to any object with static or thread storage duration that is
not a lock-free atomic object other than by assigning a value to an object declared as volatile
sig_atomic_t, or the signal handler calls any function in the standard library other than

— the abort function,

— the _Exit function,

— the quick_exit function,

— the functions in <stdatomic.h> (except where explicitly stated otherwise) when the atomic
arguments are lock-free,

— the atomic_is_lock_free function with any atomic argument, or

— the signal function with the first argument equal to the signal number corresponding to the
signal that caused the invocation of the handler. Furthermore, if such a call to the signal
function results in a SIG_ERR return, the value of

:::::
object

::::::::::
designated

:::
by errno is indeterminate

:::
has

:::
an

:::::::::::::
indeterminate

:::::::::::::
representation.276)

6 At program startup, the equivalent of

signal(sig, SIG_IGN);

may be executed for some signals selected in an implementation-defined manner; the equivalent of

signal(sig, SIG_DFL);

is executed for all other signals defined by the implementation.

7 Use of this function in a multi-threaded program results in undefined behavior. The implementation
shall behave as if no library function calls the signal function.

Returns
8 If the request can be honored, the signal function returns the value of func for the most recent

successful call to signal for the specified signal sig. Otherwise, a value of SIG_ERR is returned and
a positive value is stored in errno.

Forward references: the abort function (7.22.4.1), the exit function (7.22.4.4), the _Exit function
(7.22.4.5), the quick_exit function (7.22.4.7).

7.14.2 Send signal
7.14.2.1 The raise function
Synopsis

1 #include <signal.h>
int raise(int sig);

276)If any signal is generated by an asynchronous signal handler, the behavior is undefined.

modifications to ISO/IEC 9899:2018, § 7.14.2.1 page 200 Library

83modifications to ISO/IEC 9899:2018, § 7.16.1.1 page 203, draft — June 15, 2022 C17..TS 6010

7.16 Variable arguments <stdarg.h>
1 The header <stdarg.h> declares a type and defines four macros, for advancing through a list of

arguments whose number and types are not known to the called function when it is translated.

2 A function may be called with a variable number of arguments of varying types. As described in
6.9.1, its parameter list contains one or more parameters. The rightmost parameter plays a special
role in the access mechanism, and will be designated parmN in this description.

3 The type declared is

va_list

which is a complete object type suitable for holding information needed by the macros va_start,
va_arg, va_end, and va_copy. If access to the varying arguments is desired, the called function
shall declare an object (generally referred to as ap in this subclause) having type va_list. The object
ap may be passed as an argument to another function; if that function invokes the va_arg macro
with parameter ap, the value

:::::::::::::
representation of ap in the calling function is indeterminate and shall

be passed to the va_end macro prior to any further reference to ap.277)

7.16.1 Variable argument list access macros
1 The va_start and va_arg macros described in this subclause shall be implemented as macros,

not functions. It is unspecified whether va_copy and va_end are macros or identifiers declared
with external linkage. If a macro definition is suppressed in order to access an actual function,
or a program defines an external identifier with the same name, the behavior is undefined. Each
invocation of the va_start and va_copy macros shall be matched by a corresponding invocation of
the va_end macro in the same function.

7.16.1.1 The va_arg macro
Synopsis

1 #include <stdarg.h>
type va_arg(va_list ap, type);

Description
2 The va_arg macro expands to an expression that has the specified type and the value of the next

argument in the call. The parameter ap shall have been initialized by the va_start or va_copy
macro (without an intervening invocation of the va_end macro for the same ap). Each invocation of
the va_arg macro modifies ap so that the values of successive arguments are returned in turn. The
parameter type shall be a type name specified such that the type of a pointer to an object that has the
specified type can be obtained simply by postfixing a* to type. If there is no actual next argument,
or if type is not compatible with the type of the actual next argument (as promoted according to the
default argument promotions), the behavior is undefined, except for the following cases:

— one type is a signed integer type, the other type is the corresponding unsigned integer type,
and the value is representable in both types;

— one type is pointer to void and the other is a pointer to a character type.

Returns
3 The first invocation of the va_arg macro after that of the va_start macro returns the value of the

argument after that specified by parmN. Successive invocations return the values of the remaining
arguments in succession.

277)It is permitted to create a pointer to a va_list and pass that pointer to another function, in which case the original
function can make further use of the original list after the other function returns.

Library modifications to ISO/IEC 9899:2018, § 7.16.1.1 page 203

84modifications to ISO/IEC 9899:2018, § 7.17.3 page 207, draft — June 15, 2022 C17..TS 6010

7.17.2 Initialization
7.17.2.1 The ATOMIC_VAR_INIT macro
Synopsis

1 #include <stdatomic.h>
#define ATOMIC_VAR_INIT(C value)

Description
2 The ATOMIC_VAR_INIT macro expands to a token sequence suitable for initializing an atomic object of

a type that is initialization-compatible with value. An atomic object with automatic storage duration
that is not explicitly initialized is initially in an indeterminate state

:::
has

::::::::
initially

:::
an

:::::::::::::
indeterminate

:::::::::::::
representation; however, the default (zero) initialization for objects with static or thread-local storage
duration is guaranteed to produce a valid state.279)

3 Concurrent access to the variable being initialized, even via an atomic operation, constitutes a data
race.

4 EXAMPLE

atomic_int guide = ATOMIC_VAR_INIT(42);

7.17.2.2 The atomic_init generic function
Synopsis

1 #include <stdatomic.h>
void atomic_init(volatile A *obj, C value);

Description
2 The atomic_init generic function initializes the atomic object pointed to by obj to the value value,

while also initializing any additional state that the implementation might need to carry for the
atomic object.

3 Although this function initializes an atomic object, it does not avoid data races; concurrent access to
the variable being initialized, even via an atomic operation, constitutes a data race.

4 If a signal occurs other than as the result of calling the abort or raise functions, the behavior is
undefined if the signal handler calls the atomic_init generic function.

Returns
5 The atomic_init generic function returns no value.
6 EXAMPLE

atomic_int guide;
atomic_init(&guide, 42);

7.17.3 Order and consistency
1 The enumerated type memory_order specifies the detailed regular (non-atomic) memory synchro-

nization operations as defined in 5.1.2.4 and may provide for operation ordering. Its enumeration
constants are as follows:280)

memory_order_relaxed
memory_order_consume
memory_order_acquire
memory_order_release
memory_order_acq_rel
memory_order_seq_cst

279)See "future library directions" (7.31.8).
280)See "future library directions" (7.31.8).

Library modifications to ISO/IEC 9899:2018, § 7.17.3 page 207

85modifications to ISO/IEC 9899:2018, § 7.17.8 page 214, draft — June 15, 2022 C17..TS 6010

7 EXAMPLE A consequence of spurious failure is that nearly all uses of weak compare-and-exchange will be in a loop.

exp = atomic_load(&cur);
do {

des = function(exp);
} while (!atomic_compare_exchange_weak(&cur, &exp, des));

When a compare-and-exchange is in a loop, the weak version will yield better performance on some platforms. When a weak
compare-and-exchange would require a loop and a strong one would not, the strong one is preferable.

Returns
8 The result of the comparison.

7.17.7.5 The atomic_fetch and modify generic functions
1 The following operations perform arithmetic and bitwise computations. All of these operations

are applicable to an object of any atomic integer type. None of these operations is applicable to
atomic_bool. The key, operator, and computation correspondence is:

key op computation
add + addition
sub - subtraction
or | bitwise inclusive or
xor ^ bitwise exclusive or
and & bitwise and

Synopsis

2 #include <stdatomic.h>
C atomic_fetch_key(volatile A *object, M operand);
C atomic_fetch_key_explicit(volatile A *object,

M operand, memory_order order);

Description
3 Atomically replaces the value pointed to by object with the result of the computation applied to

the value pointed to by object and the given operand. Memory is affected according to the value of
order. These operations are atomic read-modify-write operations (5.1.2.4). For signed integer types,
arithmetic is defined to use two’s complement representation with silent wrap-around on overflow;
there are no undefined results. For address types, the result may be an undefined address, but the
operations otherwise have no undefined behavior.

Returns
4 Atomically, the value pointed to by object immediately before the effects.
5 NOTE The operation of the atomic_fetch and modify generic functions are nearly equivalent to the operation of the

corresponding op= compound assignment operators. The only differences are that the compound assignment operators are
not guaranteed to operate atomically, and the value yielded by a compound assignment operator is the updated value of the
object, whereas the value returned by the atomic_fetch and modify generic functions is the previous value of the atomic
object.

7.17.8 Atomic flag type and operations
1 The atomic_flag type provides the classic test-and-set functionality. It has two states, set and clear.

2 Operations on an object of type atomic_flag shall be lock free.
3 NOTE Hence, as per 7.17.5, the operations should also be address-free. No other type requires lock-free operations, so the

atomic_flag type is the minimum hardware-implemented type needed to conform to this document. The remaining types
can be emulated with atomic_flag, though with less than ideal properties.

4 The macro ATOMIC_FLAG_INIT may be used to initialize an atomic_flag to the clear state.
An atomic_flag that is not explicitly initialized with ATOMIC_FLAG_INIT is initially in an
indeterminate state

:::
has

:::::::
initially

:::
an

:::::::::::::
indeterminate

:::::::::::::
representation.

modifications to ISO/IEC 9899:2018, § 7.17.8 page 214 Library

86modifications to ISO/IEC 9899:2018, § 7.20.1.2 page 218, draft — June 15, 2022 C17..TS 6010

7.20 Integer types <stdint.h>
1 The header <stdint.h> declares sets of integer types having specified widths, and defines corre-

sponding sets of macros.285) It also defines macros that specify limits of integer types corresponding
to types defined in other standard headers.

2 Types are defined in the following categories:

— integer types having certain exact widths;

— integer types having at least certain specified widths;

— fastest integer types having at least certain specified widths;

— integer types wide enough to hold pointers to objects;

— integer types having greatest width.

(Some of these types may denote the same type.)

3 Corresponding macros specify limits of the declared types and construct suitable constants.

4 For each type described herein that the implementation provides,286) <stdint.h> shall declare that
typedef name and define the associated macros. Conversely, for each type described herein that
the implementation does not provide, <stdint.h> shall not declare that typedef name nor shall it
define the associated macros. An implementation shall provide those types described as "required",
but need not provide any of the others (described as "optional").

7.20.1 Integer types
1 When typedef names differing only in the absence or presence of the initial u are defined, they shall

denote corresponding signed and unsigned types as described in 6.2.5; an implementation providing
one of these corresponding types shall also provide the other.

2 In the following descriptions, the symbol N represents an unsigned decimal integer with no leading
zeros (e.g., 8 or 24, but not 04 or 048).

7.20.1.1 Exact-width integer types
1 The typedef name intN_t designates a signed integer type with width N, no padding bits, and a

two’s complement representation. Thus, int8_t denotes such a signed integer type with a width of
exactly 8 bits.

2 The typedef name uintN_t designates an unsigned integer type with width N and no padding bits.
Thus, uint24_t denotes such an unsigned integer type with a width of exactly 24 bits.

3 These types are optional. However, if
::
If an implementation provides

::::::::
standard

::
or

:::::::::
extended integer

types with widths of 8, 16, 32, or 64 bits
:
a
::::::::::
particular

:::::
width, no padding bits, and (for the signed

types) that have a two’s complement representation, it shall define the corresponding typedef names.

7.20.1.2 Minimum-width integer types
1 The typedef name int_leastN_t designates a signed integer type with a width of at least N, such

that no signed integer type with lesser size has at least the specified width. Thus, int_least32_t
denotes a signed integer type with a width of at least 32 bits.

2 The typedef name uint_leastN_t designates an unsigned integer type with a width of at least
N, such that no unsigned integer type with lesser size has at least the specified width. Thus,
uint_least16_t denotes an unsigned integer type with a width of at least 16 bits.

3 The following types are required:

285)See "future library directions" (7.31.10).
286)Some of these types might denote implementation-defined extended integer types.

modifications to ISO/IEC 9899:2018, § 7.20.1.2 page 218 Library

87modifications to ISO/IEC 9899:2018, § 7.20.1.5 page 219, draft — June 15, 2022 C17..TS 6010

int_least8_t
int_least16_t
int_least32_t
int_least64_t

uint_least8_t
uint_least16_t
uint_least32_t
uint_least64_t

All other types of this form are optional.

7.20.1.3 Fastest minimum-width integer types

1 Each of the following types designates an integer type that is usually fastest287) to operate with
among all integer types that have at least the specified width.

2 The typedef name int_fastN_t designates the fastest signed integer type with a width of at least
N. The typedef name uint_fastN_t designates the fastest unsigned integer type with a width of at
least N.

3 The following types are required:

int_fast8_t
int_fast16_t
int_fast32_t
int_fast64_t

uint_fast8_t
uint_fast16_t
uint_fast32_t
uint_fast64_t

All other types of this form are optional.

7.20.1.4 Integer types capable of holding object pointers
1 The following type designates a signed integer type with the property that any valid pointer to void

can be converted to this type, then converted back to pointer to void, and the result will compare
equal to the original pointer:

intptr_t

The following type designates an
:::
the

:::::::::::::
corresponding

:
unsigned integer type with the property that

any valid pointer to void can be converted to this type, then converted back to pointer to void, and
the result will compare equal to the original pointer:

uintptr_t

These types are optional.
::::::::
required.

2 NOTE 1
:::
The

::::
types

::::::::
intptr_t

::::
and

::::::::
uintptr_t

:::
are

:::::::
possibly

:::::
wider

:::
than

:::
the

:::::
types

::::::::
intmax_t

:::
and

:::::::::
uintmax_t

:::::::
(7.20.1.5).

:::
This

:::::::
exception

::
is
:::::::
intended

::
to

::::::::::
accommodate

:::::::::::::
implementations

:::
that

::::::::
otherwise

:::::
would

:::
not

::
be

:::
able

::
to
::::::

specify
:::::::
intptr_t

::::
and

::::::::
uintptr_t

:::::::
consistent

::::
with

:::
the

:::
rules

:::
for

::::
these

:::::
types.

3 NOTE 2
::::::

Although
::::
these

::::::
integer

::::
types

::::
allow

:::::::
roundtrip

:::::::::
conversions

::
of

:::::
values

:
of
::::
type

:::::
pointer

::
to

::::
void

:::
and

::::::
therefore

::::::::
guarantee

:::
that

::::
such

:::::::::
conversions

::
do

:::
not

:::
lose

::::::::::
information,

:::::::
arithmetic

:::
on

::::
these

::::
types

::
is
:::
not

::::::::
necessarily

::::::::
consistent

::::
with

:::::::
arithmetic

:::
on

:::::
pointer

::
to

:::::::
character

::::
types,

:::
nor

:::
can

::::::::
properties

::
of

:::::
pointer

:::::
values

::::
such

::
as

:::::::
alignment

::
be

:::::::
portably

::::::
deduced

::::
from

:::
the

::
bit

::::::
pattern

:
of
:::

the
:::::
integer

:::::
result

::
of

:
a
::::::::
conversion.

:

4
::
On

:::
the

::::
other

::::
hand,

:::
the

::::
rules

::
for

::::::
abstract

::::::::
addresses

:
in
::::::
6.2.6.1,

::::
6.5.8

:::
and

:::
6.5.9

::::::
impose

:::
that

:::
two

:::::
values

::
of

:::
type

:::::::::
uintptr_t

:::
that

::::::
originate

::::
from

:::::::::
conversions

::
of

:::
two

:::::::
pointers

::
to

::
the

::::
same

::::::
storage

::::::
instance

:::::::
compare

:::
the

::::
same

::
for

:::
the

:::::::
relational

::::
and

::::::
equality

:::::::
operators

::
as

::
the

::::::
original

::::::
pointer

:::::
values.

::::
Also,

:::
the

::::::::::
reconstruction

::
of

::
all

::
the

:::
bits

::
of

:
a
::::
valid

::::::
abstract

::::::
address

:::
that

:::
has

::::::::
previously

:::
been

:::::::
exposed

::::
gives

:::
rise

:
to
:::

an
:::::
integer

::::
value

:::
that

:::::::
converts

::::
back

:
to
:::
the

:::::::::::
corresponding

:::
byte

::::::
address.

:

7.20.1.5 Greatest-width integer types
1 The following type designates a signed integer type capable of representing any value of any signed

integer type
::::
with

:::
the

::::::::
possible

:::::::::
exception

::
of

:::::::
signed

:::::::::
extended

::::::
integer

::::::
types

:::
that

::::
are

:::::
wider

:::::
than

:::::
long

::::
long

::::
and

::::
that

:::
are

::::::::
referred

:::
by

:::
the

::::
type

::::::::::
definition

:::
for

::
an

:::::
exact

::::::
width

:::::::
integer

::::
type

:::
or

:::
for

:::::::::
intptr_t :

intmax_t

287)The designated type is not guaranteed to be fastest for all purposes; if the implementation has no clear grounds for
choosing one type over another, it will simply pick some integer type satisfying the signedness and width requirements.

Library modifications to ISO/IEC 9899:2018, § 7.20.1.5 page 219

88modifications to ISO/IEC 9899:2018, § 7.20.2.3 page 220, draft — June 15, 2022

The following type designates an unsigned integer type capable of representing any value of any

:::
the unsigned integer type :

::::
that

:::::::::::
corresponds

::
to

::::::::::
intmax_t:288)

uintmax_t

These types are required.

