
MEETING OF ISO/IEC JTC 1/SC 22/WG 14 AND INCITS PL22.11
WG 14: Final Meeting Minutes (N2991)

Agenda from N2915 (http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2915.htm updated to
various times until http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2936.htm during the
meeting)

Dates	and	Times	

Each	day	will	have	a	half-hour	break	from	16:00-16:30	UTC.	

Monday,	 31	 January,	 2022		14:30	–	18:00	UTC	
Tuesday,	 1	February,	2022		14:30	–	18:00	UTC	
Wednesday,	 2	February,	2022		14:30	–	18:00	UTC	
Thursday,	 3	February,	2022		14:30	–	18:00	UTC	
Friday,	 4	February,	2022		14:30	–	18:00	UTC	
Monday,	 14	February,	2022		14:30	–	18:00	UTC	
Tuesday,	 15	February,	2022		14:30	–	18:00	UTC	
Wednesday,	16	February,	2022		14:30	–	18:00	UTC	
Thursday,	 17	February,	2022		14:30	–	18:00	UTC	
Friday,	 18	February,	2022		14:30	–	18:00	UTC	
	
Meeting	Location	
This	meeting	is	virtual	via	Zoom.	

1.1 Opening Comments (Keaton)

1.2 Introduction of Participants/Roll Call

Name Organization NB Notes
Aaron Ballman Intel USA C++ Compatibility SG

Chair
Alex Gilding Perforce / Programming

Research Ltd.
USA

Barry Hedquist Perennial USA PL22.11 IR
Clive Pygott LDRA Inc. USA WG23 liaison
David Keaton Keaton Consulting USA Convener
David Svoboda SEI/CERT/CMU USA Undefined Behavior

SG Chair
David Vitek Grammatech USA

Elizabeth Andrews Intel USA

Fred Tydeman Tydeman Consulting USA PL22.11 Vice Chair
Freek Wiedijk Plum Hall USA

Lars Bjonnes Cisco Systems USA

Maged Michael Facebook USA

Martin Sebor IBM USA

Nick Dunn NCC Group USA

Rajan Bhakta IBM USA, Canada PL22.11 Chair, scribe
Robert Seacord NCC Group USA

Tom Honermann Intel USA

Aaron Bachmann Austrian Standards Austria Austria NB
Bill Ash SC 22

SC22 manager

Corentin Jabot Freelance France Guest
Dave Banham BlackBerry QNX UK MISRA Liaison
Eskil Steenberg Quel Solaar Sweden Sweden NB
Etienne Alepins Thales Canada, Avionics Canada

JeanHeyd Meneide NEN Netherlands Netherlands NB
Jens Gustedt INRIA France France NB
Joseph Myers CodeSourcery / Siemens UK UK NB
Kayvan Memarian University of Cambridge UK

Martin Uecker University of Goettingen Germany

Michael Wong Codeplay Canada, UK WG21 Liaison
Miguel Ojeda UNE Spain Spain NB
Nick Stoughton Logitech USA SC22 Austin Group

Liaison
Peter Sewell University of Cambridge UK Memory Model SG

Chair
Peter Sommerlad Peter Sommerlad - Better

Software
Switzerland Invited Guest

Philipp Krause Albert-Ludwigs-Universitat
Freiburg

Germany Germany NB

Roberto Bagnara BUGSENG Italy Italy NB, MISRA
Liaison

Steve Downey Bloomberg USA Guest
Ville Voutilainen The Qt Company Finland Finland NB
Wenge Rong Beihang University China China NB

1.3 Procedures for this Meeting (Keaton)
 Straw polls taken; anybody can vote.

 Only one conversation at a time. Ex. If audio is broken and they are using Chat, don't talk via
audio, or vice versa.
 Document numbers: ISO outage is still present. Dan is able to dispense document numbers
since he knows what the next numbers will be. He can sync with ISO when it returns. For
homework, let Dan know it is homework, so he knows it is higher priority.

1.4 Required Reading
1.4.1 ISO Code of Conduct
1.4.2 IEC Code of Conduct
1.4.3 JTC 1 Summary of Key Points [N 2613]
1.4.4 INCITS Code of Conduct
1.5 Approval of Previous WG 14 Minutes [N 2914] (WG 14 motion)
 Approved with some typo corrections pending.

1.6 Review of Action Items and Resolutions
 ACTION: Ballman to change the WG14 page to promote the full document log. - Done
 ACTION: Keaton to investigate status of n2566. - Open for now (will check during the break).
Done during break.
 ACTION: Add n2761 to the papers-of-interest list. - Open
 Assigned to Aaron Ballman.
 ACTION: Tydeman to take n2797 to the liaison SG. - Done, but need to follow up.
 ACTION: Steenberg to send commentary on the problems with namespaces to the reflector. -
Done
 ACTION: Meneide or Gustedt to bring a continuation paper about the use of extended integer
constant macros in #if. - Done

1.7 Approval of Agenda [N 2915] (PL22.11 motion, WG 14 motion)
 Some papers were missed that would have ended up in section 7, so it does not affect this
meeting.
 5.14 was not intended for C23 so he wants to move it out.
 Will not discuss the working draft updates in detail since they are not present.
 "typeof" will be discussed before lambdas, and Bachmann papers before typeof.
Jens: Suggest not putting in the working draft updates since we can't see the documents (not
present).
 Seacord papers will be swapped due to guests needing to attend at certain times.

 No objections.
 Approved.

1.8 Identify National Bodies Sending Experts
 Austria, Canada, China, Finland, France, Germany, Italy, Netherlands, Spain, Sweden, UK,
USA

1.9 INCITS Antitrust Guidelines and Patent Policy
1.10 INCITS official designated member/alternate information
 See Rajan for any questions or corrections.

1.11 Note where we are in the C23 schedule [N 2864]
 Due to the large influx of last-minute documents, this schedule is now unlikely to be met. We
should do our best but will probably need an extension.
 The ballot resolution meeting will become a normal meeting.
 We have only one 9-month extension if we need it.

2. Reports on Liaison Activities
2.1 ISO, IEC, JTC 1, SC 22
 JTC1 plenary is virtual.
 SC22 is likely going to be virtual as well.