7.20.2 Limits of specified-width integer types
1 The following object-like macros specify the minimum and maximum limits of the types declared in

<stdint.h>. Each macro name corresponds to a similar type name in 7.20.1.

2 Each instance of any defined macro shall be replaced by a constant expression suitable for use in
#if preprocessing directives, and this expression shall have the same type as would an expression
that is an object of the corresponding type converted according to the integer promotions. Its
implementation-defined value shall be equal to or greater in magnitude (absolute value) than the
corresponding value given below, with the same sign, except where stated to be exactly the given
value.

7.20.2.1 Limits of exact-width integer types
1 — minimum values of exact-width signed integer types

INTN_MIN exactly −(2N−1)

— maximum values of exact-width signed integer types

INTN_MAX exactly 2N−1 − 1

— maximum values of exact-width unsigned integer types

UINTN_MAX exactly 2N − 1

7.20.2.2 Limits of minimum-width integer types
1 — minimum values of minimum-width signed integer types

INT_LEASTN_MIN −(2N−1 − 1)

— maximum values of minimum-width signed integer types

INT_LEASTN_MAX 2N−1 − 1

— maximum values of minimum-width unsigned integer types

UINT_LEASTN_MAX 2N − 1

7.20.2.3 Limits of fastest minimum-width integer types
1 — minimum values of fastest minimum-width signed integer types

INT_FASTN_MIN −(2N−1 − 1)

— maximum values of fastest minimum-width signed integer types

INT_FASTN_MAX 2N−1 − 1

288)
:::
Thus

:::
this

::::
type

:
is
::::::
capable

::
of

:::::::::
representing

:::
any

::::
value

::
of

:::
any

:::::::
unsigned

:::::
integer

:::
type

::::
with

:::
the

::::::
possible

:::::::
exception

:
of
::::::::

particular

:::::::
extended

:::::
integer

::::
types

:::
that

:::
are

::::
wider

::::
than

:::::::
unsigned

::::
long

::::
long.

modifications to ISO/IEC 9899:2018, § 7.20.2.3 page 220 Library

89modifications to ISO/IEC 9899:2018, § 7.20.4.2 page 222, draft — June 15, 2022 C17..TS 6010

SIZE_MAX 65535

— limits of wchar_t

WCHAR_MIN see below
WCHAR_MAX see below

— limits of wint_t

WINT_MIN see below
WINT_MAX see below

3 If sig_atomic_t (see 7.14) is defined as a signed integer type, the value of SIG_ATOMIC_MIN shall
be no greater than −127 and the value of SIG_ATOMIC_MAX shall be no less than 127; otherwise,
sig_atomic_t is defined as an unsigned integer type, and the value of SIG_ATOMIC_MIN shall be 0
and the value of SIG_ATOMIC_MAX shall be no less than 255.

4 If wchar_t (see 7.19) is defined as a signed integer type, the value of WCHAR_MIN shall be no greater
than −127 and the value of WCHAR_MAX shall be no less than 127; otherwise, wchar_t is defined as
an unsigned integer type, and the value of WCHAR_MIN shall be 0 and the value of WCHAR_MAX shall
be no less than 255.290)

5 If wint_t (see 7.29) is defined as a signed integer type, the value of WINT_MIN shall be no greater
than −32767 and the value of WINT_MAX shall be no less than 32767; otherwise, wint_t is defined as
an unsigned integer type, and the value of WINT_MIN shall be 0 and the value of WINT_MAX shall be
no less than 65535.

7.20.4 Macros for integer constants
1 The following function-like macros expand to integer constants suitable for initializing objects that

have integer types corresponding to types defined in <stdint.h>. Each macro name corresponds to
a similar type name in 7.20.1.2 or 7.20.1.5.

2 The argument in any instance of these macros shall be an unsuffixed integer constant (as defined in
6.4.4.1) with a value that does not exceed the limits for the corresponding type.

3 Each invocation of one of these macros shall expand to an integer constant expressionsuitable for
use in #if preprocessing directives. The type of the expression shall have the same type as would
an expression of the corresponding type converted according to the integer promotions. The value
of the expression shall be that of the argument.

:
If
::::
the

:::::
value

::::
and

:::::::::
promoted

::::
type

::
is
:::
in

:::
the

:::::
range

::
of

::::
the

::::
type

:::::::::
intmax_t

::::
(for

:
a
:::::::
signed

:::::
type)

::
or

::::::::::
uintmax_t

::::
(for

:::
an

::::::::
unsigned

::::::
type),

:::
see

::::::::
7.20.1.5,

:::
the

::::::::::
expression

:
is
::::::::
suitable

:::
for

:::
use

:::
in

:::
#if

:::::::::::::
preprocessing

:::::::::
directives

:

7.20.4.1 Macros for minimum-width integer constants
1 The macro INTN_C(value) expands to an integer constant expression corresponding to the type

int_leastN_t. The macro UINTN_C(value) expands to an integer constant expression corre-
sponding to the type uint_leastN_t. For example, if uint_least64_t is a name for the type
unsigned long long int, then UINT64_C(0x123) might expand to the integer constant 0x123ULL.

7.20.4.2 Macros for greatest-width integer constants
1 The following macro expands to an integer constant expression having the value specified by its

argument and the type intmax_t:

INTMAX_C(value)

The following macro expands to an integer constant expression having the value specified by its
argument and the type uintmax_t:

290)The values WCHAR_MIN and WCHAR_MAX do not necessarily correspond to members of the extended character set.

modifications to ISO/IEC 9899:2018, § 7.20.4.2 page 222 Library

90modifications to ISO/IEC 9899:2018, § 7.21.3 page 226, draft — June 15, 2022 C17..TS 6010

stream and those in the external representation. Data read in from a text stream will necessarily
compare equal to the data that were earlier written out to that stream only if: the data consist only
of printing characters and the control characters horizontal tab and new-line; no new-line character
is immediately preceded by space characters; and the last character is a new-line character. Whether
space characters that are written out immediately before a new-line character appear when read in
is implementation-defined.

3 A binary stream is an ordered sequence of characters that can transparently record internal data.
Data read in from a binary stream shall compare equal to the data that were earlier written out to
that stream, under the same implementation. Such a stream may, however, have an implementation-
defined number of null characters appended to the end of the stream.

4 Each stream has an orientation. After a stream is associated with an external file, but before any
operations are performed on it, the stream is without orientation. Once a wide character input/out-
put function has been applied to a stream without orientation, the stream becomes a wide-oriented
stream. Similarly, once a byte input/output function has been applied to a stream without orien-
tation, the stream becomes a byte-oriented stream. Only a call to the freopen function or the fwide
function can otherwise alter the orientation of a stream. (A successful call to freopen removes any
orientation.)293)

5 Byte input/output functions shall not be applied to a wide-oriented stream and wide character
input/output functions shall not be applied to a byte-oriented stream. The remaining stream
operations do not affect, and are not affected by, a stream’s orientation, except for the following
additional restrictions:

— Binary wide-oriented streams have the file-positioning restrictions ascribed to both text and
binary streams.

— For wide-oriented streams, after a successful call to a file-positioning function that leaves the
file position indicator prior to the end-of-file, a wide character output function can overwrite
a partial multibyte character; any file contents beyond the byte(s) written are henceforth
indeterminate

::::
may

::::::::::
henceforth

::::
not

::::::
consist

:::
of

:::::
valid

:::::::::
multibyte

:::::::::
characters.

6 Each wide-oriented stream has an associated mbstate_t object that stores the current parse state
of the stream. A successful call to fgetpos stores a representation of the value of this mbstate_t
object as part of the value of the fpos_t object. A later successful call to fsetpos using the same
stored fpos_t value restores the value of the associated mbstate_t object as well as the position
within the controlled stream.

7 Each stream has an associated lock that is used to prevent data races when multiple threads of
execution access a stream, and to restrict the interleaving of stream operations performed by multiple
threads. Only one thread may hold this lock at a time. The lock is reentrant: a single thread may
hold the lock multiple times at a given time.

8 All functions that read, write, position, or query the position of a stream lock the stream before
accessing it. They release the lock associated with the stream when the access is complete.

Environmental limits
9 An implementation shall support text files with lines containing at least 254 characters, including

the terminating new-line character. The value of the macro BUFSIZ shall be at least 256.

Forward references: the freopen function (7.21.5.4), the fwide function (7.29.3.5), mbstate_t
(7.29.1), the fgetpos function (7.21.9.1), the fsetpos function (7.21.9.3).

7.21.3 Files
1 A stream is associated with an external file (which may be a physical device) by opening a file, which

may involve creating a new file. Creating an existing file causes its former contents to be discarded,
if necessary. If a file can support positioning requests (such as a disk file, as opposed to a terminal),
then a file position indicator associated with the stream is positioned at the start (character number

293)The three predefined streams stdin, stdout, and stderr are unoriented at program startup.

modifications to ISO/IEC 9899:2018, § 7.21.3 page 226 Library

91modifications to ISO/IEC 9899:2018, § 7.21.3 page 227, draft — June 15, 2022 C17..TS 6010

zero) of the file, unless the file is opened with append mode in which case it is implementation-
defined whether the file position indicator is initially positioned at the beginning or the end of the
file. The file position indicator is maintained by subsequent reads, writes, and positioning requests,
to facilitate an orderly progression through the file.

2 Binary files are not truncated, except as defined in 7.21.5.3. Whether a write on a text stream causes
the associated file to be truncated beyond that point is implementation-defined.

3 When a stream is unbuffered, characters are intended to appear from the source or at the destination
as soon as possible. Otherwise characters may be accumulated and transmitted to or from the host
environment as a block. When a stream is fully buffered, characters are intended to be transmitted
to or from the host environment as a block when a buffer is filled. When a stream is line buffered,
characters are intended to be transmitted to or from the host environment as a block when a new-line
character is encountered. Furthermore, characters are intended to be transmitted as a block to the
host environment when a buffer is filled, when input is requested on an unbuffered stream, or when
input is requested on a line buffered stream that requires the transmission of characters from the
host environment. Support for these characteristics is implementation-defined, and may be affected
via the setbuf and setvbuf functions.

4 A file may be disassociated from a controlling stream by closing the file. Output streams are
flushed (any unwritten buffer contents are transmitted to the host environment) before the stream
is disassociated from the file. The value of a pointer to a

::::::
lifetime

:::
of

:
a
:
FILE object is indeterminate

after
::::
ends

:::::
when

:
the associated file is closed (including the standard text streams). Whether a file

of zero length (on which no characters have been written by an output stream) actually exists is
implementation-defined.

5 The file may be subsequently reopened, by the same or another program execution, and its contents
reclaimed or modified (if it can be repositioned at its start). If the main function returns to its original
caller, or if the exit function is called, all open files are closed (hence all output streams are flushed)
before program termination. Other paths to program termination, such as calling the abort function,
need not close all files properly.

6 The address of the FILE object used to control a stream may be significant; a copy of a FILE object
need not serve in place of the original.

7 At program startup, three text streams are predefined and need not be opened explicitly — standard
input (for reading conventional input), standard output (for writing conventional output), and standard
error (for writing diagnostic output). As initially opened, the standard error stream is not fully
buffered; the standard input and standard output streams are fully buffered if and only if the stream
can be determined not to refer to an interactive device.

8 Functions that open additional (nontemporary) files require a file name, which is a string. The
rules for composing valid file names are implementation-defined. Whether the same file can be
simultaneously open multiple times is also implementation-defined.

9 Although both text and binary wide-oriented streams are conceptually sequences of wide characters,
the external file associated with a wide-oriented stream is a sequence of multibyte characters,
generalized as follows:

— Multibyte encodings within files may contain embedded null bytes (unlike multibyte encod-
ings valid for use internal to the program).

— A file need not begin nor end in the initial shift state.294)

10 Moreover, the encodings used for multibyte characters may differ among files. Both the nature and
choice of such encodings are implementation-defined.

11 The wide character input functions read multibyte characters from the stream and convert them
to wide characters as if they were read by successive calls to the fgetwc function. Each conversion

294)Setting the file position indicator to end-of-file, as with fseek(file, 0, SEEK_END), has undefined behavior for a
binary stream (because of possible trailing null characters) or for any stream with state-dependent encoding that does not
assuredly end in the initial shift state.

Library modifications to ISO/IEC 9899:2018, § 7.21.3 page 227

92modifications to ISO/IEC 9899:2018, § 7.21.6 page 233, draft — June 15, 2022 C17..TS 6010

Returns
5 The freopen function returns a null pointer if the open operation fails. Otherwise, freopen returns

the value of stream.

7.21.5.5 The setbuf function
Synopsis

1 #include <stdio.h>
void setbuf(FILE * restrict stream,

char * restrict buf);

Description
2 Except that it returns no value, the setbuf function is equivalent to the setvbuf function invoked

with the values _IOFBF for mode and BUFSIZ for size, or (if buf is a null pointer), with the value
_IONBF for mode.

Returns
3 The setbuf function returns no value.

Forward references: the setvbuf function (7.21.5.6).

7.21.5.6 The setvbuf function
Synopsis

1 #include <stdio.h>
int setvbuf(FILE * restrict stream,

char * restrict buf,
int mode, size_t size);

Description
2 The setvbuf function may be used only after the stream pointed to by stream has been associated

with an open file and before any other operation (other than an unsuccessful call to setvbuf) is
performed on the stream. The argument mode determines how stream will be buffered, as follows:

_IOFBF causes input/output to be fully buffered;

_IOLBF causes input/output to be line buffered;

_IONBF causes input/output to be unbuffered.

If buf is not a null pointer, the array it points to may be used instead of a buffer allocated by the
setvbuf function299) and the argument size specifies the size of the array; otherwise, size may
determine the size of a buffer allocated by the setvbuf function. The contents

::::::::
members

:
of the array

at any time are indeterminate
::::
have

:::::::::::
unspecified

::::::
values.

Returns
3 The setvbuf function returns zero on success, or nonzero if an invalid value is given for mode or if

the request cannot be honored.

7.21.6 Formatted input/output functions
1 The formatted input/output functions shall behave as if there is a sequence point after the actions

associated with each specifier.300)

299)The buffer has to have a lifetime at least as great as the open stream, so not closing the stream before a buffer that has
automatic storage duration is deallocated upon block exit results in undefined behavior.
300)The fprintf functions perform writes to memory for the %n specifier.

Library modifications to ISO/IEC 9899:2018, § 7.21.6 page 233

93modifications to ISO/IEC 9899:2018, § 7.21.6.1 page 237, draft — June 15, 2022 C17..TS 6010

of 2, then the precision is sufficient to distinguish305) values of type double, except that
trailing zeros may be omitted; if the precision is zero and the # flag is not specified, no
decimal-point character appears. The letters abcdef are used for a conversion and the
letters ABCDEF for A conversion. The A conversion specifier produces a number with X and
P instead of x and p. The exponent always contains at least one digit, and only as many
more digits as necessary to represent the decimal exponent of 2. If the value is zero, the
exponent is zero.

A double argument representing an infinity or NaN is converted in the style of an f or F
conversion specifier.

c If no l length modifier is present, the int argument is converted to an unsigned char,and
the resulting character is written.

If an l length modifier is present, the wint_t argument is converted as if by an ls
conversion specification with no precision and an argument that points to the initial
element of a two-element array of wchar_t, the first element containing the wint_t
argument to the lc conversion specification and the second a null wide character.

s If no l length modifier is present, the argument shall be a pointer to the initial element
of an array of character type.306) Characters from the array arewritten up to (but not
including) the terminating null character. If the precision is specified, no more than that
many bytes are written. If the precision is not specified or is greater than the size of the
array, the array shall contain a null character.

If an l length modifier is present, the argument shall be a pointer to the initial element
of an array of wchar_t type. Wide characters from the array are converted to multibyte
characters (each as if by a call to the wcrtomb function, with the conversion state described
by an mbstate_t object initialized to zero before the first wide character is converted) up
to and including a terminating null wide character. The resulting multibyte characters are
written up to (but not including) the terminating null character (byte). If no precision is
specified, the array shall contain a null wide character. If a precision is specified, no more
than that many bytes are written (including shift sequences, if any), and the array shall
contain a null wide character if, to equal the multibyte character sequence length given by
the precision, the function would need to access a wide character one past the end of the
array. In no case is a partial multibyte character written.307)

p The argument shall be a pointer to void. The value of the pointer
:::::
shall

::
be

:::::
valid

:::
or

::::
null.

::
It

is converted to a sequence of printing characters, in an implementation-defined manner.
:
If

:::
the

:::::
value

::
of

::::
the

:::::::
pointer

::
is

:::::
valid

::
its

:::::::::::
provenance

::
is

::::::::::
henceforth

::::::::
exposed.

n The argument shall be a pointer to signed integer into which is written the number of
characters written to the output stream so far by this call to fprintf. No argument is
converted, but one is consumed. If the conversion specification includes any flags, a field
width, or a precision, the behavior is undefined.

% A % character is written. No argument is converted. The complete conversion specification
shall be %%.

9 If a conversion specification is invalid, the behavior is undefined.308) If any argument is not the
correct type for the corresponding conversion specification, the behavior is undefined.

10 In no case does a nonexistent or small field width cause truncation of a field; if the result of a
conversion is wider than the field width, the field is expanded to contain the conversion result.

11 For a and A conversions, if FLT_RADIX is a power of 2, the value is correctly rounded to a hexadecimal
floating number with the given precision.