2.2 PL22.11/WG 14
2.3 PL22.16/WG 21
 WG21 has had no plenary meetings since the last WG14 plenary meeting.
 There is a WG21 plenary happening next Monday (Feb 7). The larger new changes to C++
expected to come out of that meeting are:

 P0533R9 constexpr for <cmath> and <cstdlib>
(https://urldefense.proofpoint.com/v2/url?u=https-
3A__wg21.link_p0533r9&d=DwIBaQ&c=jf_iaSHvJObTbx-siA1ZOg&r=MPb4GyWs7nd-
w3OlFPs29W1dB3gHMdsdghhjcQMf428&m=__AAGFnOMAi31jAxlB3l7p3dDU-
olIm8vapJFpnbYjM&s=9x11ij7f8GJfTvwPhjZNMrVQ5R-VLJMnCvcPTeEIYZs&e=) -- adds
constant expression support to many interfaces originating from the C standard library.

 P0627R6 Function to mark unreachable code
(https://urldefense.proofpoint.com/v2/url?u=https-
3A__wg21.link_p0627r6&d=DwIBaQ&c=jf_iaSHvJObTbx-siA1ZOg&r=MPb4GyWs7nd-
w3OlFPs29W1dB3gHMdsdghhjcQMf428&m=__AAGFnOMAi31jAxlB3l7p3dDU-
olIm8vapJFpnbYjM&s=NgZ0QAaFTTYd2NJOMUQPe9o4_VHTIw2ivlWOOtcBQU8&e=)
-- adds a library function to mark unreachable code. Note
https://urldefense.proofpoint.com/v2/url?u=http-3A__www.open-
2Dstd.org_jtc1_sc22_wg14_www_docs_n2757.pdf&d=DwIBaQ&c=jf_iaSHvJObTbx-
siA1ZOg&r=MPb4GyWs7nd-
w3OlFPs29W1dB3gHMdsdghhjcQMf428&m=__AAGFnOMAi31jAxlB3l7p3dDU-
olIm8vapJFpnbYjM&s=7BMsk0qjcuGMXJkGNO37FRRs65crD4eXPnghXy135mk&e=
touching on the same subject in C.

 There are also significant changes to C++ specific functionality such as the new ranges and
views STL interfaces. Of potential interest to the UB study group, there is a new library interface
for returning expected results from a function in

https://urldefense.proofpoint.com/v2/url?u=https-
3A__wg21.link_P0323R11&d=DwIBaQ&c=jf_iaSHvJObTbx-siA1ZOg&r=MPb4GyWs7nd-
w3OlFPs29W1dB3gHMdsdghhjcQMf428&m=__AAGFnOMAi31jAxlB3l7p3dDU-
olIm8vapJFpnbYjM&s=L_8jXffj62kTL4y8OZD9NX_b-RbVqg8qJ2L46I6sGNk&e= . In
addition to new features, the Core team fixed seven bugs (six as defect reports) and the Library
team fixed 21 bugs (none as a defect report).

 WG21 is still on track to ship C++23 on time.

 Adding post C23 release schedule (AKA "train schedule") to the agenda for Other Business.
 No objections.

2.4 PL22
2.5 WG 23
 Nothing changed since the last meeting.

2.6 MISRA C
 Continuing covering C11/C18.
 Plan to keep an eye on C23 to prepare for the work when it is published.

2.7 Austin Group
2.8 Other Liaison Activities
 DIN now has a standard under Creative Commons license: DIN SPEC 3105

3. Study Groups
3.1 C Floating Point Study Group activity report
 Continuing to validate WG14 changes are integrated correctly into the standard.
 Continuing to handle issues related to C floating point from the wider community.
 Starting a backlog of items to handle post C23.

3.2 C Memory Object Model Study Group activity report
 Looking to adopt TS 6010 as it is.

3.3 C and C++ Compatibility Study Group activity report
 SG22 continues to meet on an almost monthly cadence and processes about three papers a
month.
 Since the last report (Nov 2021), processed 3 papers (did not meet in January due to holidays).
 Next meeting is next week.
 Focus has continued to be on papers for C++23 and C23.
 Switching gears after February to more forward-looking papers.

3.4 Undefined Behavior Study Group activity report
 Met every other week.

 Decided to not to submit any papers due to C23, though one is ready.
 After this C23 deluge of papers is done, at least one paper will be submitted.
 One paper is for uniform compiler switches for UB.
 Also looking at a paper for J.2 and another paper for codifying UB.

4. Future Meetings
4.1 Future Meeting Schedule
 Please note that in-person meetings may be converted to virtual meetings due to coronavirus
considerations.
18-22 July, 2022 – Strasbourg, France (tentative)
Decide whether to make this a virtual meeting. If so, should it be two weeks long?
 Took the host's suggestion to meet in May and July virtually and put off what to do in the future
based on our ballot schedule.

 May 16-20 virtual
 July 18-22 virtual

4.2 Future Mailing Deadlines
Note: Please request document numbers by one week before these dates.
Post-Virtual-202201 - 4 March, 2022
Pre-Virtual-202205 - 15 April, 2022
Post-202205/Pre-202207 - 17 June, 2022 (final version of proposals due by this date)
Post-Virtual-2022007 - 12 August, 2022

5. Document Review

5.1 Working draft updates
Meneide, C Working Draft [N 2912]
Meneide, C Working Draft - Editor's Report [N 2913]
 Drafts not posted yet.

5.2 Bachmann, Add timegm() as non-optional part of to C2X [N 2833]
 Updated: http://wg14.schlepptop.dd-dns.de:5033/n2833_edited.html

 Some belief that these functions can be changed externally by the OS. No real consensus that
this is the case.
 Some concerns about data races, but also belief section 7.1 is sufficient. No intent for anything
new being proposed for data races.

 Straw poll: Adopt N2833 alternative 1 (with the typo of mktime->timegm in the returns section
fixed) into C23?
 16/0/5. N2833 alternative 1 with typo fix goes into C23.

5.3 Bachmann, Deprecate the %n format specifier in C2X [N 2834]
 Some implementations like musl libc strongly do not support this change.
 Some belief that this is not a security issue, and that the untrusted source is the issue.

 Straw poll: Put N2834 with the 'obsolescent" alternative into C23 with the same changes to the
wide character functions 7.29.2.1#8 and listing the change in 7.31 (future library directions)?
 8/5/7. No consensus to adopt this based on the reasons for abstention (leaning towards no).

5.4 A Provenance-aware Memory Object Model for C (1.5 hours)
TS 6010 continuing discussions (previous working draft for reference [N 2676]) (1.5 hours)
 TS updates is at a standstill with no forward progress anticipated. Looking to move forward to
ballot with the TS as it is now.

 Needs focused long-term attention. The current TS only covers a small fraction of the issues.
The mailing list has been dead as people have moved on to other things.

 Consideration for a math model of the standard beyond something like Cerebus.

 Discussion of adding an annex to the TS for other questions or issues to consider like the
uninitialized reads.

 Straw poll: Does WG14 wish to see TS6010 working draft (N2676 or something similar) in
some future version of the standard?
 21/0/1. Clear consensus.
 Straw poll: Does WG14 wish to see TS6010 working draft (N2676 or something similar) in
C23?
 10/8/5. Clear indication people think this is important.

 Straw poll: (Opinion) Is WG 14 willing to move TS 6010 to DTS ballot as it stands now?
 19/1/3. The committee is OK to move forward.

5.5 Seacord, Annex K Repairs [N 2809]
 Belief that changes to the constraint handler are not synchronized. The floating-point
environment does inherit what is there from the thread that started the new thread so this may not
be an issue.

 No real implementors of Annex K.

 Straw poll: Does WG14 want proposed wording 2 given in N2809 into C23?
 4/7/7. No consensus.
 Straw poll: Does WG14 want proposed wording 1 given in N2809 into C23?
 2/7/10. No consensus.
 Straw poll: Does WG14 wish to address thread specific runtime constraint handling in Annex
K?
 9/2/8. Consensus to try again.

5.6 Seacord, Identifier Syntax using Unicode Standard Annex 31 [N 2836]
 No intent to handle homoglyph attacks in this paper.

 Goal of the paper is to keep C and C++ in sync.

 Straw poll: Does WG14 want N2836 in C23?
 16/1/3. Goes into C23.

5.7 Seacord, calloc wrap-around handling [N 2810]
 Editorial correction: The wording should change "nmemb*size" to "nmemb and size" or
removing the word “of”.

 Straw poll: Does WG14 wish to adopt N2810 as-is into C23 (modulo editorial corrections)?
 20/0/0. Consensus.

5.8 Floating point (3 hours total / 20 minutes each)
5.8.1 Tydeman, *_HAS_SUBNORM==0 implies what? [N 2797] (the green part only, which
was skipped at the previous meeting)
 Straw poll: Does WG14 want N2797 (the green text) in C23?
 15/0/2. Consensus. Goes into C23.

5.8.2 Tydeman, DFP: Quantum exponent of NaN (version 2) [N 2754]
 Straw poll: Does WG14 want N2754 in C23 (with "would be" changed to "is" in the footnote)?
 17/0/3. Goes into C23.

5.8.3 Thomas, C23 proposal - Remove default argument promotions for _FloatN types [N
2844]
 Some implementations could consider _Float32 to be a fuzzy alias of float.
 DR206 states default argument promotion was only for K&R C.
 The architecture can do it in the ABI still regardless of the language level.

 Straw poll: Does WG14 want N2844 in C23?
 14/1/2. Goes into C23.

5.8.4 Thomas, C23 proposal - Revised suggested change from N2716 [N 2847]
 Straw poll: Does WG14 want N2847 in C23?
 10/0/5. N2847 goes into C23.

5.8.5 Thomas, C23 proposal - Type annex tgmath.h narrowing macros with integer args
[N 2849]
 The _Float32x and _Decimal32x cases need to be addressed.

 Action item: CFP to look into _Float32x and _Decimal32x narrowing functions for N2849 for
next week.

5.8.6 Thomas, C23 proposal - 5.2.4.2.2 cleanup-update [N 2879]
 Straw poll: Does WG14 want N2879 in C23?
 13/0/4. Put N2879 into C23.

5.8.7 Thomas, C23 proposal - overflow and underflow definitions-update [N 2880]
 One comment/concern about wording of "however for types with reduced precision..." with
regards to the overflow threshold.

 Straw poll: Does WG14 want N2880 in C23?
 12/0/5. Put N2880 into C23.

5.8.8 Thomas, C23 proposal - Normal and subnormal classification-update [N 2881]
 Straw poll: Does WG14 want N2881 in C23?
 13/0/3. Put N2881 into C23.

5.8.9 Thomas, C23 proposal - Clarification for max exponent macros-update [N 2882]
 Straw poll: Does WG14 want N2882 in C23?
 15/0/3. Put N2882 into C23.

 Alex: Incremental improvements are awesome and this has really helped with progress. Like
the pipeline. Many small papers with incremental changes. Easier to understand, faster to
process.

5.9 Lambdas (3 hours)
5.9.1 Gustedt, Improve type generic programming v4 [N 2890]
 https://hal.inria.fr/hal-03165732
 https://hal.inria.fr/hal-03165731
 https://hal.inria.fr/hal-03165736
 https://hal.inria.fr/hal-03553612
 https://hal.inria.fr/hal-03259337
 Statement expressions noted as more common implementation practice. Concerns that they are
not permissive enough and hence the need for something more like lambdas.

 C++ compatibility is next to trivial.

 Concerns about continual wording issues with each draft of this. Indicates implementation
practice needed for C. Counter is C++ has this and C++ compilers are often also C compilers.
Follow on counter is that C++ experience is not relevant for something that needs C context.

5.9.2 Gustedt, Type inference for variable definitions and function returns v5 [N 2891]
 Belief that an example shown ("static auto const* string3 = "a";) is valid though listed invalid.
Some discussion on this.

 Discussion about preventing shadowing with the given wording. Does not seem to be the case
as it should only apply to typedefs.

 Belief that “same type” should instead use compatible types due to no definition of that term.
Disagreement from the author on this due to the non-transitive relation for it.

 Belief that C code is easier to understand than C++ code and “auto” would take that away.

 Belief that the implementation experience described is not valid or sufficient. Counter
arguments of compilers using different syntax for similar functionality.

 Straw poll: Does WG14 want something along the lines of N2923 (updates N2891, auto) in
C23?
 7/7/5. No clear consensus.

 Straw poll: Does WG14 want something along the lines of N2923 for auto objects in C23?
 10/6/1. Direction for auto type objects for C23.

5.9.3 Gustedt, Basic lambdas for C [N 2892]
 Discussion on the usefulness of captures since it can be called with arguments instead. Counter
is using auto to freeze it at the point of capture is useful.