305)The precision p is sufficient to distinguish values of the source type if 16p−1 > bn where b is FLT_RADIX and n is the
number of base-b digits in the significand of the source type. A smaller p might suffice depending on the implementation’s
scheme for determining the digit to the left of the decimal-point character.
306)No special provisions are made for multibyte characters.
307)Redundant shift sequences can result if multibyte characters have a state-dependent encoding.
308)See "future library directions" (7.31.11).

Library modifications to ISO/IEC 9899:2018, § 7.21.6.1 page 237

94modifications to ISO/IEC 9899:2018, § 7.21.6.2 page 242, draft — June 15, 2022 C17..TS 6010

c Matches a sequence of characters of exactly the number specified by the field width (1 if
no field width is present in the directive).312)

If no l length modifier is present, thecorresponding argument shall be a pointer to the
initial element of a character array large enough to accept the sequence. No null character
is added.

If an l length modifier is present, the input shall be a sequence of multibyte characters that
begins in the initial shift state. Each multibyte character in the sequence is converted to a
wide character as if by a call to the mbrtowc function, with the conversion state described
by an mbstate_t object initialized to zero before the first multibyte character is converted.
Thecorresponding argument shall be a pointer to the initial element of an array of wchar_t
large enough to accept the resulting sequence of wide characters.No null wide character is
added.

s Matches a sequence of non-white-space characters.312)

If no l length modifier is present, thecorresponding argument shall be a pointer to the
initial element of a character array large enough to accept the sequence and a terminating
null character, which will be added automatically.

If an l length modifier is present, the input shall be a sequence of multibyte characters
that begins in the initial shift state. Each multibyte character is converted to a wide
character as if by a call to the mbrtowc function, with the conversion state described by
an mbstate_t object initialized to zero before the first multibyte character is converted.
Thecorresponding argument shall be a pointer to the initial element of an array of wchar_t
large enough to accept the sequence and the terminating null wide character, which will
be added automatically.

[Matches a nonempty sequence of characters from a set of expected characters (the
scanset).312)

If no l length modifier is present, thecorresponding argument shall be a pointer to the
initial element of a character array large enough to accept the sequence and a terminating
null character, which will be added automatically.

If an l length modifier is present, the input shall be a sequence of multibyte characters
that begins in the initial shift state. Each multibyte character is converted to a wide
character as if by a call to the mbrtowc function, with the conversion state described by
an mbstate_t object initialized to zero before the first multibyte character is converted.
Thecorresponding argument shall be a pointer to the initial element of an array of wchar_t
large enough to accept the sequence and the terminating null wide character, which will
be added automatically.

The conversion specifier includes all subsequent characters in the format string, up to
and including the matching right bracket (]). The characters between the brackets (the
scanlist) compose the scanset, unless the character after the left bracket is a circumflex (^),
in which case the scanset contains all characters that do not appear in the scanlist between
the circumflex and the right bracket. If the conversion specifier begins with [] or [^], the
right bracket character is in the scanlist and the next following right bracket character is
the matching right bracket that ends the specification; otherwise the first following right
bracket character is the one that ends the specification. If a - character is in the scanlist
and is not the first, nor the second where the first character is a ^, nor the last character,
the behavior is implementation-defined.

p Matches an
:::
the

:::::
same

:
implementation-defined set of sequences , which should be the same

as the set of sequences
:
of

::::::::::
characters that may be produced by the %p conversion of the

fprintf function. The corresponding argument
:::
ptr

:
shall be a pointer to a pointer to void.

The input item is converted to a pointer value in an implementation-defined manner.

312)No special provisions are made for multibyte characters in the matching rules used by the c, s, and [conversion specifiers
— the extent of the input field is determined on a byte-by-byte basis. The resulting field is nevertheless a sequence of multibyte
characters that begins in the initial shift state.

modifications to ISO/IEC 9899:2018, § 7.21.6.2 page 242 Library

95modifications to ISO/IEC 9899:2018, § 7.21.6.2 page 243, draft — June 15, 2022 C17..TS 6010

:
– If the input item is a value converted earlier during the same program execution,

the pointer that results shall compare equal to that value; otherwise the behavior of
the conversion is undefined.

::::::::
sequence

::::::
could

:::::
have

:::::
been

:::::::
printed

:::::
from

:
a
:::::

null
:::::::
pointer

:::::
value,

::
a
::::
null

:::::::
pointer

:::::
value

::
is

::::::
stored

::
in

::::::*ptr .

:
–

::::::::::
Otherwise,

::
if

:::
the

::::::
input

:::::::::
sequence

:::::
could

:::::
have

:::::
been

::::::::
printed

:::::
from

:
a
::::::

valid
:::::::
pointer

::
x

:::
and

::
if
:::
the

::::::::
address

:
x
:::::::::
currently

:::::
refers

::
to

:::
an

::::::::
exposed

:::::::
storage

::::::::
instance,

:
a
::::::::::::::
representation

::
of

::
a

:::::
valid

:::::::
pointer

:::::
with

::::::::
address

::
x

::::
and

:::
the

:::::::::::
provenance

:::
of

::::
that

:::::::
storage

::::::::
instance

:::
is

:::::::::::
synthesized

::
in

:::::*ptr .313)

:
–

:::::::::
Otherwise

:::
the

::::::::::::::
representation

::
of

:::::*ptr ::::::::
becomes

:::::::::::::
indeterminate.

:

n No input is consumed. The corresponding argument shall be a pointer to signed integer
into which is to be written the number of characters read from the input stream so far
by this call to the fscanf function. Execution of a %n directive does not increment the
assignment count returned at the completion of execution of the fscanf function. No
argument is converted, but one is consumed. If the conversion specification includes an
assignment-suppressing character or a field width, the behavior is undefined.

% Matches a single % character; no conversion or assignment occurs. The complete conversion
specification shall be %%.

13 If a conversion specification is invalid, the behavior is undefined.314)

14 The conversion specifiers A, E, F, G, and X are also valid and behave the same as, respectively, a, e, f,
g, and x.

15 Trailing white space (including new-line characters) is left unread unless matched by a directive.
The success of literal matches and suppressed assignments is not directly determinable other than
via the %n directive.

Returns
16 The fscanf function returns the value of the macro EOF if an input failure occurs before the first

conversion (if any) has completed. Otherwise, the function returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

17 EXAMPLE 1 The call:

#include <stdio.h>
/* ... */
int n, i; float x; char name[50];
n = fscanf(stdin, "%d%f%s", &i, &x, name);

with the input line:

25 54.32E-1 thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and to name the sequence thompson\0.

18 EXAMPLE 2 The call:

#include <stdio.h>
/* ... */
int i; float x; char name[50];
fscanf(stdin, "%2d%f%*d %[0123456789]", &i, &x, name);

with input:

313)
::::
Thus,

:::
the

::::::::
constructed

::::::
pointer

::::
value

:::
has

:
a
::::
valid

:::::::::
provenance.

:::::::::::
Nevertheless,

::::::
because

::
the

::::::
original

::::::
storage

::::::
instance

:::::
might

::
be

::::
dead

:::
and

:
a
::::
new

:::::
storage

::::::
instance

:::::
might

:::
live

::
at

:::
the

::::
same

::::::
address,

:::
this

:::::::::
provenance

:::
can

::
be

::::::
different

::::
from

:::
the

:::::::::
provenance

:::
that

::::
gave

:::
rise

:
to
:::
the

::::
print

::::::::
operation.

:
If

:
x
:::
can

::
be

::
an

::::::
address

::::
with

::::
more

:::
than

:::
one

::::::::::
provenance,

:::
only

:::
one

::
of

::::
these

::::
shall

::
be

::::
used

:
in
:::
the

:::::
sequel,

:::
see

::::
6.2.5.

314)See "future library directions" (7.31.11).

Library modifications to ISO/IEC 9899:2018, § 7.21.6.2 page 243

96modifications to ISO/IEC 9899:2018, § 7.21.6.9 page 248, draft — June 15, 2022 C17..TS 6010

Returns
3 The sscanf function returns the value of the macro EOF if an input failure occurs before the first

conversion (if any) has completed. Otherwise, the sscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

7.21.6.8 The vfprintf function
Synopsis

1 #include <stdarg.h>
#include <stdio.h>
int vfprintf(FILE * restrict stream,

const char * restrict format,
va_list arg);

Description
2 The vfprintf function is equivalent to fprintf, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vfprintf function does not invoke the va_end macro.315)

Returns
3 The vfprintf function returns the number of characters transmitted, or a negative value if an

output or encoding error occurred.
4 EXAMPLE The following shows the use of the vfprintf function in a general error-reporting routine.

#include <stdarg.h>
#include <stdio.h>

void error(char *function_name, char *format, ...)
{

va_list args;

va_start(args, format);
// print out name of function causing error
fprintf(stderr, "ERROR in %s: ", function_name);
// print out remainder of message
vfprintf(stderr, format, args);
va_end(args);

}

7.21.6.9 The vfscanf function
Synopsis

1 #include <stdarg.h>
#include <stdio.h>
int vfscanf(FILE * restrict stream,

const char * restrict format,
va_list arg);

Description
2 The vfscanf function is equivalent to fscanf, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vfscanf function does not invoke the va_end macro.315)

315)As the functions vfprintf, vfscanf, vprintf, vscanf, vsnprintf, vsprintf, and vsscanf invoke the va_arg macro,
the value of arg after the return is

:::
has

::
an indeterminate

::::::::::
representation.

modifications to ISO/IEC 9899:2018, § 7.21.6.9 page 248 Library

97modifications to ISO/IEC 9899:2018, § 7.21.7.4 page 251, draft — June 15, 2022 C17..TS 6010

Returns
3 If the end-of-file indicator for the stream is set, or if the stream is at end-of-file, the end-of-file

indicator for the stream is set and the fgetc function returns EOF. Otherwise, the fgetc function
returns the next character from the input stream pointed to by stream. If a read error occurs, the
error indicator for the stream is set and the fgetc function returns EOF.316)

7.21.7.2 The fgets function
Synopsis

1 #include <stdio.h>
char *fgets(char * restrict s, int n,

FILE * restrict stream);

Description
2 The fgets function reads at most one less than the number of characters specified by n from the

stream pointed to by stream into the array pointed to by s. No additional characters are read after a
new-line character (which is retained) or after end-of-file. A null character is written immediately
after the last character read into the array.

Returns
3 The fgets function returns s if successful. If end-of-file is encountered and no characters have been

read into the array, the contents of the array remain unchanged and a null pointer is returned. If a
read error occurs during the operation, the array contents are indeterminate

::::::::
members

::
of

::::
the

:::::
array

::::
have

:::::::::::
unspecified

::::::
values

:
and a null pointer is returned.

7.21.7.3 The fputc function
Synopsis

1 #include <stdio.h>
int fputc(int c, FILE *stream);

Description
2 The fputc function writes the character specified by c (converted to an unsigned char) to the

output stream pointed to by stream, at the position indicated by the associated file position indicator
for the stream (if defined), and advances the indicator appropriately. If the file cannot support
positioning requests, or if the stream was opened with append mode, the character is appended to
the output stream.

Returns
3 The fputc function returns the character written. If a write error occurs, the error indicator for the

stream is set and fputc returns EOF.

7.21.7.4 The fputs function
Synopsis

1 #include <stdio.h>
int fputs(const char * restrict s,

FILE * restrict stream);

Description
2 The fputs function writes the string pointed to by s to the stream pointed to by stream. The

terminating null character is not written.

Returns
3 The fputs function returns EOF if a write error occurs; otherwise it returns a nonnegative value.

316)An end-of-file and a read error can be distinguished by use of the feof and ferror functions.

Library modifications to ISO/IEC 9899:2018, § 7.21.7.4 page 251

98modifications to ISO/IEC 9899:2018, § 7.21.8.1 page 253, draft — June 15, 2022 C17..TS 6010

7.21.7.9 The puts function
Synopsis

1 #include <stdio.h>
int puts(const char *s);

Description
2 The puts function writes the string pointed to by s to the stream pointed to by stdout, and appends

a new-line character to the output. The terminating null character is not written.

Returns
3 The puts function returns EOF if a write error occurs; otherwise it returns a nonnegative value.

7.21.7.10 The ungetc function
Synopsis

1 #include <stdio.h>
int ungetc(int c, FILE *stream);

Description
2 The ungetc function pushes the character specified by c (converted to an unsigned char) back

onto the input stream pointed to by stream. Pushed-back characters will be returned by subsequent
reads on that stream in the reverse order of their pushing. A successful intervening call (with the
stream pointed to by stream) to a file positioning function (fseek, fsetpos, or rewind) discards
any pushed-back characters for the stream. The external storage corresponding to the stream is
unchanged.

3 One character of pushback is guaranteed. If the ungetc function is called too many times on the
same stream without an intervening read or file positioning operation on that stream, the operation
may fail.

4 If the value of c equals that of the macro EOF, the operation fails and the input stream is unchanged.

5 A successful call to the ungetc function clears the end-of-file indicator for the stream. The value
of the file position indicator for the stream after reading or discarding all pushed-back characters
shall be the same as it was before the characters were pushed back.317) For a text stream, the value
of its file position indicator after a successful call to the ungetc function is unspecified until all
pushed-back characters are read or discarded. For a binary stream, its file position indicator is
decremented by each successful call to the ungetc function; if its value was zero before a call, it is
indeterminate

:::
has

:::
an

:::::::::::::
indeterminate

:::::::::::::
representation after the call.318)

Returns
6 The ungetc function returns the character pushed back after conversion, or EOF if the operation

fails.

Forward references: file positioning functions (7.21.9).

7.21.8 Direct input/output functions
7.21.8.1 The fread function
Synopsis

1 #include <stdio.h>
size_t fread(void * restrict ptr,

size_t size, size_t nmemb,
FILE * restrict stream);

317)Note that a file positioning function could further modify the file position indicator after discarding any pushed-back
characters.
318)See "future library directions" (7.31.11).

Library modifications to ISO/IEC 9899:2018, § 7.21.8.1 page 253

99modifications to ISO/IEC 9899:2018, § 7.21.9.1 page 254, draft — June 15, 2022 C17..TS 6010

Description
2 The fread function reads, into the array pointed to by ptr, up to nmemb elements whose size is

specified by size, from the stream pointed to by stream. For each object, size calls are made to
the fgetc function and the results stored, in the order read, in an array of unsigned char exactly
overlaying the object. The file position indicator for the stream (if defined) is advanced by the
number of characters successfully read. If an error occurs, the resulting value

::::::::::::
representation

:
of

the file position indicator for the stream is indeterminate. If a partial element is read, its value

:::::::::::::
representation is indeterminate.

Returns
3 The fread function returns the number of elements successfully read, which may be less than nmemb

if a read error or end-of-file is encountered. If size or nmemb is zero, fread returns zero and the
contents of the array and the state of the stream remain unchanged.

7.21.8.2 The fwrite function
Synopsis

1 #include <stdio.h>
size_t fwrite(const void * restrict ptr,

size_t size, size_t nmemb,
FILE * restrict stream);

Description
2 The fwrite function writes, from the array pointed to by ptr, up to nmemb elements whose size is

specified by size, to the stream pointed to by stream. For each object, size calls are made to the
fputc function, taking the values (in order) from an array of unsigned char exactly overlaying
the object. The file position indicator for the stream (if defined) is advanced by the number of
characters successfully written. If an error occurs, the resulting value

::::::::::::
representation

:
of the file

position indicator for the stream is indeterminate
:
.

3
:
If
::::
the

:::::
object

:::
(or

:::::
part

:::::::
thereof)

:::::::::::::
corresponding

:::
to

:::
the

::::
first

:::::::::::
size*nmemb::::::

bytes
:::::::
referred

:::
by

::::
ptr

::::::::
contains

:
a
:::::
valid

:::::::
pointer

:::::
value

:::::
with

:::::::::::
provenance

::
x,

:::
the

:
fwrite function

:::::::
exposes

:::
x .

Returns
4 The fwrite function returns the number of elements successfully written, which will be less than

nmemb only if a write error is encountered. If size or nmemb is zero, fwrite returns zero and the
state of the stream remains unchanged.

7.21.9 File positioning functions
7.21.9.1 The fgetpos function
Synopsis

1 #include <stdio.h>
int fgetpos(FILE * restrict stream,

fpos_t * restrict pos);

Description
2 The fgetpos function stores the current values of the parse state (if any) and file position indicator

for the stream pointed to by stream in the object pointed to by pos. The values stored contain
unspecified information usable by the fsetpos function for repositioning the stream to its position
at the time of the call to the fgetpos function.

Returns
3 If successful, the fgetpos function returns zero; on failure, the fgetpos function returns nonzero

and stores an implementation-defined positive value in errno.

Forward references: the fsetpos function (7.21.9.3).

modifications to ISO/IEC 9899:2018, § 7.21.9.1 page 254 Library

100modifications to ISO/IEC 9899:2018, § 7.22.3.2 page 263, draft — June 15, 2022 C17..TS 6010

static unsigned long int next = 1;

int rand(void) // RAND_MAX assumed to be 32767
{

next = next * 1103515245 + 12345;
return (unsigned int)(next/65536) % 32768;

}

void srand(unsigned int seed)
{

next = seed;
}

7.22.3 Storage management functions
1 The order and contiguity of storage allocated

:
If

:::
the

::::::::::
allocation

:::::::::
succeeds,

:::
the

:::::::
pointer

:::
to

::
a

:::::::
storage

:::::::
instance

:::::::::
returned

::
by

::
a
::::
call

::
to

:
by successive calls to the aligned_alloc, calloc, malloc, and

::
or

:

realloc functions is unspecified. The pointer returned if the allocation succeeds is suitably aligned
so that it may be assigned to a pointer to any type of object with a fundamental alignment require-
ment and then

:::
size

::::
less

::::
than

:::
or

:::::
equal

::
to

::::
the

::::
size

:::::::::
requested.