 Discussion on using Blocks and translating them to lambdas. Various limitations and
difficulties there.

 Straw poll: Does WG14 want something along the lines of N2892 with some specification in
place of auto return in C23?
 5/6/6. No consensus for basic lambdas with some return type invention.

 Straw poll: Does WG14 want something along the lines of N2892 with lambda returns via
trailing return type as per C++11 in C23?
 4/7/7. No consensus for basic lambdas with trailing return type.

 Discussion about needing more C implantation experience before putting it into a standard.

 Straw poll: Does WG14 want something along the lines of N2892 in a future version of C?
 11/4/3. Sentiment in favor of lambdas for a future C standard.

 Discussion on possibly getting a study group together for this.

5.9.4 Gustedt, Options for lambdas [N 2893]
 Not discussed due to 5.9.3’s votes.

5.9.5 Gustedt, Type-generic lambdas v4 [N 2894]
 Not discussed due to 5.9.3’s votes.

5.10 Dependencies on lambdas (1 hour)
5.10.1 Uecker, Function Pointer Types for Pairing Code and Data [N 2787]
 Issues with having a wide function inside a function itself.

 Discussion about bringing this to C++ via the compatibility study group.

 Discussion about fixing the layout vs making it a struct. Restricting implementations being a
side effect of that which some are not in favor of doing.

 Straw poll: Does WG14 want something along the lines of N2862 in C23?
 4/6/9. No consensus to put wide pointers into C23.

 Straw poll: Does WG14 want something along the lines of N2862 in a future C standard?
 7/3/8. Consensus to look for wide pointers in a future C standard.

5.10.2 Gustedt, A simple defer feature for C [N 2895]
 Paper does not work without lambdas.

 Discussion of bringing this as a part of the study group for lambdas or vice versa (study group
for defer could include lambdas). Also, discussion on TS vs study groups and how they are not
mutually exclusive, or the same.

 Discussion of the cost of implementing this. Basically, an array per block or function.

 Discussion of type specific cleanup vs the current object specific cleanup.

5.11 Ballman, Fixes for potentially reserved identifiers [N 2762]
 Discussion on what “implementation” refers to.

 Discussion on the scope of this. Ex. Private symbols in the library too? Counter is this is not
introducing a new problem or making an existing one worse. Disagreement on that assertion.

 Noticed that the atomic functions don’t necessarily have external symbols.

 Straw poll: Does WG14 want to adopt N2762 with the new footnote removed into C23?
 18/0/2. N2762 (fixes for potentially reserved identifiers) without the footnote goes into C23.

5.12 Ballman, The noreturn attribute (updates N2700) [N 2764]
 Editors will need the correct date value. There is a drafting note for that.

 A note that you could end up with a triple underscore prefixed Noreturn. That was acceptable.

 Straw poll: Does WG14 want to put N2764 into C23?
 13/0/4. Put N2764 into C23.

5.13 Ballman, Literal suffixes for bit-precise integers [N 2775]
 Straw poll: Does WG14 want to put N2775 into C23?
 12/2/4. Put N2775 into C23.

 Noticed that from MISRA’s point of view, it is good to have things more explicit and match up
exactly for arithmetic.

5.14 Ballman, Bit-precise I/O (replaces N2824) [N 2858]
 Withdrawn.

5.15 Gilding, The `constexpr` specifier [N 2851]
 Discussion on the index and array name and if it works in either order. Belief is that it works for
both forms.

 Concern about recursion without limits becoming an unbounded limit to determine whether it is
a constant or not. Ex. The null pointer case.

 Discussion on how this is different from unsequenced.

 Discussion on why this is not appropriate for an attribute.

 Discussion on splitting this up for objects vs functions.

 Discussion on structure vs structure or union. Wider issue in the standard that is not addressed
and may be inconsistent here.

 Discussion on how this is not for floating-point right now.

 Further concerns brought up about needing limits. Discussion on how C++ has a limit then does
runtime evaluation.

 Discussion about UB and how it is not necessarily decidable. Better wording needed for this
and contexts where a constexpr function is not a constant/compile time evaluated function.

 Concern about getting a VLA.

 Concern that the floating-point TS part 5 has pragmas that can change the environment in a
block that may cause it to be runtime based.

 Straw poll: Does WG14 want the constexpr feature for objects for C23?
 11/4/8. WG14 wants the constexpr object features for C23.

 Straw poll: Does WG14 want the constexpr feature for member and array element access for
C23?
 5/6/12. No consensus to have constexpr member and array element access features for C23.

 Straw poll: Does WG14 want constexpr function calls for C23?
 6/9/7. No consensus to have constexpr function calls for C23.

 Straw poll: Does WG14 want constexpr along the lines of N2917 in a future version of C?
 16/1/7. WG14 wishes for something along the lines of N2917 in a future version of C.

 Further discussion about diagnosing UB. Some believe it is not that difficult, others disagree.

 Straw poll: Does WG14 want to make any UB in constexpr (in an evaluated part) a constraint
violation for C23?
 12/4/7. WG14 wishes to make any UB in constexpr (in an evaluated part) a constraint
violation for C23.

5.16 Gilding, Queryable pointer alignment [N 2852]
 N2918 is the new version.

 Discussion of implementation experience (Microsoft with the isaligned function) and how it is
expected to use secret platform knowledge to get the result and not tracking anything from the
specifier.

 Discussion about freestanding and what to do there (stdlib is not in freestanding, but this could
be added to 4#6).

 Straw poll: Does WG14 want something along the lines of alternative 1 in N2918 in C23?
 14/0/3. Direction in favor.

5.17 Gilding, Relax requirements for variadic parameter lists [N 2854]
 Updated to N2919.

 Concerns this would invalidate stack walking. Belief that compilers would add a built-in
function to handle that.

 Concerns about C++ compatibility. Decided to discuss this in the C/C++ study group meeting.
Belief from some that fixing the C hole introduced by the removal of features in C23 that will hit
users is more important than unlikely but potential C++ issues in this case.

 Straw poll: Does WG14 want to adopt something along the lines of N2919 for C23?
 13/0/4. Direction to go forward with this.

 (Scribe note: This is from a revisit on second week of the meeting)

 Statement that the liaison meeting did not go as well as hoped. No real objections though.

5.18 Gilding, Tail-call elimination [N 2855]
 Updated to N2920.

 Discussion on how the larger problem is lacking call-with-current-continuation in C. Back and
forth about using attributes. Counter is the point of this feature is to not make it ignorable and
lifetimes change.

 Discussion on how main should be disallowed from this. Intent to fix this.

 Discussion on void returns and user written code (vs machine generated) use of this feature.

 Concern about no C implementation experience. Counter is that it does ship via compilers
doing it as an optimization. Counter to that counter was no interface implementation experience.

 Concern about the current wording not saying just autos since other resources could continue to
be used. Intent to fix that.

 Minor point about fixing the second line with a comment in example 1 to remove the “+ 1”.

 Discussion about how this would not work on some ABIs. Intent to make an exception to allow
not doing this feature if not possible. Belief that the reason this was not done before was because
of the ABI issues for both C and C++.

 Straw poll: Does WG14 want something along the lines of N2920 in C23?
 8/7/8. No consensus to put mandatory tail calls into C23.

5.19 Krause, @ and $ in source and execution character set [N 2701]
 Specifically, not part of the basic character set.

 No user complaints, but belief people expect it to work, and it does so a lot of implementation
experience.

 Straw poll: Does WG14 want to add @ and $ to the source and execution character sets without
requiring them to be single bytes?
 10/3/7. Add @ and $ to the source and execution character sets in C23 as per N2701.

 Straw poll: Does WG14 want to add ` to the source and execution character sets without
requiring it to be single byte?
 6/3/10. Add ` to the source and execution character sets in C23 as per N2701.

 Straw poll: Does WG14 want to add @, $, and ` to the source and execution character sets
requiring them to be single bytes?
 11/4/4. Add @, $ and ` to the source and execution character sets as single bytes in C23 as per
N2701.

5.20 Krause, No function declarators without prototypes [N 2841]
 Discussion on how some code could break and would now require a cast to make the function
pointer work legally.

 Some discussion of configure scripts that use this feature so removing it would affect them.
Also known cases of polymorphic function lists and function dispatch tables. This would break
all that code.

 Straw poll: Does WG14 want to put N2841 in C23 (with editorial changes)?
 19/3/2. Put N2841 (remove function declarators without prototypes) into C23.

5.21 Gustedt, Only reserve names of optional functions if necessary v2 [N 2860]
 Concerns about platforms that do not have weak symbols or split C libraries. Also concerns
about other languages using the C library now needing to know about adding in other libraries
without the programmer being aware.

 Discussion about the 3.6-3.8 changes. Needed due to block scope declarations.

 Issues with incompatible types being used with user code with select libraries that fails when
ported to places with a single C library.

 Discussion on how this is not an issue in practice and no user complaints for it.

 Straw poll: Does WG14 want the changes 3.1-3.5 as given in N2860 into C23?
 4/3/12. No consensus to put any part of N2860 into C23.

5.22 Gustedt, Make call_once mandatory [N 2840]
 Discussion about having this for freestanding. Some for, more against.

 Straw poll: Does WG14 want N2840 (call_once) into C23?
 10/0/8. Put N2840 (call_once) into C23.

5.23 Keywords and related topics (2 hours)
5.23.1 Gustedt, Revise spelling of keywords v6 [N 2884]
 Split up the paper to discuss thread_local separately due to N2815 concerns.

 Discussion about making empty headers obsolete. General sentiment to not have them removed
since people want to write code that works for various standard versions.

 Belief from some that a lot of code will break. Especially for the true/false upcoming paper.

 Straw poll: Does WG14 want to make stdalign.h obsolescent in C23?
 1/7/12. No consensus to make stdalign.h obsolete in C23.

 Straw poll: Does WG14 want something along the lines of Changes 1-5, 6 (removing the word
"obsolescent"), 8 and 9 from N2884 into C23?
 14/2/2. Clear direction for keywords to be added for the _Capital forms as in N2884.

 (Scribe note: Back to this paper after discussing N2922 to shift to discuss thread_local)

 Summary of the C++ liaison meeting discussing the thread_local change was given. Essentially
no consensus between the committees but C++ did want _Thread_local to stay. In the follow up
discussion, C++ was looking to another solution like ‘extern “C”’

 (Scribe note: Chat showed the vote as 4/1/5 for WG21 wanting to keep the header to get
thread_local).

 Straw poll: Does WG14 want something along the lines of N2884 changes 10 and 11
(thread_local as a keyword) for C23?
 9/4/6. Generally in favor of making thread_local a keyword.

5.23.2 Gustedt, Make false and true first-class language features v6 [N 2885]
 Updated to N2922.

 Discussion about whether bool could be wider like unsigned int. Speculation DSP’s may have
that.

 Same issues with regards to making headers obsolete were brought up.

 Issues with changing non-zero value for true were brought up but countered with the authors
assertion this doesn’t remove the possibility, just leaves it as UB and when stored it has to be 1.

 Straw poll: Does WG14 want to mark <stdbool.h> as an obsolescent header as in N2922 for
C23?
 5/7/6. No consensus to make stdbool.h obsolescent as per N2922.

 Straw poll: Does WG14 want something along the lines of N2922 ('true' and 'false' as
keywords) with changes 1-3,5-14,16 in C23 while removing the obsolescence of stdbool.h?
 14/3/2. Sentiment to have changes 1-3,5-14,16 in C23 while removing the obsolescence of
stdbool.h in N2922 in C23.

5.23.3 Gustedt, Add annotations for unreachable control flow v2 [N 2826] (1 hour)
 Discussion on the naming of the feature and concerns it may invade user namespace. Author
responded with no real collisions when searching common code bases.

 Large discussion on C++ and their proposals of unreachable and assume. Some belief they are
not competing, some statements that assume is a superset of unreachable. Proposal was for a
targeted and easy to explain feature.

 Discussion about making it a regular function. Library vs language (compiler) views and
purposes. Also discussion about making the symbol not specified if it actually exists to allow
both cases. Concerns about trying to take the address of it were brought up in that case. Some
want that, some don’t.

 Discussion about explicitly saying UB vs implicit UB (via violating a “shall”). Some people
uneasy about bringing in (more) UB. Author says this is to make unintentional UB explicit so not
really adding more, and it is to help. Statement that people who don’t want this extra explicit UB
don’t have to use it.