::
It
:::::

may
::::
then

:::
be

:
used to access such an

object or an array of such objects in the space
::::::
storage

::::::::
instance

:
allocated (until the space

:::::::
storage

:::::::
instance

:
is explicitly deallocated). The lifetime of an allocated object

:::::::
storage

::::::::
instance extends from

the allocation until the deallocation. Each such allocation shall yield a pointer to an object
:
a

:::::::
storage

:::::::
instance

::::
that

::
is
:
disjoint from any other object

:::::::
storage

::::::::
instance. The pointer returned points to the

start (lowest byte address)
:::::::
address

:
of the allocated space

::::::
storage

::::::::
instance. If the space

:::::::
storage

:::::::
instance

:
cannot be allocated, a null pointer is returned. If the size of the space

::::::
storage

::::::::
instance

:
re-

quested is zero, the behavior is implementation-defined: either a null pointer is returned to indicate
an error, or the behavior is as if the size were some nonzero value, except that

:::::::
address

::
of

::
a

:::::::
storage

:::::::
instance

:::
of

:::
size

:::::
zero

::
is

::::::::
returned.

::::
For

:::
the

::::::
latter,

:
the returned pointer shall not be used to access an

object.

2 For purposes of determining the existence of a data race, memory allocation functions behave as
though they accessed only memory locations

:::::::
storage

::::::::
instances

:
accessible through their arguments

and not other static duration storage .
::::::::
instances.

:
These functions may, however, visibly modify the

storage
:::::::
instance

:
that they allocate or deallocate. Calls to these functions that allocate or deallocate

::::::
storage

:::::::::
instances

::
in

:
a particular region of memory

:::
the

:::::::
address

::::::
space shall occur in a single total

order, and each such deallocation call shall synchronize with the next allocation (if any) in this
order.323)

7.22.3.1 The aligned_alloc function
Synopsis

1 #include <stdlib.h>
void *aligned_alloc(size_t alignment, size_t size);

Description
2 The aligned_alloc function allocates space for an object

:
a
:::::::
storage

::::::::
instance

:
whose alignment

is specified by alignment, whose size is specified by size, and whose value
:::::::::::::
representation is

indeterminate. If the value of alignment is not a valid alignment supported by the implementation
the function shall fail by returning a null pointer.

Returns
3 The aligned_alloc function returns either a null pointer or a pointer to the allocated space.

:::::::
storage

::::::::
instance.

7.22.3.2 The calloc function
323)

:::
This

:::::
means

:::
that

::
an

::::::::::::
implementation

:::
may

::::
only

::::
reuse

:
a
::::
valid

::::::
address

:::
that

::
is

:::::::
computed

::::
from

::
an

:::::::
allocated

::::::
storage

::::::
instance

::
for

:
a
:::::::
different

::::::
allocated

::::::
storage

::::::
instance

::
if

::
the

::::
calls

::
to

:::::
allocate

:::
and

::::::::
deallocate

:::
the

:::::
storage

:::::::
instances

:::::::::
synchronize.

Library modifications to ISO/IEC 9899:2018, § 7.22.3.2 page 263

101modifications to ISO/IEC 9899:2018, § 7.22.3.5 page 264, draft — June 15, 2022 C17..TS 6010

Synopsis

1 #include <stdlib.h>
void *calloc(size_t nmemb, size_t size);

Description
2 The calloc function allocates space

:
a
:::::::
storage

::::::::
instance for an array of nmemb objects, each of whose

size is size. The space
::::::
storage

::::::::
instance is initialized to all bits zero.324)

Returns
3 The calloc function returns either a null pointer or a pointer to the allocated space.

:::::::
storage

::::::::
instance.

7.22.3.3 The free function
Synopsis

1 #include <stdlib.h>
void free(void *ptr);

Description
2 The free function causes the space

::::::
storage

::::::::
instance pointed to by ptr to be deallocated, that is,

made available for further allocation.
:::
use.325) If ptr is a null pointer, no action occurs. Otherwise, if

the argument does not match a pointer earlier returned by a memory
:::::::
storage management function,

or if the space
:::::::
storage

:::::::
instance

:
has been deallocated by a call to free or realloc, the behavior is

undefined.

Returns
3 The free function returns no value.

7.22.3.4 The malloc function
Synopsis

1 #include <stdlib.h>
void *malloc(size_t size);

Description
2 The malloc function allocates space for an object

:
a
:::::::
storage

::::::::
instance

:
whose size is specified by size

and whose value
:::::::::::::
representation

:
is indeterminate.

Returns
3 The malloc function returns either a null pointer or a pointer to the allocated space.

:::::::
storage

::::::::
instance.

7.22.3.5 The realloc function
Synopsis

1 #include <stdlib.h>
void *realloc(void *ptr, size_t size);

Description
2 The realloc function deallocates the old object

:::::::
storage

::::::::
instance pointed to by ptr and returns a

pointer to a new object
::::::
storage

::::::::
instance

:
that has the size specified by size. The contents of the

new object shall be the same as that
::::
bytes

:
of the old object prior to deallocation,

:::::::
storage

::::::::
instance

324)Note that this need not be the same as the representation of floating-point zero or a null pointer constant.
325)

:::
That

:::::
means

:::
that

:::
the

::::::::::::
implementation

::::
may

::::
reuse

:::
the

::::::
address

::::
range

::
of

:::
the

:::::
storage

:::::::
instance

:::::::::
(determined

::
by

:::
ptr

::::
and

::
its

:::
size)

:::
for

:::
any

:::::
storage

::::::
instance

:::::
whose

::::::::::
instantiation

:::::::::
synchronizes

::::
with

:::
the

:::
call.

modifications to ISO/IEC 9899:2018, § 7.22.3.5 page 264 Library

102modifications to ISO/IEC 9899:2018, § 7.22.4.2 page 265, draft — June 15, 2022 C17..TS 6010

up to the lesser of the new and old sizes .
::
are

:::::::
copied

::
as

::
if

:::
by

:::::::
memcpy

::
to

:::
the

::::::
initial

:::::
bytes

::
of

::::
the

::::
new

::::::
storage

:::::::::
instance. Any bytes in the new object

::::::
storage

::::::::
instance beyond the size of the old object have

indeterminate
::::::::::
unspecified

:
values.

3 If ptr is a null pointer, the realloc function behaves like the malloc function for the specified
size. Otherwise, if ptr does not match a pointer earlier returned by a memory

:::::::
storage management

function, or if the space
:::::::
storage

::::::::
instance has been deallocated by a call to the free or realloc

function, the behavior is undefined. If size is nonzero and memory for the new object is not
:::
no

::::::
storage

::::::::
instance

::
is

:
allocated, the old object

:::::::
storage

::::::::
instance is not deallocated. If size is zero and

memory for the new object is not
::
no

:::::::
storage

::::::::
instance

:::
is allocated, it is implementation-defined

whether the old object
:::::::
storage

::::::::
instance

:
is deallocated. If the old object

:::::::
storage

::::::::
instance

:
is not

deallocated, its value
:
it
:
shall be unchanged.

Returns
4 The realloc function returns a pointer to the new object

::::::
storage

::::::::
instance (which may have the

same value as a pointer to the old object),
::::::
storage

:::::::::
instance),

:
or a null pointer if the new object has

not
:::
no

::::
new

:::::::
storage

::::::::
instance

:::
has

:
been allocated.

5 NOTE
:
If
::
a

:::
call

:
to
:::::::
realloc

::
is

::::::::
successful,

:::
the

::::
initial

::::
part

::
of

::
the

::::
new

::::::
storage

::::::
instance

::::::::
represents

:::::
objects

::::
with

::::
same

:::::
value

:::
and

::::::
effective

::::
type

::
as

:::
the

::::
initial

::::
part

::
of

::
the

:::
old

::::::
storage

:::::::
instance,

:
if
::::

any.
::::::::::
Nevertheless,

:::
the

::::
new

:::::
storage

:::::::
instance

:::
has

::
to

::
be

::::::::
considered

::
to

::
be

::::::
different

::::
from

:::
the

::
old

::::
one:

—
::::
Even

:
if
:::
both

::::::
storage

:::::::
instances

:::
have

:::
the

::::
same

::::::
address,

::
all

::::::
pointers

::
to
:::
the

::
old

::::::
storage

::::::
instance

:::::
(stored

:::::
within

::
or

::::::
outside

::
the

::::::
storage

:::::::
instance)

::
are

:::::
invalid

::::::
because

::::
that

:::::
storage

::::::
instance

:::::
ceases

::
to

::::
exist.

:

—
:::::
Copies

::
of

:::::
objects

::
in

::
the

::::
new

:::::
storage

:::::::
instance

:::
that

:::
have

::::::
hidden

::::
state

:::
and

::::
need

:::::
explicit

::::::::::
initialization

::::
(such

::
as

::::::
variable

:::::::
argument

:::
lists,

::::::
atomic

:::::
objects,

:::::::
mutexes,

::
or

:::::::
condition

:::::::
variables)

::::
may

::::
have

::
an

::::::::::
indeterminate

:::::::::::
representation.

:

—
:::::::
Resources

:::::::
reserved

::
for

:::
the

::::::
original

:::::
objects

::
in

:::
the

:::
old

:::::
storage

:::::::
instance

:::
that

::::
have

:::::
hidden

::::
state

:::
and

::::
need

:::::::::
destruction

::::
(such

::
as

::::::
variable

:::::::
argument

::::
lists,

::::::
mutexes

::
or

:::::::
condition

:::::::
variables)

::::
may

::
be

:::::::::
squandered.

:

7.22.4 Communication with the environment
7.22.4.1 The abort function
Synopsis

1 #include <stdlib.h>
_Noreturn void abort(void);

Description
2 The abort function causes abnormal program termination to occur, unless the signal SIGABRT

is being caught and the signal handler does not return. Whether open streams with unwritten
buffered data are flushed, open streams are closed, or temporary files are removed is implementa-
tion-defined. An implementation-defined form of the status unsuccessful termination is returned to
the host environment by means of the function call raise(SIGABRT).

Returns
3 The abort function does not return to its caller.

7.22.4.2 The atexit function
Synopsis

1 #include <stdlib.h>
int atexit(void (*func)(void));

Description
2 The atexit function registers the function pointed to by func, to be called without arguments at

normal program termination.326) It is unspecified whether a call to the atexit function that does
not happen before the exit function is called will succeed.

326)The atexit function registrations are distinct from the at_quick_exit registrations, so applications might need to call
both registration functions with the same argument.

Library modifications to ISO/IEC 9899:2018, § 7.22.4.2 page 265

103modifications to ISO/IEC 9899:2018, § 7.22.7.2 page 271, draft — June 15, 2022

7.22.7 Multibyte/wide character conversion functions
1 The behavior of the multibyte character functions is affected by the LC_CTYPE category of the current

locale. For a state-dependent encoding, each function is placed into its initial conversion state at
program startup and can be returned to that state by a call for which its character pointer argument,
s, is a null pointer. Subsequent calls with s as other than a null pointer cause the internal conversion
state of the function to be altered as necessary. A call with s as a null pointer causes these functions
to return a nonzero value if encodings have state dependency, and zero otherwise.334) Changing the
LC_CTYPE category causes the

:::::::
internal

::::::
object

::::::::::
describing

:::
the conversion state of these functions to

be indeterminate
::::
have

::
an

:::::::::::::
indeterminate

::::::::::::::
representation.

7.22.7.1 The mblen function
Synopsis

1 #include <stdlib.h>
int mblen(const char *s, size_t n);

Description
2 If s is not a null pointer, the mblen function determines the number of bytes contained in the

multibyte character pointed to by s. Except that the conversion state of the mbtowc function is not
affected, it is equivalent to

mbtowc((wchar_t *)0, (const char *)0, 0);
mbtowc((wchar_t *)0, s, n);

3 The implementation shall behave as if no library function calls the mblen function.

Returns
4 If s is a null pointer, the mblen function returns a nonzero or zero value, if multibyte character

encodings, respectively, do or do not have state-dependent encodings. If s is not a null pointer, the
mblen function either returns 0 (if s points to the null character), or returns the number of bytes
that are contained in the multibyte character (if the next n or fewer bytes form a valid multibyte
character), or returns-1 (if they do not form a valid multibyte character).

Forward references: the mbtowc function (7.22.7.2).

7.22.7.2 The mbtowc function
Synopsis

1 #include <stdlib.h>
int mbtowc(wchar_t * restrict pwc,

const char * restrict s,
size_t n);

Description
2 If s is not a null pointer, the mbtowc function inspects at most n bytes beginning with the byte

pointed to by s to determine the number of bytes needed to complete the next multibyte character
(including any shift sequences). If the function determines that the next multibyte character is
complete and valid, it determines the value of the corresponding wide character and then, if pwc
is not a null pointer, stores that value in the object pointed to by pwc. If the corresponding wide
character is the null wide character, the function is left in the initial conversion state.

3 The implementation shall behave as if no library function calls the mbtowc function.

Returns
4 If s is a null pointer, the mbtowc function returns a nonzero or zero value, if multibyte character

encodings, respectively, do or do not have state-dependent encodings. If s is not a null pointer, the

334)If the locale employs special bytes to change the shift state, these bytes do not produce separate wide character codes, but
are grouped with an adjacent multibyte character.

Library modifications to ISO/IEC 9899:2018, § 7.22.7.2 page 271

104modifications to ISO/IEC 9899:2018, § 7.24.2.3 page 275, draft — June 15, 2022 C17..TS 6010

7.24 String handling <string.h>

7.24.1 String function conventions
1 The header <string.h> declares one type and several functions, and defines one macro useful

for manipulating arrays of character type and other objects treated as arrays of character type.336)

The type is size_t and the macro is NULL (both described in 7.19). Various methods are used for
determining the lengths of the arrays, but in all cases a char * or void * argument points to the
initial (lowest addressed) character of the array. If an array is accessed beyond the end of an object,
the behavior is undefined.

2 Where an argument declared as size_t n specifies the length of the array for a function, n can have
the value zero on a call to that function. Unless explicitly stated otherwise in the description of a
particular function in this subclause, pointer arguments on such a call shall still have valid values, as
described in 7.1.4. On such a call, a function that locates a character finds no occurrence, a function
that compares two character sequences returns zero, and a function that copies characters copies
zero characters.

3 For all functions in this subclause, each character shall be interpreted as if it had the type
unsigned char (and therefore every possible object representation is valid and has a different
value).

7.24.2 Copying functions
1

:
If
::::
the

:::::::::::::
representation

::
of

::
a

::::::
pointer

::::::
object

::
is

::::::
copied

:::
by

::
a

:::::::
copying

:::::::::
function,

:::::
either

:::::::
directly

:::
or

::::::
within

:::
an

:::::::::
aggregate

::
or

::::::
union

::::::
object,

:::
the

:::::::
pointer

:::::
copy

:::
has

::::
the

:::::
same

:::::::::::
provenance

::
as

:::
the

::::::::
original.

:

7.24.2.1 The memcpy function
Synopsis

1 #include <string.h>
void *memcpy(void * restrict s1,

const void * restrict s2,
size_t n);

Description
2 The memcpy function copies n characters from the object pointed to by s2 into the object pointed to

by s1. If copying takes place between objects that overlap, the behavior is undefined.

Returns
3 The memcpy function returns the value of s1.

7.24.2.2 The memmove function
Synopsis

1 #include <string.h>
void *memmove(void *s1, const void *s2, size_t n);

Description
2 The memmove function copies n characters from the object pointed to by s2 into the object pointed to

by s1. Copying takes place as if the n characters from the object pointed to by s2 are first copied
into a temporary array of n characters that does not overlap the objects pointed to by s1 and s2, and
then the n characters from the temporary array are copied into the object pointed to by s1.

Returns
3 The memmove function returns the value of s1.

7.24.2.3 The strcpy function
Synopsis

1
336)See "future library directions" (7.31.13).

Library modifications to ISO/IEC 9899:2018, § 7.24.2.3 page 275

105modifications to ISO/IEC 9899:2018, § 7.24.4.3 page 277, draft — June 15, 2022 C17..TS 6010

Description
2 The strncat function appends not more than n characters (a null character and characters that

follow it are not appended) from the array pointed to by s2 to the end of the string pointed to by
s1. The initial character of s2 overwrites the null character at the end of s1. A terminating null
character is always appended to the result.338) If copying takes place between objects that overlap,
the behavior is undefined.

Returns
3 The strncat function returns the value of s1.

Forward references: the strlen function (7.24.6.3).

7.24.4 Comparison functions
1 The sign of a nonzero value returned by the comparison functions memcmp, strcmp, and strncmp

is determined by the sign of the difference between the values of the first pair of characters (both
interpreted as unsigned char) that differ in the objects being compared.

7.24.4.1 The memcmp function
Synopsis

1 #include <string.h>
int memcmp(const void *s1, const void *s2, size_t n);

Description
2 The memcmp function compares the first n characters of the object pointed to by s1 to the first n

characters of the object pointed to by s2.339)

Returns
3 The memcmp function returns an integer greater than, equal to, or less than zero, accordingly as the

object pointed to by s1 is greater than, equal to, or less than the object pointed to by s2.