 Discussion on the scope and limits of the ‘unreachable’. Does it apply up the flow chain to a
conditional? Author mentioned there is recommended practice to put it at the top of the path.
Statement that ‘assume’ would not have this problem. Author agreed since the expression would
be in the right place.

 Discussion about allowing this for freestanding as well.

 Straw poll: Does WG14 prefer the syntax variant over the macro variant of unreachable as in
N2826 in C23?
 3/12/5. WG14 does not prefer the syntax variant for unreachable as in N2826.

 Straw poll: Does WG14 prefer header stddef.h for unreachable as in N2826 in C23?
 11/2/7. WG14 prefers stddef.h for unreachable (N2826) in C23.

 Straw poll: Does WG14 want to integrate the macro unreachable feature as described by
changes 5-6 in N2826 in stddef.h into C23?
 13/2/6. Put the macro version of unreachable as per N2826 in stddef.h in C23.

5.24 Gustedt, Add new optional time bases v4 [N 2647]
 Plan on updating the text “execution platform” to “execution environment”.

 Discussion about effects of external events. Statement that POSIX says external events can
modify the monotonic clock. Author states that was not their understanding. Further discussion
about using the POSIX specification which uses different terms (like “real time”) than what is in
the C standard and references “clock_set_time” which does not exist for C.

 Straw poll: Does WG14 want something along the lines of TIME_MONOTONIC as in N2647
in C23?
 11/0/11. WG14 wants something like TIME_MONOTONIC as in N2647 in C23.

 Straw poll: Does WG14 want something along the lines of TIME{_THREAD}_ACTIVE as in
N2647 in C23?
 11/0/10. WG14 wants something like TIME{_THREAD}_ACTIVE as in N2647 in C23.

5.25 Gustedt, Properly define blocks as part of the grammar v2 [N 2818]
 Large discussion on how this draft of the paper refers to a previous draft of the standard and not
the latest one. Resolved by having homework to update the paper to refer to the latest C standard
draft.

 Discussion about labeled-statement being special or intended to be replaced by one of the
blocks. Intent and text in the paper keeps it as is.

 Reflector discussion on what happens with unlabeled-statement.

 Straw poll: Does WG14 want something along the lines of N2818 (rebased onto the current
working draft) into C23?
 14/0/7. WG14 wants something like N2818 (blocks definition in the grammar) rebased on the
latest draft of C23 for C23.

 (Scribe note: This part is post homework completion)

 Straw poll: Does WG14 want N2818 (rebased onto the current working draft) into C23?
 18/0/1. Put N2818 (rebased onto the current working draft) into C23.

 (Scribe note: The paper that was looked at last for the vote was later given paper number
N2937)

5.26 Gustedt, Disambiguate the storage class of some compound literals [N 2819]
 Straw poll: Does WG14 want N2819 into C23?
 17/0/4. Put N2819 (lifetime of compound literals) into C23.

5.27 Gustedt, Unsequenced functions v4 [N 2887] (1 hour)
 Discussion on intent of compilers to check that these properties actually exist in the code. There
is recommended practice to diagnose incorrectly applied properties. Belief a static analyzer can
find instances of violation. Discussion of how the main use case is where it can’t be checked by
compilers (otherwise they would not need the property attributes).

 Concern about applying this to function types. Discussion back and forth on that. WG14 wanted
consideration for it last time, but concerns no implementations do type attributes for these and
that it’s hard for it in Clang. Discussion about only making the type attribute idea only apply to
these attributes (properties). Discussion on how GCC’s attribute placements are prior art and the
problems that come from them, along with the lack of documentation for them. Discussion on
separating out the type support and how it is hard to do given how integrated it is.

 Discussion on how these properties need access to all the source (all called functions down the
chain) to be verified.

 Discussion on how putting the property on the declaration, it applies to those uses. On the
definition and it applies to all calls to it.

 Discussion on how adding these in will cause it to be banned in some environments like
MISRA. Counter is that these attributes are optional, so they don’t need to be used in those
environments. Should not hold up use in other environments.

 Issues about headers getting out of sync from implementations causing problems. Comment
that GCC has analyzers that can detect the absence of these properties but not the converse.

 Straw poll: Does WG14 want other syntactic positions of the attributes in N2887 beyond the
current standard type attribute’s locations in C23?
 1/14/7. No desire to have attributes in N2887 (unsequenced functions) in positions beyond
where type attributes are now in the C standard.

 Straw poll: Does WG14 want composition of attributes as in N2887 (unsequenced functions) as
a general rule?
 12/4/5. WG14 wants composition of attributes as in N2887 (unsequenced functions) as a
generally applicable rule for attributes.

 Discussion on bringing this to the C++ liaison group. Agreement to do so.

 Straw poll: Does WG14 want something along the lines of [[unsequenced]] as in N2887
(unsequenced functions) in C23?
 10/2/10. WG14 wants something along the lines of [[unsequenced]] as in N2887 (unsequenced
functions) in C23.

 Straw poll: Does WG14 want something along the lines of [[reproducible]] as in N2887
(unsequenced functions) in C23?
 10/3/9. WG14 wants something along the lines of [[reproducible]] as in N2887 (unsequenced
functions) in C23.

 Straw poll: Does WG14 want something along the lines of the [[stateless, effectless,
independent, idempotent]] attributes as in N2887 (unsequenced functions) in C23?
 5/5/13. No clear consensus to have [[stateless, effectless, independent, idempotent]] attributes
as in N2887 (unsequenced functions) in C23.

5.28 Honermann, char8_t: A type for UTF-8 characters and strings (Revision 1) [N 2653]
 Concerns about warnings being emitted when using string and character functions with this due
to type issues. Counter is that it depends on whether char is signed or unsigned. There is a
tradeoff for portability. In practice people who turn on -Werror (or the equivalent) then do a
number of exceptions to those to not diagnose certain cases.

 Discussion of how the examples are not meant to be gold standard code. Just examples.

 Discussion on the need for efficient functions (since the restartable ones are not).

 Straw poll: Does WG14 N2653 (UTF-8) in C23?
 18/0/2. Put N2653 (char8_t) into C23.

Thursday, 17 February
5.29 Sommerlad, Make assert() macro user friendly for C and C++ v2 [N 2829]
 Discussion of how the current wording says “scalar expression” so this could be seen as a bug
fix.