7.24.4.2 The strcmp function
Synopsis

1 #include <string.h>
int strcmp(const char *s1, const char *s2);

Description
2 The strcmp function compares the string pointed to by s1 to the string pointed to by s2.

Returns
3 The strcmp function returns an integer greater than, equal to, or less than zero, accordingly as the

string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2.

7.24.4.3 The strcoll function
Synopsis

1 #include <string.h>
int strcoll(const char *s1, const char *s2);

Description
2 The strcoll function compares the string pointed to by s1 to the string pointed to by s2, both

interpreted as appropriate to the LC_COLLATE category of the current locale.

338)Thus, the maximum number of characters that can end up in the array pointed to by s1 is strlen(s1)+n+1.
339)The contents

:::::
values of "holes"

::::
bytes

:::
that

:::
are used as padding for purposes of alignment within structure objects are

indeterminate
:::
take

::
on

:::::::::
unspecified

:::::
values

::::
when

:
a
:::::
value

:
is
:::::
stored

::
in

::
the

:::::
object

::
(cf.

::::::
6.2.6.1). Strings shorter than their allocated

space and unions can also cause problems in comparison.

Library modifications to ISO/IEC 9899:2018, § 7.24.4.3 page 277

106modifications to ISO/IEC 9899:2018, § 7.24.5.1 page 278, draft — June 15, 2022 C17..TS 6010

Returns
3 The strcoll function returns an integer greater than, equal to, or less than zero, accordingly as the

string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2 when both
are interpreted as appropriate to the current locale.

7.24.4.4 The strncmp function
Synopsis

1 #include <string.h>
int strncmp(const char *s1, const char *s2, size_t n);

Description
2 The strncmp function compares not more than n characters (characters that follow a null character

are not compared) from the array pointed to by s1 to the array pointed to by s2.

Returns
3 The strncmp function returns an integer greater than, equal to, or less than zero, accordingly as the

possibly null-terminated array pointed to by s1 is greater than, equal to, or less than the possibly
null-terminated array pointed to by s2.

7.24.4.5 The strxfrm function
Synopsis

1 #include <string.h>
size_t strxfrm(char * restrict s1,

const char * restrict s2,
size_t n);

Description
2 The strxfrm function transforms the string pointed to by s2 and places the resulting string into

the array pointed to by s1. The transformation is such that if the strcmp function is applied to two
transformed strings, it returns a value greater than, equal to, or less than zero, corresponding to the
result of the strcoll function applied to the same two original strings. No more than n characters
are placed into the resulting array pointed to by s1, including the terminating null character. If n is
zero, s1 is permitted to be a null pointer. If copying takes place between objects that overlap, the
behavior is undefined.

Returns
3 The strxfrm function returns the length of the transformed string (not including the terminating

null character). If the value returned is n or more, the contents of the
::::::::
members

::
of

:::
the

:
array pointed

to by s1 are indeterminate
::::
have

:::
an

:::::::::::::
indeterminate

:::::::::::::
representation.

4 EXAMPLE The value of the following expression is the size of the array needed to hold the transformation of the string
pointed to by s.

1 + strxfrm(NULL, s, 0)

7.24.5 Search functions
7.24.5.1 The memchr function
Synopsis

1 #include <string.h>
void *memchr(const void *s, int c, size_t n);

Description
2 The memchr function locates the first occurrence of c (converted to an unsigned char) in the initial

n characters (each interpreted as unsigned char) of the object pointed to by s. The implementation

modifications to ISO/IEC 9899:2018, § 7.24.5.1 page 278 Library

107modifications to ISO/IEC 9899:2018, § 7.26.6.4 page 293, draft — June 15, 2022 C17..TS 6010

3 A null pointer value is associated with the newly created key in all existing threads. Upon subsequent
thread creation, the value associated with all keys is initialized to a null pointer value in the new
thread.

4 Destructors associated with thread-specific storage are not invoked at program termination.

5 The tss_create function shall not be called from within a destructor.

Returns
6 If the tss_create function is successful, it sets the thread-specific storage pointed to by key to a

value that uniquely identifies the newly created pointer and returns thrd_success; otherwise,
thrd_error is returned and the thread-specific storage pointed to by key is set to an indeterminate
value

:::::::::::::
representation.

7.26.6.2 The tss_delete function
Synopsis

1 #include <threads.h>
void tss_delete(tss_t key);

Description
2 The tss_delete function releases any resources used by the thread-specific storage identified by

key. The tss_delete function shall only be called with a value for key that was returned by a call
to tss_create before the thread commenced executing destructors.

3 If tss_delete is called while another thread is executing destructors, whether this will affect the
number of invocations of the destructor associated with key on that thread is unspecified.

4 Calling tss_delete will not result in the invocation of any destructors.

Returns
5 The tss_delete function returns no value.

7.26.6.3 The tss_get function
Synopsis

1 #include <threads.h>
void *tss_get(tss_t key);

Description
2 The tss_get function returns the value for the current thread held in the thread-specific storage

identified by key. The tss_get function shall only be called with a value for key that was returned
by a call to tss_create before the thread commenced executing destructors.

Returns
3 The tss_get function returns the value for the current thread if successful, or zero if unsuccessful.

7.26.6.4 The tss_set function
Synopsis

1 #include <threads.h>
int tss_set(tss_t key, void *val);

Description
2 The tss_set function sets the value for the current thread held in the thread-specific storage

identified by key to val. The tss_set function shall only be called with a value for key that was
returned by a call to tss_create before the thread commenced executing destructors.

3 This action will not invoke the destructor associated with the key on the value being replaced.

4
:
If
::::
val

::
is

::
a

:::::
valid

:::::::
pointer,

::
its

:::::::::::
provenance

::
is

::
is

::::::::::
henceforth

::::::::
exposed.

Library modifications to ISO/IEC 9899:2018, § 7.26.6.4 page 293

108modifications to ISO/IEC 9899:2018, § 7.27.3.5 page 302, draft — June 15, 2022 C17..TS 6010

%a the first three characters of %A.

%A one of "Sunday", "Monday", . . . , "Saturday".

%b the first three characters of %B.

%B one of "January", "February", . . . , "December".

%c equivalent to "%a %b %e %T %Y".

%p one of "AM" or "PM".

%r equivalent to "%I:%M:%S %p".

%x equivalent to "%m/%d/%y".

%X equivalent to %T.

%Z implementation-defined.

Returns
8 If the total number of resulting characters including the terminating null character is not more than

maxsize, the strftime function returns the number of characters placed into the array pointed
to by s not including the terminating null character. Otherwise, zero is returned and the contents

::::::::
members

:
of the array are indeterminate

::::
have

::
an

:::::::::::::
indeterminate

::::::::::::::
representation.

modifications to ISO/IEC 9899:2018, § 7.27.3.5 page 302 Library

109modifications to ISO/IEC 9899:2018, § 7.29.2.1 page 310, draft — June 15, 2022 C17..TS 6010

for an exact representation of the value; if the precision is missing and FLT_RADIX is not a
power of 2, then the precision is sufficient to distinguish363) values of type double, except
that trailing zeros may be omitted; if the precision is zero and the # flag is not specified, no
decimal-point wide character appears. The letters abcdef are used for a conversion and
the letters ABCDEF for A conversion. The A conversion specifier produces a number with
X and P instead of x and p. The exponent always contains at least one digit, and only as
many more digits as necessary to represent the decimal exponent of 2. If the value is zero,
the exponent is zero.

A double argument representing an infinity or NaN is converted in the style of an f or F
conversion specifier.

c If no l length modifier is present, the int argument is converted to a wide character as if
by calling btowc and the resulting wide character is written.

If an l length modifier is present, the wint_t argument is converted to wchar_t and
written.

s If no l length modifier is present, the argument shall be a pointer to the initial element
of a character array containing a multibyte character sequence beginning in the initial
shift state. Characters from the array are converted as if by repeated calls to the mbrtowc
function, with the conversion state described by an mbstate_t object initialized to zero
before the first multibyte character is converted, andwritten up to (but not including) the
terminating null wide character. If the precision is specified, no more than that many wide
characters are written. If the precision is not specified or is greater than the size of the
converted array, the converted array shall contain a null wide character.

If an l length modifier is present, the argument shall be a pointer to the initial element
of an array of wchar_t type. Wide characters from the array are written up to (but not
including) a terminating null wide character. If the precision is specified, no more than
that many wide characters are written. If the precision is not specified or is greater than
the size of the array, the array shall contain a null wide character.

p The argument shall be a pointer to void. The value of the pointer
::::
shall

::
be

:::::
valid

:::
or

::::
null.

:
It
:
is converted to a sequence of printing wide characters, in an implementation-defined

manner.
:
If
:::
the

::::::
value

::
of

:::
the

:::::::
pointer

::
is

:::::
valid

:::
its

:::::::::::
provenance

::
is

::::::::::
henceforth

::::::::
exposed.

n The argument shall be a pointer to signed integer into which is written the number of wide
characters written to the output stream so far by this call to fwprintf. No argument is
converted, but one is consumed. If the conversion specification includes any flags, a field
width, or a precision, the behavior is undefined.

% A % wide character is written. No argument is converted. The complete conversion
specification shall be %%.

9 If a conversion specification is invalid, the behavior is undefined.364) If any argument is not the
correct type for the corresponding conversion specification, the behavior is undefined.

10 In no case does a nonexistent or small field width cause truncation of a field; if the result of a
conversion is wider than the field width, the field is expanded to contain the conversion result.

11 For a and A conversions, if FLT_RADIX is a power of 2, the value is correctly rounded to a hexadecimal
floating number with the given precision.

Recommended practice
12 For a and A conversions, if FLT_RADIX is not a power of 2 and the result is not exactly representable

in the given precision, the result should be one of the two adjacent numbers in hexadecimal floating
style with the given precision, with the extra stipulation that the error should have a correct sign for
the current rounding direction.

363)The precision p is sufficient to distinguish values of the source type if 16p−1 > bn where b is FLT_RADIX and n is the
number of base-b digits in the significand of the source type. A smaller p might suffice depending on the implementation’s
scheme for determining the digit to the left of the decimal-point wide character.
364)See "future library directions" (7.31.16).

modifications to ISO/IEC 9899:2018, § 7.29.2.1 page 310 Library

110modifications to ISO/IEC 9899:2018, § 7.29.2.2 page 314, draft — June 15, 2022 C17..TS 6010

If no l length modifier is present, characters from the input field are converted as if by re-
peated calls to the wcrtomb function, with the conversion state described by an mbstate_t
object initialized to zero before the first wide character is converted. Thecorresponding
argument shall be a pointer to the initial element of a character array large enough to
accept the sequence and a terminating null character, which will be added automatically.

If an l length modifier is present, thecorresponding argument shall be a pointer to
the initial element of an array of wchar_t large enough to accept the sequence and the
terminating null wide character, which will be added automatically.

The conversion specifier includes all subsequent wide characters in the format string,
up to and including the matching right bracket (]). The wide characters between the
brackets (the scanlist) compose the scanset, unless the wide character after the left bracket
is a circumflex (^), in which case the scanset contains all wide characters that do not
appear in the scanlist between the circumflex and the right bracket. If the conversion
specifier begins with [] or [^], the right bracket wide character is in the scanlist and
the next following right bracket wide character is the matching right bracket that ends
the specification; otherwise the first following right bracket wide character is the one
that ends the specification. If a - wide character is in the scanlist and is not the first, nor
the second where the first wide character is a ^, nor the last character, the behavior is
implementation-defined.

p Matches an
:::
the

:::::
same

:
implementation-defined set of sequences , which should be the same

as the set of sequences
::
of

:
wide

:::::::::
characters that may be produced by the %p conversion of

the fwprintf function. The corresponding argument
:::
ptr

:
shall be a pointer to a pointer

to void. The input item is converted to a pointer value in an implementation-defined
manner.

:
– If the input item is a value converted earlier during the same program execution,

the pointer that results shall compare equal to that value; otherwise the behavior of
the conversion is undefined.

::::::::
sequence

::::::
could

:::::
have

:::::
been

:::::::
printed

:::::
from

:
a
:::::

null
:::::::
pointer

:::::
value,

::
a
::::
null

:::::::
pointer

:::::
value

::
is

::::::
stored

::
in

::::::*ptr .

:
–

::::::::::
Otherwise,

::
if

:::
the

::::::
input

:::::::::
sequence

:::::
could

:::::
have

:::::
been

::::::::
printed

:::::
from

:
a
::::::

valid
:::::::
pointer

::
x

:::
and

::
if
:::
the

::::::::
address

:
x
:::::::::
currently

:::::
refers

::
to

:::
an

::::::::
exposed

:::::::
storage

::::::::
instance,

:
a
::::::::::::::
representation

::
of

::
a

:::::
valid

:::::::
pointer

:::::
with

::::::::
address

::
x

::::
and

:::
the

:::::::::::
provenance

:::
of

::::
that

:::::::
storage

::::::::
instance

:::
is

:::::::::::
synthesized

::
in

:::::*ptr .368)

:
–

:::::::::
Otherwise

:::
the

::::::::::::::
representation

::
of

:::::*ptr ::::::::
becomes

:::::::::::::
indeterminate.

:

n No input is consumed. The corresponding argument shall be a pointer to signed integer
into which is to be written the number of wide characters read from the input stream so
far by this call to the fwscanf function. Execution of a %n directive does not increment the
assignment count returned at the completion of execution of the fwscanf function. No
argument is converted, but one is consumed. If the conversion specification includes an
assignment-suppressing wide character or a field width, the behavior is undefined.

% Matches a single % wide character; no conversion or assignment occurs. The complete
conversion specification shall be %%.

13 If a conversion specification is invalid, the behavior is undefined.369)

14 The conversion specifiers A, E, F, G, and X are also valid and behave the same as, respectively, a, e, f,
g, and x.

15 Trailing white space (including new-line wide characters) is left unread unless matched by a directive.
The success of literal matches and suppressed assignments is not directly determinable other than
via the %n directive.

368)
::::
Thus,

:::
the

::::::::
constructed

::::::
pointer

::::
value

:::
has

:
a
::::
valid

:::::::::
provenance.

:::::::::::
Nevertheless,

::::::
because

::
the

::::::
original

::::::
storage

::::::
instance

:::::
might

::
be

::::
dead

:::
and

:
a
::::
new

:::::
storage

::::::
instance

:::::
might

:::
live

::
at

:::
the

::::
same

::::::
address,

:::
this

:::::::::
provenance

:::
can

::
be

::::::
different

::::
from

:::
the

:::::::::
provenance

:::
that

::::
gave

:::
rise

:
to
:::
the

::::
print

::::::::
operation.

:
If

:
x
:::
can

::
be

::
an

::::::
address

::::
with

::::
more

:::
than

:::
one

::::::::::
provenance,

:::
only

:::
one

::
of

::::
these

::::
shall

::
be

::::
used

:
in
:::
the

:::::
sequel,

:::
see

::::
6.2.5.

369)See "future library directions" (7.31.16).

modifications to ISO/IEC 9899:2018, § 7.29.2.2 page 314 Library

111modifications to ISO/IEC 9899:2018, § 7.29.2.6 page 317, draft — June 15, 2022 C17..TS 6010

Returns
3 The swscanf function returns the value of the macro EOF if an input failure occurs before the first

conversion (if any) has completed. Otherwise, the swscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

7.29.2.5 The vfwprintf function
Synopsis

1 #include <stdarg.h>
#include <stdio.h>
#include <wchar.h>
int vfwprintf(FILE * restrict stream,

const wchar_t * restrict format,
va_list arg);

Description
2 The vfwprintf function is equivalent to fwprintf, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vfwprintf function does not invoke the va_end macro.370)

Returns
3 The vfwprintf function returns the number of wide characters transmitted, or a negative value if

an output or encoding error occurred.
4 EXAMPLE The following shows the use of the vfwprintf function in a general error-reporting routine.

#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

void error(char *function_name, wchar_t *format, ...)
{

va_list args;

va_start(args, format);
// print out name of function causing error
fwprintf(stderr, L"ERROR in %s: ", function_name);
// print out remainder of message
vfwprintf(stderr, format, args);
va_end(args);

}

7.29.2.6 The vfwscanf function
Synopsis

1 #include <stdarg.h>
#include <stdio.h>
#include <wchar.h>
int vfwscanf(FILE * restrict stream,

const wchar_t * restrict format,
va_list arg);

Description
2 The vfwscanf function is equivalent to fwscanf, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vfwscanf function does not invoke the va_end macro.370)

370)As the functions vfwprintf, vswprintf, vfwscanf, vwprintf, vwscanf, and vswscanf invoke the va_arg macro, the
value

::::::::::
representation

:
of arg after the return is indeterminate.

Library modifications to ISO/IEC 9899:2018, § 7.29.2.6 page 317

112modifications to ISO/IEC 9899:2018, § 7.29.3.3 page 320, draft — June 15, 2022 C17..TS 6010

#include <stdio.h>
#include <wchar.h>
wint_t fgetwc(FILE *stream);

Description
2 If the end-of-file indicator for the input stream pointed to by stream is not set and a next wide

character is present, the fgetwc function obtains that wide character as a wchar_t converted to a
wint_t and advances the associated file position indicator for the stream (if defined).

Returns
3 If the end-of-file indicator for the stream is set, or if the stream is at end-of-file, the end-of-file

indicator for the stream is set and the fgetwc function returns WEOF. Otherwise, the fgetwc function
returns the next wide character from the input stream pointed to by stream. If a read error occurs,
the error indicator for the stream is set and the fgetwc function returns WEOF. If an encoding error
occurs (including too few bytes), the value of the macro EILSEQ is stored in errno and the fgetwc
function returns WEOF.371)

7.29.3.2 The fgetws function
Synopsis

1 #include <stdio.h>
#include <wchar.h>
wchar_t *fgetws(wchar_t * restrict s,

int n, FILE * restrict stream);

Description
2 The fgetws function reads at most one less than the number of wide characters specified by n from

the stream pointed to by stream into the array pointed to by s. No additional wide characters are
read after a new-line wide character (which is retained) or after end-of-file. A null wide character is
written immediately after the last wide character read into the array.

Returns
3 The fgetws function returns s if successful. If end-of-file is encountered and no characters have been

read into the array, the contents of the array remain unchanged and a null pointer is returned. If a
read or encoding error occurs during the operation, the array contents are indeterminate

::::::::
members

::::
have

:::
an

:::::::::::::
indeterminate

:::::::::::::
representation

:
and a null pointer is returned.

7.29.3.3 The fputwc function
Synopsis

1 #include <stdio.h>
#include <wchar.h>
wint_t fputwc(wchar_t c, FILE *stream);

Description
2 The fputwc function writes the wide character specified by c to the output stream pointed to by

stream, at the position indicated by the associated file position indicator for the stream (if defined),
and advances the indicator appropriately. If the file cannot support positioning requests, or if the
stream was opened with append mode, the character is appended to the output stream.

Returns
3 The fputwc function returns the wide character written. If a write error occurs, the error indicator

for the stream is set and fputwc returns WEOF. If an encoding error occurs, the value of the macro
EILSEQ is stored in errno and fputwc returns WEOF.

371)An end-of-file and a read error can be distinguished by use of the feof and ferror functions. Also, errno will be set to
EILSEQ by input/output functions only if an encoding error occurs.

modifications to ISO/IEC 9899:2018, § 7.29.3.3 page 320 Library

113modifications to ISO/IEC 9899:2018, § 7.29.4.4.4 page 328, draft — June 15, 2022 C17..TS 6010

Description
2 The wcscmp function compares the wide string pointed to by s1 to the wide string pointed to by s2.

Returns
3 The wcscmp function returns an integer greater than, equal to, or less than zero, accordingly as the

wide string pointed to by s1 is greater than, equal to, or less than the wide string pointed to by s2.

7.29.4.4.2 The wcscoll function
Synopsis

1 #include <wchar.h>
int wcscoll(const wchar_t *s1, const wchar_t *s2);

Description
2 The wcscoll function compares the wide string pointed to by s1 to the wide string pointed to by

s2, both interpreted as appropriate to the LC_COLLATE category of the current locale.

Returns
3 The wcscoll function returns an integer greater than, equal to, or less than zero, accordingly as the

wide string pointed to by s1 is greater than, equal to, or less than the wide string pointed to by s2
when both are interpreted as appropriate to the current locale.

7.29.4.4.3 The wcsncmp function
Synopsis

1 #include <wchar.h>
int wcsncmp(const wchar_t *s1, const wchar_t *s2,

size_t n);

Description
2 The wcsncmp function compares not more than n wide characters (those that follow a null wide

character are not compared) from the array pointed to by s1 to the array pointed to by s2.

Returns
3 The wcsncmp function returns an integer greater than, equal to, or less than zero, accordingly as the

possibly null-terminated array pointed to by s1 is greater than, equal to, or less than the possibly
null-terminated array pointed to by s2.

7.29.4.4.4 The wcsxfrm function
Synopsis

1 #include <wchar.h>
size_t wcsxfrm(wchar_t * restrict s1,

const wchar_t * restrict s2,
size_t n);

Description
2 The wcsxfrm function transforms the wide string pointed to by s2 and places the resulting wide

string into the array pointed to by s1. The transformation is such that if the wcscmp function is
applied to two transformed wide strings, it returns a value greater than, equal to, or less than zero,
corresponding to the result of the wcscoll function applied to the same two original wide strings.
No more than n wide characters are placed into the resulting array pointed to by s1, including the
terminating null wide character. If n is zero, s1 is permitted to be a null pointer.

Returns
3 The wcsxfrm function returns the length of the transformed wide string (not including the termi-

nating null wide character). If the value returned is n or greater, the contents of the array
:::::
array

modifications to ISO/IEC 9899:2018, § 7.29.4.4.4 page 328 Library

114modifications to ISO/IEC 9899:2018, § 7.29.4.5.2 page 329, draft — June 15, 2022

::::::::
elements pointed to by s1 are indeterminate

::::
have

::
an

:::::::::::::
indeterminate

::::::::::::::
representation.

4 EXAMPLE The value of the following expression is the length of the array needed to hold the transformation of the wide
string pointed to by s:

1 + wcsxfrm(NULL, s, 0)

7.29.4.4.5 The wmemcmp function
Synopsis

1 #include <wchar.h>
int wmemcmp(const wchar_t *s1, const wchar_t *s2,

size_t n);

Description
2 The wmemcmp function compares the first n wide characters of the object pointed to by s1 to the first

n wide characters of the object pointed to by s2.

Returns
3 The wmemcmp function returns an integer greater than, equal to, or less than zero, accordingly as the

object pointed to by s1 is greater than, equal to, or less than the object pointed to by s2.

7.29.4.5 Wide string search functions
7.29.4.5.1 The wcschr function
Synopsis

1 #include <wchar.h>
wchar_t *wcschr(const wchar_t *s, wchar_t c);

Description
2 The wcschr function locates the first occurrence of c in the wide string pointed to by s. The

terminating null wide character is considered to be part of the wide string.

Returns
3 The wcschr function returns a pointer to the located wide character, or a null pointer if the wide

character does not occur in the wide string.

7.29.4.5.2 The wcscspn function
Synopsis

1 #include <wchar.h>
size_t wcscspn(const wchar_t *s1, const wchar_t *s2);

Description
2 The wcscspn function computes the length of the maximum initial segment of the wide string

pointed to by s1 which consists entirely of wide characters not from the wide string pointed to by
s2.

Returns
3 The wcscspn function returns the length of the segment.

Library modifications to ISO/IEC 9899:2018, § 7.29.4.5.2 page 329

115modifications to ISO/IEC 9899:2018, § 7.29.6.1.2 page 333, draft — June 15, 2022

Returns
3 If the total number of resulting wide characters including the terminating null wide character is not

more than maxsize, the wcsftime function returns the number of wide characters placed into the
array pointed to by s not including the terminating null wide character. Otherwise, zero is returned
and the contents

::::::::
members

:
of the array are indeterminate

::::
have

:::
an

:::::::::::::
indeterminate

:::::::::::::
representation.

7.29.6 Extended multibyte/wide character conversion utilities
1 The header <wchar.h> declares an extended set of functions useful for conversion between multibyte

characters and wide characters.

2 Most of the following functions — those that are listed as "restartable", 7.29.6.3 and 7.29.6.4 — take
as a last argument a pointer to an object of type mbstate_t that is used to describe the current
conversion state from a particular multibyte character sequence to a wide character sequence (or the
reverse) under the rules of a particular setting for the LC_CTYPE category of the current locale.

3 The initial conversion state corresponds, for a conversion in either direction, to the beginning of a
new multibyte character in the initial shift state. A zero-valued mbstate_t object is (at least) one
way to describe an initial conversion state. A zero-valued mbstate_t object can be used to initiate
conversion involving any multibyte character sequence, in any LC_CTYPE category setting. If an
mbstate_t object has been altered by any of the functions described in this subclause, and is then
used with a different multibyte character sequence, or in the other conversion direction, or with a
different LC_CTYPE category setting than on earlier function calls, the behavior is undefined.379)

4 On entry, each function takes the described conversion state (either internal or pointed to by an
argument) as current. The conversion state described by the referenced object is altered as needed
to track the shift state, and the position within a multibyte character, for the associated multibyte
character sequence.

7.29.6.1 Single-byte/wide character conversion functions
7.29.6.1.1 The btowc function
Synopsis

1 #include <wchar.h>
wint_t btowc(int c);

Description
2 The btowc function determines whether c constitutes a valid single-byte character in the initial shift

state.

Returns
3 The btowc function returns WEOF if c has the value EOF or if (unsigned char)c does not constitute

a valid single-byte character in the initial shift state. Otherwise, it returns the wide character
representation of that character.

7.29.6.1.2 The wctob function
Synopsis

1 #include <wchar.h>
int wctob(wint_t c);

Description
2 The wctob function determines whether c corresponds to a member of the extended character set

whose multibyte character representation is a single byte when in the initial shift state.

Returns
3 The wctob function returns EOF if c does not correspond to a multibyte character with length one

in the initial shift state. Otherwise, it returns the single-byte representation of that character as an
unsigned char converted to an int.
379)Thus, a particular mbstate_t object can be used, for example, with both the mbrtowc and mbsrtowcs functions as long

as they are used to step sequentially through the same multibyte character string.

Library modifications to ISO/IEC 9899:2018, § 7.29.6.1.2 page 333

116modifications to ISO/IEC 9899:2018, § J.1 page 415, draft — June 15, 2022 C17..TS 6010

Annex J
(informative)

Portability issues

1 This annex collects some information about portability that appears in this document.

J.1 Unspecified behavior
1 The following are unspecified:

— The manner and timing of static initialization (5.1.2).

— The termination status returned to the hosted environment if the return type of main is not
compatible with int (5.1.2.2.3).

— The values of objects that are neither lock-free atomic objects nor of type
volatile sig_atomic_t and the state of the floating-point environment, when the
processing of the abstract machine is interrupted by receipt of a signal (5.1.2.3).

— The behavior of the display device if a printing character is written when the active position is
at the final position of a line (5.2.2).

— The behavior of the display device if a backspace character is written when the active position
is at the initial position of a line (5.2.2).

— The behavior of the display device if a horizontal tab character is written when the active
position is at or past the last defined horizontal tabulation position (5.2.2).

— The behavior of the display device if a vertical tab character is written when the active position
is at or past the last defined vertical tabulation position (5.2.2).

— How an extended source character that does not correspond to a universal character name
counts toward the significant initial characters in an external identifier (5.2.4.1).

— Many aspects of the representations of types (6.2.6).

— The
::::::
relative

::::::
order

::
of

::::
any

::::
two

:::::::
storage

::::::::
instances

::
in

::::
the

:::::::
address

:::::
space

::::::::
(6.2.6.1).

:

—
:::
The

:
value of padding bytes when storing values in structures or unions (6.2.6.1).

— The values of bytes that correspond to union members other than the one last stored into
(6.2.6.1).

— The representation used when storing a value in an object that has more than one object
representation for that value (6.2.6.1).

— The values of any padding bits in integer representations (6.2.6.2).

— Whether certain operators can generate negative zeros and whether a negative zero becomes a
normal zero when stored in an object (6.2.6.2).

— Whether two string literals result in distinct arrays (6.4.5).

— The order in which subexpressions are evaluated and the order in which side effects take place,
except as specified for the function-call (), &&, ||, ?:, and comma operators (6.5).

— The order in which the function designator, arguments, and subexpressions within the argu-
ments are evaluated in a function call (6.5.2.2).

— The order of side effects among compound literal initialization list expressions (6.5.2.5).

— The order in which the operands of an assignment operator are evaluated (6.5.16).

— The alignment of the addressable storage unit allocated to hold a bit-field (6.7.2.1).

Portability issues modifications to ISO/IEC 9899:2018, § J.1 page 415

117modifications to ISO/IEC 9899:2018, § J.1 page 416, draft — June 15, 2022 C17..TS 6010

— Whether a call to an inline function uses the inline definition or the external definition of the
function (6.7.4).

— Whether or not a size expression is evaluated when it is part of the operand of a sizeof
operator and changing the value of the size expression would not affect the result of the
operator (6.7.6.2).

— The order in which any side effects occur among the initialization list expressions in an
initializer (6.7.9).

— The layout of storage for function parameters (6.9.1). When a fully expanded macro replace-
ment list contains a function-like macro name as its last preprocessing token and the next
preprocessing token from the source file is a (, and the fully expanded replacement of that
macro ends with the name of the first macro and the next preprocessing token from the source
file is again a (, whether that is considered a nested replacement (6.10.3).

— The order in which # and ## operations are evaluated during macro substitution (6.10.3.2,
6.10.3.3).

— The line number following a directive of the form #line __LINE__ new-line (6.10.4).

— The state of the floating-point status flags when execution passes from a part of the program
translated with FENV_ACCESS "off" to a part translated with FENV_ACCESS "on" (7.6.1).

— The order in which feraiseexcept raises floating-point exceptions, except as stated in F.8.6
(7.6.2.3).

— Whether math_errhandling is a macro or an identifier with external linkage (7.12).

— The results of the frexp functions when the specified value is not a floating-point number
(7.12.6.4).

— The numeric result of the ilogb functions when the correct value is outside the range of the
return type (7.12.6.5, F.10.3.5).

— The result of rounding when the value is out of range (7.12.9.5, 7.12.9.7, F.10.6.5).

— The value stored by the remquo functions in the object pointed to by quo when y is zero
(7.12.10.3).

— Whether a comparison macro argument that is represented in a format wider than its semantic
type is converted to the semantic type (7.12.14).

— Whether setjmp is a macro or an identifier with external linkage (7.13).

— Whether va_copy and va_end are macros or identifiers with external linkage (7.16.1).

— The hexadecimal digit before the decimal point when a non-normalized floating-point number
is printed with an a or A conversion specifier (7.21.6.1, 7.29.2.1).

— The value of the file position indicator after a successful call to the ungetc function for a text
stream, or the ungetwc function for any stream, until all pushed-back characters are read or
discarded (7.21.7.10, 7.29.3.10).

— The details of the value stored by the fgetpos function (7.21.9.1).

— The details of the value returned by the ftell function for a text stream (7.21.9.4).

— Whether the strtod, strtof, strtold, wcstod, wcstof, and wcstold functions convert a
minus-signed sequence to a negative number directly or by negating the value resulting from
converting the corresponding unsigned sequence (7.22.1.3, 7.29.4.1.1).

modifications to ISO/IEC 9899:2018, § J.1 page 416 Portability issues

118modifications to ISO/IEC 9899:2018, § J.2 page 417, draft — June 15, 2022

— The order and contiguity of storage allocated by successive calls to the calloc, malloc,
realloc, and aligned_alloc functions (??). The amount of storage allocated by a successful

:
If
::
a call to the calloc, malloc, realloc, or aligned_alloc function when

:::::::::
requesting

:
0 bytes

was requested (??
:::
fails

:::
or

:::::::
returns

:
a
:::::::
storage

::::::::
instance

::
of

::::
size

::::
zero

::::::
(7.22.3).

— Whether a call to the atexit function that does not happen before the exit function is called
will succeed (7.22.4.2).

— Whether a call to the at_quick_exit function that does not happen before the quick_exit
function is called will succeed (7.22.4.3).

— Which of two elements that compare as equal is matched by the bsearch function (7.22.5.1).

— The order of two elements that compare as equal in an array sorted by the qsort function
(7.22.5.2).

— The order in which destructors are invoked by thrd_exit (7.26.5.5).

— Whether calling tss_delete on a key while another thread is executing destructors affects the
number of invocations of the destructors associated with the key on that thread (7.26.6.2).

— The encoding of the calendar time returned by the time function (7.27.2.4).

— The characters stored by the strftime or wcsftime function if any of the time values being
converted is outside the normal range (7.27.3.5, 7.29.5.1).

— Whether an encoding error occurs if a wchar_t value that does not correspond to a member of
the extended character set appears in the format string for a function in 7.29.2 or 7.29.5 and the
specified semantics do not require that value to be processed by wcrtomb (7.29.1).

— The conversion state after an encoding error occurs (7.29.6.3.2, 7.29.6.3.3, 7.29.6.4.1, 7.29.6.4.2,

— The resulting value when the "invalid" floating-point exception is raised during IEC 60559
floating to integer conversion (F.4).

— Whether conversion of non-integer IEC 60559 floating values to integer raises the "inexact"
floating-point exception (F.4).

— Whether or when library functions in <math.h> raise the "inexact" floating-point exception in
an IEC 60559 conformant implementation (F.10).

— Whether or when library functions in <math.h> raise an undeserved "underflow" floating-
point exception in an IEC 60559 conformant implementation (F.10).

— The exponent value stored by frexp for a NaN or infinity (F.10.3.4).

— The numeric result returned by the lrint, llrint, lround, and llround functions if the
rounded value is outside the range of the return type (F.10.6.5, F.10.6.7).

— The sign of one part of the complex result of several math functions for certain special cases
in IEC 60559 compatible implementations (G.6.1.1, G.6.2.2, G.6.2.3, G.6.2.4, G.6.2.5, G.6.2.6,
G.6.3.1, G.6.4.2).

J.2 Undefined behavior
1 The behavior is undefined in the following circumstances:

— A "shall" or "shall not" requirement that appears outside of a constraint is violated (Clause 4).

— A nonempty source file does not end in a new-line character which is not immediately preceded
by a backslash character or ends in a partial preprocessing token or comment (5.1.1.2).

— Token concatenation produces a character sequence matching the syntax of a universal charac-
ter name (5.1.1.2).

Portability issues modifications to ISO/IEC 9899:2018, § J.2 page 417

119modifications to ISO/IEC 9899:2018, § J.2 page 418, draft — June 15, 2022 C17..TS 6010

— A program in a hosted environment does not define a function named main using one of the
specified forms (5.1.2.2.1).