 Concerns about making this a special macro definition vs all the other macros in the standard.
Makes it inconsistent. Counters included incremental improvement or that this was the only
macro that is a problem (author mentioned specifically for C++).

 Straw poll: Put N2829 (assert macro change) into C23?
 13/3/4. Put N2829 (assert macro change) into C23.

5.30 Meneide, Modern Bit Utilities r0 [N 2827]
 Updated to N2903.

 In section 3.5, the #if inconsistent parenthesis will be fixed.

 Discussion on CHAR_BIT == 8 being the only case allowed for these functions. Arguments
both ways. DSP’s mentioned for cases where it is not true. Author willing to go whichever way
the committee wants.

 Long discussion on the rotate functions. Why have both left and right? Why not just one with a
negative argument to indicate the other direction? Some want three sets: left, right, and direction
given by sign. Some want only one set (direction by sign). C++ preference discussed as well.

 Discussion on the size parameter being last vs first. Charter principle given as the reason. Back
and forth on this topic. Some want size first, others want size after.

 Discussion on type generic macros (as in a reflector message from Joseph) used here. Rotate
amount type and base item type being rotated can be a different operation. Author stated the type
generic macros were added for extended integer types without concrete function names. Issues
with using the results of the type generic functions in something causing UB (Ex. printf).

 Discussion on making the count parameter be an unsigned type.

 Discussion on using size_t for the return type for everything including bit-precise integer types.

 (Scribe note: Continued on Friday)

 Discussion about differences between C++. Author will add rationale stating C wanted
unsigned types for counts while C++ wants int’s.

 Noticed that the introduction parts there is talk of the first leading zero or one functions, but not
in the normative wording. Author will add it.

 Straw poll: Does WG14 want the memreverse and endian load/store functions to only be
required if CHAR_BIT == 8 similar to N2903?
 6/5/8. No clear direction for memreverse and endian load/store to have CHAR_BIT = 8.

 Discussion about memreverse working on 8 bits vs (or in addition to) plain memreverse.
Implementation practice was 8 bits only so that was what was done. Names reflect that allowing
extensions to do something else with different names.

 Straw poll: Does WG14 want new signed-count rotate functions in addition to what is in
N2903?
 8/6/6. Weak sentiment for new signed-count rotate functions (bit utilities) into C23.

 Discussion on how 2’s complement does the right things for rotate. Author will just do the
signed count rotate functions. Also, the author will check with Jens in C++ to see why C++
didn’t know this or choose this.

 Straw poll: Does WG14 want something along the lines of N2903 (bit utilities) into C23?
 19/2/1. WG14 wants something along the lines of N2903 (bit utilities) into C23.

 Discussion about discussing the prefix names at some point and more generally, naming new
identifiers in the standard.

 Action item: JeanHeyd: I can write a policy paper or something for naming of new identifiers in
the standard.

 Discussion about the floating-point names not being reserved. Counter is that they follow
established math.h function name schemes and there is no issue.

5.31 Meneide, Unicode Sequences More Than 21 Bits are a Constraint Violation r0 [N
2828]
 Straw poll: Put N2828 into C23?
 18/0/2. Put N2828 (Unicode sequence > 21 bits) into C23.

5.32 Meneide, Not-So-Magic: typeof(), revision 3 [N 2724]
 Discussion about another place that needed a change (VLA->VM).

 Discussion about how the implementation(s) that did not keep all qualifiers considered it a bug
to do so.

 (Scribe note: Revisited paper after homework)
 Updated to N2927.

 Discussion on how typeof is similar to sizeof and alignof with regards to evaluation.

 2022/02/03:
 Straw poll: Does WG14 want to put N2927 into C23?
 10/0/6. Put N2927 into C23.

5.33 Meneide, Preprocessor embed, revision 4 [N 2725]
 Updated to N2898.

 Author mentioned they got a physical letter from a company that is Japanese and German based
asking me to put a blog post or something for this feature.

 Discussion about using attributes for the trailing limits (parameters). Countered by the fact they
cannot be ignorable. The term attribute was used as the grammar term.

 Discussion about the limit parameter needing to be non-negative. Also, addition of trailing
underscores to avoid macro expansion.

 Discussion about implementation experience. Concerns there are no shipping compilers with
this.

 Discussion sidetracked into the general issue about not following the charter as to having
features being added to C23 that are not in shipping compilers. This will be discussed in a future
meeting. For this feature, discussion about other vehicles like TS’s.

 Discussion about mixing binary with text. Arguments against included other tools are made for
that like objdump, while arguments for are requests for something like this, including C++.

 Discussion about doing the core embed first then add in the parameters later. Countered by user
experience asking for those parameters, otherwise the feature causes errors.

 Discussion about how compilers cannot do this right and need the feature.

 Discussion about how compiler implementers are less open to experimentation now.

 Straw poll: Does WG14 want the embed parameter specification as shown in N2898?
 12/2/8. WG14 wants the embed parameter specification as shown in N2898.

5.34 Meneide, Consistent, Warningless, and Intuitive Initialization with {} [N 2796]
 Updated to N2900.

 Discussion about future improvements as per some reflector messages. Specifically, 20045 (12
Aug 2021) and 20354 (3 Sep 2021).

 Straw poll: Put N2900 ({} initialization) without the optional changes into C23?
 17/0/3. Put N2900 ({} initialization) without the optional change into C23.

 Straw poll: Put something along the lines of N2900 optional change 0 into C23?
 0/10/10. No consensus to put N2900 optional change 0 into C23.

5.35 Uecker, Consistency of Parameters Declared as Arrays (updates N2779) [N 2906]
 Question if the following code (Scribe note: Copied from the chat) is a constraint violation.
Answer was no since the types are not compatible anymore.
 _Generic(foo,
 int (*)(double [3]) : 1,
 int (*)(double [4]) : 2,
 default : 3
);

 Discussion about having multiple ways of talking about things that are generally the same can
be confusing and error prone.

 Discussion about implementation experience being needed. Author mentioned it was
implemented in a local branch of GCC. Others mentioned MISRA rule 17.5 is related.

 Discussion about how strengthening the type system will cause problems, but those problems
are good to be detected. Counter was that changing the type system should require new syntax
and risks with reinterpreting existing syntax. Counter to that was that this feature is to help fix
existing code.

 Concern that change 2a will allow VLA typedef redeclaration now with different sizes. Author
did not intend that and will look into it.