— The execution of a program contains a data race (5.1.2.4).

— A character not in the basic source character set is encountered in a source file, except in an
identifier, a character constant, a string literal, a header name, a comment, or a preprocessing
token that is never converted to a token (5.2.1).

— An identifier, comment, string literal, character constant, or header name contains an invalid
multibyte character or does not begin and end in the initial shift state (5.2.1.2).

— The same identifier has both internal and external linkage in the same translation unit (6.2.2).

— An object is referred to outside of its lifetime (6.2.4).

— The value of a pointer to an object whose lifetime has ended is used (6.2.4).

— The value of an object with automatic storage duration is used while it is indeterminate (??
:::
the

:::::
object

::::
has

::
an

:::::::::::::
indeterminate

::::::::::::::
representation

:::::
(6.2.4, 6.7.9, 6.8).

— A trap
:::::::::
non-value

:
representation is read by an lvalue expression that does not have character

type (6.2.6.1).

— A trap
:::::::::
non-value

:
representation is produced by a side effect that modifies any part of the

object using an lvalue expression that does not have character type (6.2.6.1).

— The operands to certain operators are such that they could produce a negative zero result, but
the implementation does not support negative zeros (6.2.6.2).

— Two declarations of the same object or function specify types that are not compatible (6.2.7).

— A program requires the formation of a composite type from a variable length array type whose
size is specified by an expression that is not evaluated (6.2.7).

— Conversion to or from an integer type produces a value outside the range that can be repre-
sented (6.3.1.4).

— Demotion of one real floating type to another produces a value outside the range that can be
represented (6.3.1.5).

— An lvalue does not designate an object when evaluated (6.3.2.1).

— A non-array lvalue with an incomplete type is used in a context that requires the value of the
designated object (6.3.2.1).

— An lvalue designating an object of automatic storage duration that could have been declared
with the register storage class is used in a context that requires the value of the designated
object, but the object is uninitialized. (6.3.2.1).

— An lvalue having array type is converted to a pointer to the initial element of the array, and
the array object has register storage class (6.3.2.1).

— An attempt is made to use the value of a void expression, or an implicit or explicit conversion
(except to void) is applied to a void expression (6.3.2.2).

— Conversion of a pointer to an integer type produces a value outside the range that can be
represented (6.3.2.3).

— Conversion between two pointer types produces a result that is incorrectly aligned (6.3.2.3).

— A pointer is used to call a function whose type is not compatible with the referenced type
(6.3.2.3).

modifications to ISO/IEC 9899:2018, § J.2 page 418 Portability issues

120modifications to ISO/IEC 9899:2018, § J.2 page 426, draft — June 15, 2022 C17..TS 6010

— A c, s, or [conversion specifier is encountered by one of the formatted input functions, and
the array pointed to by the corresponding argument is not large enough to accept the input
sequence (and a null terminator if the conversion specifier is s or [) (7.21.6.2, 7.29.2.2).

— A c, s, or [conversion specifier with an l qualifier is encountered by one of the formatted
input functions, but the input is not a valid multibyte character sequence that begins in the
initial shift state (7.21.6.2, 7.29.2.2).

— The input item for a %p conversion by one of the formatted input functions is not a value
converted earlier during the same program execution (7.21.6.2, 7.29.2.2).

— The vfprintf, vfscanf, vprintf, vscanf, vsnprintf, vsprintf, vsscanf, vfwprintf,
vfwscanf, vswprintf, vswscanf, vwprintf, or vwscanf function is called with an improperly
initialized va_list argument, or the argument is used (other than in an invocation of va_end)
after the function returns (7.21.6.8, 7.21.6.9, 7.21.6.10, 7.21.6.11, 7.21.6.12, 7.21.6.13, 7.21.6.14,
7.29.2.5, 7.29.2.6, 7.29.2.7, 7.29.2.8, 7.29.2.9, 7.29.2.10).

— The contents of the array supplied in a call to the fgets or fgetws function are used after a
read error occurred (7.21.7.2, 7.29.3.2).

— The file position indicator for a binary stream is used after a call to the ungetc function where
its value was zero before the call (7.21.7.10).

— The file position indicator for a stream is used after an error occurred during a call to the
fread or fwrite function (7.21.8.1, 7.21.8.2).

— A partial element read by a call to the fread function is used (7.21.8.1).

— The fseek function is called for a text stream with a nonzero offset and either the offset was
not returned by a previous successful call to the ftell function on a stream associated with
the same file or whence is not SEEK_SET (7.21.9.2).

— The fsetpos function is called to set a position that was not returned by a previous successful
call to the fgetpos function on a stream associated with the same file (7.21.9.3).

— A non-null pointer returned by a call to the calloc, malloc, realloc, or aligned_alloc
function with a zero requested size is used to access an object (7.22.3).

— The value of a pointer that refers to space
:
a
:::::::
storage

::::::::
instance deallocated by a call to the free

or realloc function is used (7.22.3).

— The pointer argument to the free or realloc function does not match a pointer earlier
returned by a memory

::::::
storage management function, or the space

:::::::
storage

:::::::
instance

:
has been

deallocated by a call to free or realloc (7.22.3.3, 7.22.3.5).

— The value of the object allocated by the malloc function is used (7.22.3.4).

— The values of any bytes in a new object allocated by the realloc function beyond the size of
the old object are used (7.22.3.5).

— The program calls the exit or quick_exit function more than once, or calls both functions
(7.22.4.4, 7.22.4.7).

— During the call to a function registered with the atexit or at_quick_exit function, a call is
made to the longjmp function that would terminate the call to the registered function (7.22.4.4,
7.22.4.7).

— The string set up by the getenv or strerror function is modified by the program (7.22.4.6,
7.24.6.2).

— A signal is raised while the quick_exit function is executing (7.22.4.7).

— A command is executed through the system function in a way that is documented as causing
termination or some other form of undefined behavior (7.22.4.8).

modifications to ISO/IEC 9899:2018, § J.2 page 426 Portability issues

121modifications to ISO/IEC 9899:2018, § J.3.6 page 429, draft — June 15, 2022 C17..TS 6010

— The mapping of members of the source character set (in character constants and string literals)
to members of the execution character set (6.4.4.4, 5.1.1.2).

— The value of an integer character constant containing more than one character or containing a
character or escape sequence that does not map to a single-byte execution character (6.4.4.4).

— The value of a wide character constant containing more than one multibyte character or a
single multibyte character that maps to multiple members of the extended execution character
set, or containing a multibyte character or escape sequence not represented in the extended
execution character set (6.4.4.4).

— The current locale used to convert a wide character constant consisting of a single multibyte
character that maps to a member of the extended execution character set into a corresponding
wide character code (6.4.4.4).

— Whether differently-prefixed wide string literal tokens can be concatenated and, if so, the
treatment of the resulting multibyte character sequence (6.4.5).

— The current locale used to convert a wide string literal into corresponding wide character
codes (6.4.5).

— The value of a string literal containing a multibyte character or escape sequence not represented
in the execution character set (6.4.5).

— The encoding of any of wchar_t, char16_t, and char32_t where the corresponding stan-
dard encoding macro (__STDC_ISO_10646__, __STDC_UTF_16__, or __STDC_UTF_32__) is not
defined (6.10.8.2).

J.3.5 Integers
1 — Any extended integer types that exist in the implementation (6.2.5).

— Whether signed integer types are represented using sign and magnitude, two’s complement,
or ones’ complement, and whether the extraordinary value is a trap

:::::::::
non-value representation

or an ordinary value (6.2.6.2).

— The rank of any extended integer type relative to another extended integer type with the same
precision (6.3.1.1).

— The result of, or the signal raised by, converting an integer to a signed integer type when the
value cannot be represented in an object of that type (6.3.1.3).

— The results of some bitwise operations on signed integers (6.5).

J.3.6 Floating point
1 — The accuracy of the floating-point operations and of the library functions in <math.h> and

<complex.h> that return floating-point results (5.2.4.2.2).

— The accuracy of the conversions between floating-point internal representations and string
representations performed by the library functions in <stdio.h>, <stdlib.h>, and <wchar.h>
(5.2.4.2.2).

— The rounding behaviors characterized by non-standard values of FLT_ROUNDS (5.2.4.2.2).

— The evaluation methods characterized by non-standard negative values of FLT_EVAL_METHOD
(5.2.4.2.2).

— The direction of rounding when an integer is converted to a floating-point number that cannot
exactly represent the original value (6.3.1.4).

— The direction of rounding when a floating-point number is converted to a narrower floating-
point number (6.3.1.5).

Portability issues modifications to ISO/IEC 9899:2018, § J.3.6 page 429

122modifications to ISO/IEC 9899:2018, § J.3.12 page 432, draft — June 15, 2022 C17..TS 6010

— Whether the last line of a text stream requires a terminating new-line character (7.21.2).

— Whether space characters that are written out to a text stream immediately before a new-line
character appear when read in (7.21.2).

— The number of null characters that may be appended to data written to a binary stream (7.21.2).

— Whether the file position indicator of an append-mode stream is initially positioned at the
beginning or end of the file (7.21.3).

— Whether a write on a text stream causes the associated file to be truncated beyond that point
(7.21.3).

— The characteristics of file buffering (7.21.3).

— Whether a zero-length file actually exists (7.21.3).

— The rules for composing valid file names (7.21.3).

— Whether the same file can be simultaneously open multiple times (7.21.3).

— The nature and choice of encodings used for multibyte characters in files (7.21.3).

— The effect of the remove function on an open file (7.21.4.1).

— The effect if a file with the new name exists prior to a call to the rename function (7.21.4.2).

— Whether an open temporary file is removed upon abnormal program termination (7.21.4.3).

— Which changes of mode are permitted (if any), and under what circumstances (7.21.5.4).

— The style used to print an infinity or NaN, and the meaning of any n-char or n-wchar sequence
printed for a NaN (7.21.6.1, 7.29.2.1).

— The output for %p conversion in the fprintf or fwprintf function (7.21.6.1, 7.29.2.1).

— The interpretation of a- character that is neither the first nor the last character, nor the second
where a ^ character is the first, in the scanlist for %[conversion in the fscanf or fwscanf
function (7.21.6.2, 7.29.2.1).

— The set of sequences matched by a %p conversion and the interpretation of the corresponding
input item in the fscanf or fwscanf function (7.21.6.2, 7.29.2.2).

— The value to which the macro errno is set by the fgetpos, fsetpos, or ftell functions on
failure (7.21.9.1, 7.21.9.3, 7.21.9.4).

— The meaning of any n-char or n-wchar sequence in a string representing a NaN that is
converted by the strtod, strtof, strtold, wcstod, wcstof, or wcstold function (7.22.1.3,
7.29.4.1.1).

— Whether or not the strtod, strtof, strtold, wcstod, wcstof, or wcstold function sets errno
to ERANGE when underflow occurs (7.22.1.3, 7.29.4.1.1).

— Whether the calloc, malloc, realloc, and aligned_alloc functions return a null pointer or
a pointer to an allocated object

:
a
:::::::
storage

::::::::
instance

:
when the size requested is zero (7.22.3).

— Whether open streams with unwritten buffered data are flushed, open streams are closed, or
temporary files are removed when the abort or _Exit function is called (7.22.4.1, 7.22.4.5).

— The termination status returned to the host environment by the abort, exit, _Exit, or
quick_exit function (7.22.4.1, 7.22.4.4, 7.22.4.5, 7.22.4.7).

— The value returned by the system function when its argument is not a null pointer (7.22.4.8).

— The range and precision of times representable in clock_t and time_t (7.27).

modifications to ISO/IEC 9899:2018, § J.3.12 page 432 Portability issues

123modifications to ISO/IEC 9899:2018, § K.3.5.3.10 page 447, draft — June 15, 2022 C17..TS 6010

K.3.5.3.9 The vfscanf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <stdio.h>
int vfscanf_s(FILE * restrict stream,

const char * restrict format,
va_list arg);

Runtime-constraints
2 Neither stream nor format shall be a null pointer. Any argument indirected though in order to

store converted input shall not be a null pointer.

3 If there is a runtime-constraint violation, the vfscanf_s function does not attempt to perform
further input, and it is unspecified to what extent vfscanf_s performed input before discovering
the runtime-constraint violation.

Description
4 The vfscanf_s function is equivalent to fscanf_s, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vfscanf_s function does not invoke the va_end macro.429)

Returns
5 The vfscanf_s function returns the value of the macro EOF if an input failure occurs before any

conversion or if there is a runtime-constraint violation. Otherwise, the vfscanf_s function returns
the number of input items assigned, which can be fewer than provided for, or even zero, in the event
of an early matching failure.

K.3.5.3.10 The vprintf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <stdio.h>
int vprintf_s(const char * restrict format,

va_list arg);

Runtime-constraints

2 format shall not be a null pointer. The %n specifier430) (modified or not by flags, field width,
or precision) shall not appear in the string pointed to by format. Any argument to vprintf_s
corresponding to a %s specifier shall not be a null pointer.

3 If there is a runtime-constraint violation, the vprintf_s function does not attempt to produce
further output, and it is unspecified to what extent vprintf_s produced output before discovering
the runtime-constraint violation.

Description
4 The vprintf_s function is equivalent to the vprintf function except for the explicit runtime-

constraints listed above.

Returns
5 The vprintf_s function returns the number of characters transmitted, or a negative value if an

output error, encoding error, or runtime-constraint violation occurred.

429)As the functions vfprintf_s, vfscanf_s, vprintf_s, vscanf_s, vsnprintf_s, vsprintf_s, and vsscanf_s invoke
the va_arg macro, the value

:::::::::::
representation of arg after the return is indeterminate.

430)It is not a runtime-constraint violation for the characters %n to appear in sequence in the string pointed at by format
when those characters are not a interpreted as a %n specifier. For example, if the entire format string was %%n.

Bounds-checking interfaces modifications to ISO/IEC 9899:2018, § K.3.5.3.10 page 447

124modifications to ISO/IEC 9899:2018, § K.3.5.3.12 page 448, draft — June 15, 2022 C17..TS 6010

K.3.5.3.11 The vscanf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <stdio.h>
int vscanf_s(const char * restrict format,

va_list arg);

Runtime-constraints
2 format shall not be a null pointer. Any argument indirected though in order to store converted

input shall not be a null pointer.

3 If there is a runtime-constraint violation, the vscanf_s function does not attempt to perform further
input, and it is unspecified to what extent vscanf_s performed input before discovering the runtime-
constraint violation.

Description
4 The vscanf_s function is equivalent to scanf_s, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vscanf_s function does not invoke the va_end macro.431)

Returns
5 The vscanf_s function returns the value of the macro EOF if an input failure occurs before any

conversion or if there is a runtime-constraint violation. Otherwise, the vscanf_s function returns
the number of input items assigned, which can be fewer than provided for, or even zero, in the event
of an early matching failure.

K.3.5.3.12 The vsnprintf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <stdio.h>
int vsnprintf_s(char * restrict s, rsize_t n,

const char * restrict format,
va_list arg);

Runtime-constraints
2 Neither s nor format shall be a null pointer. n shall neither equal zero nor be greater than RSIZE_MAX.

The %n specifier432) (modified or not by flags, field width, or precision) shall not appear in the string
pointed to by format. Any argument to vsnprintf_s corresponding to a %s specifier shall not be a
null pointer. No encoding error shall occur.

3 If there is a runtime-constraint violation, then if s is not a null pointer and n is greater than zero and
not greater than RSIZE_MAX, then the vsnprintf_s function sets s[0] to the null character.

Description
4 The vsnprintf_s function is equivalent to the vsnprintf function except for the explicit runtime-

constraints listed above.

5 The vsnprintf_s function, unlike vsprintf_s, will truncate the result to fit within the array pointed
to by s.

431)As the functions vfprintf_s, vfscanf_s, vprintf_s, vscanf_s, vsnprintf_s, vsprintf_s, and vsscanf_s invoke
the va_arg macro, the value

:::::::::::
representation of arg after the return is indeterminate.

432)It is not a runtime-constraint violation for the characters %n to appear in sequence in the string pointed at by format
when those characters are not a interpreted as a %n specifier. For example, if the entire format string was %%n.

modifications to ISO/IEC 9899:2018, § K.3.5.3.12 page 448 Bounds-checking interfaces

125modifications to ISO/IEC 9899:2018, § K.3.5.4.1 page 450, draft — June 15, 2022

Description
4 The vsscanf_s function is equivalent to sscanf_s, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vsscanf_s function does not invoke the va_end macro.434)

Returns
5 The vsscanf_s function returns the value of the macro EOF if an input failure occurs before any

conversion or if there is a runtime-constraint violation. Otherwise, the vscanf_s function returns
the number of input items assigned, which can be fewer than provided for, or even zero, in the event
of an early matching failure.

K.3.5.4 Character input/output functions
K.3.5.4.1 The gets_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
char *gets_s(char *s, rsize_t n);

Runtime-constraints
2 s shall not be a null pointer. n shall neither be equal to zero nor be greater than RSIZE_MAX. A new-

line character, end-of-file, or read error shall occur within reading n-1 characters from stdin.435)

3 If there is a runtime-constraint violation, characters are read and discarded from stdin until a
new-line character is read, or end-of-file or a read error occurs, and if s is not a null pointer, s[0] is
set to the null character.

Description
4 The gets_s function reads at most one less than the number of characters specified by n from the

stream pointed to by stdin, into the array pointed to by s. No additional characters are read after a
new-line character (which is discarded) or after end-of-file. The discarded new-line character does
not count towards number of characters read. A null character is written immediately after the last
character read into the array.

5 If end-of-file is encountered and no characters have been read into the array, or if a read error
occurs during the operation, then s[0] is set to the null character, and the other elements of s take
unspecified values.

Recommended practice
6 The fgets function allows properly-written programs to safely process input lines too long to store

in the result array. In general this requires that callers of fgets pay attention to the presence or
absence of a new-line character in the result array. Consider using fgets (along with any needed
processing based on new-line characters) instead of gets_s.

Returns
7 The gets_s function returns s if successful. If there was a runtime-constraint violation, or if end-of-

file is encountered and no characters have been read into the array, or if a read error occurs during
the operation, then a null pointer is returned.

434)As the functions vfprintf_s, vfscanf_s, vprintf_s, vscanf_s, vsnprintf_s, vsprintf_s, and vsscanf_s invoke
the va_arg macro, the value

:::::::::::
representation of arg after the return is indeterminate.

435)The gets_s function, unlike the historical gets function, makes it a runtime-constraint violation for a line of input to
overflow the buffer to store it. Unlike the fgets function, gets_s maintains a one-to-one relationship between input lines
and successful calls to gets_s. Programs that use gets expect such a relationship.

modifications to ISO/IEC 9899:2018, § K.3.5.4.1 page 450 Bounds-checking interfaces

126modifications to ISO/IEC 9899:2018, § K.3.6.4.1 page 455, draft — June 15, 2022 C17..TS 6010

Returns
7 The qsort_s function returns zero if there was no runtime-constraint violation. Otherwise, a

nonzero value is returned.

K.3.6.4 Multibyte/wide character conversion functions
1 The behavior of the multibyte character functions is affected by the LC_CTYPE category of the current

locale. For a state-dependent encoding, each function is placed into its initial conversion state by a
call for which its character pointer argument, s, is a null pointer. Subsequent calls with s as other
than a null pointer cause the internal conversion state of the function to be altered as necessary. A
call with s as a null pointer causes these functions to set the int pointed to by their status argument
to a nonzero value if encodings have state dependency, and zero otherwise.444) Changing the
LC_CTYPE category causes the

:::::::
internal

::::::
object

::::::::::
describing

:::
the conversion state of these functions to

be indeterminate
::::
have

::
an

:::::::::::::
indeterminate

::::::::::::::
representation.

K.3.6.4.1 The wctomb_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdlib.h>
errno_t wctomb_s(int * restrict status,

char * restrict s,
rsize_t smax,
wchar_t wc);

Runtime-constraints
2 Let n denote the number of bytes needed to represent the multibyte character corresponding to the

wide character given by wc (including any shift sequences).

3 If s is not a null pointer, then smax shall not be less than n, and smax shall not be greater than
RSIZE_MAX. If s is a null pointer, then smax shall equal zero.

4 If there is a runtime-constraint violation, wctomb_s does not modify the int pointed to by status,
and if s is not a null pointer, no more than smax elements in the array pointed to by s will be
accessed.

Description
5 The wctomb_s function determines n and stores the multibyte character representation of wc in the

array whose first element is pointed to by s (if s is not a null pointer). The number of characters
stored never exceeds MB_CUR_MAX or smax. If wc is a null wide character, a null byte is stored,
preceded by any shift sequence needed to restore the initial shift state, and the function is left in the
initial conversion state.

6 The implementation shall behave as if no library function calls the wctomb_s function.

7 If s is a null pointer, the wctomb_s function stores into the int pointed to by status a nonzero or zero
value, if multibyte character encodings, respectively, do or do not have state-dependent encodings.

8 If s is not a null pointer, the wctomb_s function stores into the int pointed to by status either n or
-1 if wc, respectively, does or does not correspond to a valid multibyte character.

9 In no case will the int pointed to by status be set to a value greater than the MB_CUR_MAX macro.

Returns
10 The wctomb_s function returns zero if successful, and a nonzero value if there was a runtime-

constraint violation or wc did not correspond to a valid multibyte character.

444)If the locale employs special bytes to change the shift state, these bytes do not produce separate wide character codes, but
are grouped with an adjacent multibyte character.

Bounds-checking interfaces modifications to ISO/IEC 9899:2018, § K.3.6.4.1 page 455

127modifications to ISO/IEC 9899:2018, § K.3.9.1.8 page 471, draft — June 15, 2022 C17..TS 6010

3 If there is a runtime-constraint violation, the vfwprintf_s function does not attempt to produce
further output, and it is unspecified to what extent vfwprintf_s produced output before discovering
the runtime-constraint violation.

Description
4 The vfwprintf_s function is equivalent to the vfwprintf function except for the explicit runtime-

constraints listed above.

Returns
5 The vfwprintf_s function returns the number of wide characters transmitted, or a negative value if

an output error, encoding error, or runtime-constraint violation occurred.

K.3.9.1.7 The vfwscanf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>
int vfwscanf_s(FILE * restrict stream,

const wchar_t * restrict format, va_list arg);

Runtime-constraints
2 Neither stream nor format shall be a null pointer. Any argument indirected though in order to

store converted input shall not be a null pointer.

3 If there is a runtime-constraint violation, the vfwscanf_s function does not attempt to perform
further input, and it is unspecified to what extent vfwscanf_s performed input before discovering
the runtime-constraint violation.

Description
4 The vfwscanf_s function is equivalent to fwscanf_s, with the variable argument list replaced by

arg, which shall have been initialized by the va_start macro (and possibly subsequent va_arg
calls). The vfwscanf_s function does not invoke the va_end macro.466)

Returns
5 The vfwscanf_s function returns the value of the macro EOF if an input failure occurs before any

conversion or if there is a runtime-constraint violation. Otherwise, the vfwscanf_s function returns
the number of input items assigned, which can be fewer than provided for, or even zero, in the event
of an early matching failure.

K.3.9.1.8 The vsnwprintf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <wchar.h>
int vsnwprintf_s(wchar_t * restrict s,

rsize_t n,
const wchar_t * restrict format,
va_list arg);

Runtime-constraints
2 Neither s nor format shall be a null pointer. n shall neither equal zero nor be greater than

RSIZE_MAX/sizeof(wchar_t). The %n specifier467) (modified or not by flags, field width, or preci-
466)As the functions vfwscanf_s, vwscanf_s, and vswscanf_s invoke the va_arg macro, the value

::::::::::
representation of arg

after the return is indeterminate.
467)It is not a runtime-constraint violation for the wide characters %n to appear in sequence in the wide string pointed at

by format when those wide characters are not a interpreted as a %n specifier. For example, if the entire format string was

Bounds-checking interfaces modifications to ISO/IEC 9899:2018, § K.3.9.1.8 page 471

128modifications to ISO/IEC 9899:2018, § K.3.9.1.11 page 473, draft — June 15, 2022 C17..TS 6010

K.3.9.1.10 The vswscanf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <wchar.h>
int vswscanf_s(const wchar_t * restrict s,

const wchar_t * restrict format,
va_list arg);

Runtime-constraints
2 Neither s nor format shall be a null pointer. Any argument indirected though in order to store

converted input shall not be a null pointer.

3 If there is a runtime-constraint violation, the vswscanf_s function does not attempt to perform
further input, and it is unspecified to what extent vswscanf_s performed input before discovering
the runtime-constraint violation.

Description
4 The vswscanf_s function is equivalent to swscanf_s, with the variable argument list replaced by

arg, which shall have been initialized by the va_start macro (and possibly subsequent va_arg
calls). The vswscanf_s function does not invoke the va_end macro.469)

Returns
5 The vswscanf_s function returns the value of the macro EOF if an input failure occurs before any

conversion or if there is a runtime-constraint violation. Otherwise, the vswscanf_s function returns
the number of input items assigned, which can be fewer than provided for, or even zero, in the event
of an early matching failure.

K.3.9.1.11 The vwprintf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <wchar.h>
int vwprintf_s(const wchar_t * restrict format,

va_list arg);

Runtime-constraints

2 format shall not be a null pointer. The %n specifier470) (modified or not by flags, field width, or
precision) shall not appear in the wide string pointed to by format. Any argument to vwprintf_s
corresponding to a %s specifier shall not be a null pointer.

3 If there is a runtime-constraint violation, the vwprintf_s function does not attempt to produce
further output, and it is unspecified to what extent vwprintf_s produced output before discovering
the runtime-constraint violation.

Description
4 The vwprintf_s function is equivalent to the vwprintf function except for the explicit runtime-

constraints listed above.

Returns
5 The vwprintf_s function returns the number of wide characters transmitted, or a negative value if

an output error, encoding error, or runtime-constraint violation occurred.
469)As the functions vfwscanf_s, vwscanf_s, and vswscanf_s invoke the va_arg macro, the value

::::::::::
representation of arg

after the return is indeterminate.
470)It is not a runtime-constraint violation for the wide characters %n to appear in sequence in the wide string pointed at

by format when those wide characters are not a interpreted as a %n specifier. For example, if the entire format string was
L"%%n".

Bounds-checking interfaces modifications to ISO/IEC 9899:2018, § K.3.9.1.11 page 473

129modifications to ISO/IEC 9899:2018, § K.3.9.1.13 page 474, draft — June 15, 2022 C17..TS 6010

K.3.9.1.12 The vwscanf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <wchar.h>
int vwscanf_s(const wchar_t * restrict format,

va_list arg);

Runtime-constraints
2 format shall not be a null pointer. Any argument indirected though in order to store converted

input shall not be a null pointer.

3 If there is a runtime-constraint violation, the vwscanf_s function does not attempt to perform
further input, and it is unspecified to what extent vwscanf_s performed input before discovering
the runtime-constraint violation.

Description
4 The vwscanf_s function is equivalent to wscanf_s, with the variable argument list replaced by arg,

which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vwscanf_s function does not invoke the va_end macro.471)

Returns
5 The vwscanf_s function returns the value of the macro EOF if an input failure occurs before any

conversion or if there is a runtime-constraint violation. Otherwise, the vwscanf_s function returns
the number of input items assigned, which can be fewer than provided for, or even zero, in the event
of an early matching failure.

K.3.9.1.13 The wprintf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
int wprintf_s(const wchar_t * restrict format, ...);

Runtime-constraints

2 format shall not be a null pointer. The %n specifier472) (modified or not by flags, field width, or
precision) shall not appear in the wide string pointed to by format. Any argument to wprintf_s
corresponding to a %s specifier shall not be a null pointer.

3 If there is a runtime-constraint violation, the wprintf_s function does not attempt to produce
further output, and it is unspecified to what extent wprintf_s produced output before discovering
the runtime-constraint violation.

Description
4 The wprintf_s function is equivalent to the wprintf function except for the explicit runtime-

constraints listed above.

Returns
5 The wprintf_s function returns the number of wide characters transmitted, or a negative value if

an output error, encoding error, or runtime-constraint violation occurred.

471)As the functions vfwscanf_s, vwscanf_s, and vswscanf_s invoke the va_arg macro, the value
::::::::::
representation of arg

after the return is indeterminate.
472)It is not a runtime-constraint violation for the wide characters %n to appear in sequence in the wide string pointed at

by format when those wide characters are not a interpreted as a %n specifier. For example, if the entire format string was
L"%%n".

modifications to ISO/IEC 9899:2018, § K.3.9.1.13 page 474 Bounds-checking interfaces

130modifications to ISO/IEC 9899:2018, § L.3 page 485, draft — June 15, 2022 C17..TS 6010

Annex L
(normative)

Analyzability

L.1 Scope
1 This annex specifies optional behavior that can aid in the analyzability of C programs.

2 An implementation that defines __STDC_ANALYZABLE__ shall conform to the specifications in this
annex.488)

L.2 Definitions
L.2.1

1 out-of-bounds store

an (attempted) access (3.1) that, at run time, for a given computational state, would modify (or, for
an object declared volatile, fetch) one or more bytes that lie outside the bounds permitted by this
document.

L.2.2
1 bounded undefined behavior

undefined behavior (3.4.3) that does not perform an out-of-bounds store.
2 Note 1 to entry: The behavior might perform a trap.

3 Note 2 to entry: Any values produced or stored might be indeterminate values
::::::::
unspecified

:::::
values,

::::
and

::
the

:::::::::::
representation

:
of
::::::

objects
:::
that

::
are

::::::
written

::
to

::::
might

::::::
become

:::::::::::
indeterminate.

L.2.3
1 critical undefined behavior

undefined behavior that is not bounded undefined behavior.
2 Note 1 to entry: The behavior might perform an out-of-bounds store or perform a trap.

L.3 Requirements
1 If the program performs a trap (3.21.5), the implementation is permitted to invoke a runtime-

constraint handler. Any such semantics are implementation-defined.

2 All undefined behavior shall be limited to bounded undefined behavior, except for the following
which are permitted to result in critical undefined behavior:

— An object is referred to outside of its lifetime (6.2.4).

— A store is performed to an object that has two incompatible declarations (6.2.7),

— A pointer is used to call a function whose type is not compatible with the referenced type
(6.2.7, 6.3.2.3, 6.5.2.2).

— An lvalue does not designate an object when evaluated (6.3.2.1).

— The program attempts to modify a string literal (6.4.5).

— The operand of the unary* operator has an invalid value (6.5.3.2).

— Addition or subtraction of a pointer into, or just beyond, an array object and an integer type
produces a result that points just beyond the array object and is used as the operand of a unary
* operator that is evaluated (6.5.6).

— An attempt is made to modify an object defined with a const-qualified type through use of an
lvalue with non-const-qualified type (6.7.3).

488)Implementations that do not define __STDC_ANALYZABLE__ are not required to conform to these specifications.

Analyzability modifications to ISO/IEC 9899:2018, § L.3 page 485

ISO/IEC TS XXXX:2020 (E) draft N2577 131

Bibliography

[BMN+15] Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-Pharabod, and Peter Sewell. The
problem of programming language concurrency semantics. In Programming Languages and Systems
- 24th European Symposium on Programming, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015., pages 283–307,
April 2015.

[c1818] Programming languages – C, ISO/IEC 9899:2018 edition, 2018.

[CMM+16] David Chisnall, Justus Matthiesen, Kayvan Memarian, Kyndylan Nienhuis, Peter Sewell, and Robert
N. M. Watson. C memory object and value semantics: the space of de facto and ISO standards.
http://www.cl.cam.ac.uk/~pes20/cerberus/notes30.pdf (a revison of ISO SC22 WG14 N2013),
March 2016.

[Fea04] Clive D. W. Feather. Indeterminate values and identical representations (dr260). Technical report,
September 2004. http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_260.htm.

[FSF18] FSF. Using the gnu compiler collection (gcc) / 4.7 arrays and pointers. https://gcc.gnu.org/

onlinedocs/gcc/Arrays-and-pointers-implementation.html, 2018. Accessed 2018-10-22.

[gli18] glibc. memcpy, 2018.

[Kre15] Robbert Krebbers. The C standard formalized in Coq. PhD thesis, Radboud University Nijmegen,
December 2015.

[KW12] Krebbers and Wiedijk. N1637: Subtleties of the ANSI/ISO C standard, September 2012. http:

//www.open-std.org/jtc1/sc22/wg14/www/docs/n1637.pdf.

[LHJ+18] Juneyoung Lee, Chung-Kil Hur, Ralf Jung, Zhengyang Liu, John Regehr, and Nuno P. Lopes. Recon-
ciling high-level optimizations and low-level code with twin memory allocation. In Proceedings of the
2018 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages
& Applications, OOPSLA 2018, part of SPLASH 2018, Boston, MA, USA, November 4-9, 2018. ACM,
2018.

[MGD+19] Kayvan Memarian, Victor B. F. Gomes, Brooks Davis, Stephen Kell, Alexander Richardson, Robert
N. M. Watson, and Peter Sewell. Exploring C semantics and pointer provenance. In POPL
2019: Proc. 46th ACM SIGPLAN Symposium on Principles of Programming Languages, January
2019. Proc. ACM Program. Lang. 3, POPL, Article 67. Also available as ISO WG14 N2311,
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2311.pdf.

[MGS18] Kayvan Memarian, Victor Gomes, and Peter Sewell. n2263: Clarifying pointer provenance v4. ISO
WG14 http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2263.htm, May 2018.

[MML+16] Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan Nienhuis, David Chisnall,
Robert N.M. Watson, and Peter Sewell. Into the depths of C: elaborating the de facto standards.
In PLDI 2016: 37th annual ACM SIGPLAN conference on Programming Language Design and Im-
plementation (Santa Barbara), June 2016. PLDI 2016 Distinguished Paper award.

[MOG+14] Dominic P. Mulligan, Scott Owens, Kathryn E. Gray, Tom Ridge, and Peter Sewell. Lem: reusable
engineering of real-world semantics. In Proceedings of ICFP 2014: the 19th ACM SIGPLAN Interna-
tional Conference on Functional Programming, pages 175–188, 2014.

[MS16a] Kayvan Memarian and Peter Sewell. N2090: Clarifying pointer provenance (draft defect report or
proposal for c2x). ISO WG14 http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2090.htm,
2016.

[MS16b] Kayvan Memarian and Peter Sewell. What is C in practice? (Cerberus survey v2): Analysis of
responses – with comments. ISO SC22 WG14 N2015, http://www.cl.cam.ac.uk/~pes20/cerberus/
analysis-2016-02-05-anon.txt, March 2016.