 Straw poll: Does WG14 want something along the lines of N2906 in C23?
 13/1/5. WG14 wants something along the lines of N2906 (consistency of arrays as
parameters) in C23.

 Straw poll: Does WG14 want something along the lines of N2906's typedef redeclaration with
type compatibility in C23?
 12/1/7. WG14 wants something along the lines of N2906 (consistency of arrays as
parameters) typedef redeclaration with type compatibility in C23.

5.36 Uecker, Forward Declaration of Parameters [N 2780]
 Discussion about this being good for fixing existing interfaces, but not for new ones.

 Discussion about this having existing practice being good, though not very prevalent being
concerning. Also issues about it being broken with no complaints in the past in GCC.

 Discussion about using something like attributes and C++ compatibility. Counter for attributes
was that it doesn’t work for multidimensional VM types. C++ also doesn’t have VLA’s so
already an issue there.

 Discussion about how this fills a hole we introduced in C23. Most common complaint heard by
a member was taking away the ordering due to the K&R removal and having a fix for it would
really help the community. Without this, they will keep using K&R.

 Issues with wording to say something about composite types and what attributes appertain to.
Same for something needed to be said about the size expression being evaluated.

 Discussion about changing this so later parameters could be referred to in previous parameters.
Issues there with mutual dependencies and different scopes. Also, no implementation experience.
It can also break existing code. Index of parameters was also discussed as a way of referencing
them.

 Straw poll: Put something along the lines of N2780 into C23?
 8/7/6. No consensus to put something along the lines of N2780 into C23.

 Discussion of the C++ feature in progress regarding naming arguments (call side). Counter is
that feature does not solve this issue.

 Straw poll: Does WG14 want something to solve the forward declaration problem?
 13/4/5. Generally in favor of some solution to the forward declaration problem.

 Straw poll: Does WG14 want something like forward parsing to solve the forward declaration
problem?
 7/5/10.

5.37 Steenberg, break [N 2859]
 Discussion about numbered breaks being problematic. Discussion about labelled loops being
used in other languages and the applicability to C. Some support for that instead. Counter was
position of the label after the user code has the same issue as right now so might as well use goto
for that.

 Discussion for and against that this is clearer than goto.

 Discussion about the order of the stack for the statement. No preference for either order by the
author. Concerns users will want one order or another. Special case of continue being present
means there will be a syntax error if it is done in any other order.

 Various members support the fact that this is a problem in real code.

 Straw poll: Does WG14 want a new way to break out of multiple loops in a future C standard?
 10/6/7. Generally in favor of having a new way to break out of multiple loops.

5.38 Ojeda, #once (updates n2742) [N 2896]
 Discussion about how there is the ability for this to mean nothing, both for and against.

 Discussion about no support in C++ right now causing preprocessor divergence.

 Request to not require the directive to be first. Agreement by the author that the requirement
could be relaxed. Discussion on issues with this and how implementations would need to handle
cases where it is not first, especially if the preprocessor state is changed.

 Discussion about this being something new while the #define mechanism is known by
everyone.

 Discussion about having this treated as #error being odd. Preference to keep it as a constraint.

 Discussion about current methods to check if files are the same all have false negatives. These
problems cannot be fixed by users in their code. Putting it into the standard makes the problem
worse as it is now blessed. Counter is that the identifier form is good and covers that case.

 Discussion about how without in real world systems, without the ability to #ifdef the #once, it
won’t be used since there are always some compilers that support it first while others don’t, and
common code needs to deal with it.

 Straw poll: Does WG14 want something along the lines of #once (any form) like N2896 in
C23?
 9/8/6. No consensus to put #once (N2896) in C23.

6. Clarification Requests
The previous queue of clarification requests has been processed.

7. Other Business
The following papers will be deferred to future meetings unless there is time available at this
meeting.
7.1 Svoboda, Towards Supplemental Integer Safety [N 2792]
7.2 Douglas, C2x fopen("x") and fopen("a") v2 [N 2857]
7.3 Köppe, Comma omission and comma deletion [N 2856]
7.4 Bachmann, Make pointer type casting useful without negatively impacting performance -
updates n2484 [N 2658]

7.5 Gustedt, Remove `ATOMIC_VAR_INIT` v2 [N 2886]
 Started discussion but stopped quickly as the author was not ready to discuss the paper yet.

7.6 Gustedt, Require exact-width integer type interfaces v2 [N 2888]
7.7 Gustedt, Pointers and integer types [N 2889]
7.8 Ojeda, memset_explicit (updates n2682) [N 2897]
7.9 Uecker, Safer Flexible Array Members [N 2905]
7.10 Uecker, Wording Change for Variably-Modified Types [N 2907]
7.11 Uecker, C23 Atomics: Proposed Wording Changes (updates N2771) [N 2909]

Papers not intended for C23

7.12 Steenberg, Redefining Undefined Behavior [N 2769]

7.13 Gilding, The `void`-_which-binds_: typesafe parametric polymorphism [N 2853]

7.14: How to schedule after C23 (Item added to the agenda during the meeting)
 Question: Should we adopt a train schedule like WG21?

 Discussion about how we need to have something in flight at least every 4 years to avoid
disbandment. Frequency of the release discussed, with 3 or 4 years being most commonly
suggested. Matching C++’s schedule discussed. Experience there is they still get a lot of papers
come in near the ship date deadlines. Some users like rapid releases, others don’t. Issues of
instability.

 Discussion between bug fix releases and feature releases. Alternate or not? Belief that having a
bug fix release constrains proposals. Arguments both for and against. Belief maintenance is
needed and having it scheduled ensures it happens. Concern with maintenance releases include
being less productive and proposals dropping off.

 Discussion about inventions in C23 that were not implemented in C. Argument that this causes
a snowball effect of features being built on top of feature without any implementation experience
causing serious bugs in the standard and for users.

 (Scribe note: Picked up the discussion again on another day)

 Belief people like a fixed schedule but needs more discipline. Lack of polish is a risk. Also
letting things in before they are ready is a risk. Need to ensure features get in when they are
ready and not based on the standard release.

 Discussion about how people are still gradually adopting C99, implementations ignoring the
standard (Ex. atomics), people wanting new features are C++ users already and not C users.

 Further support for fixes and completion rather than new features. Discussion about what our
mission should be. Concerns if we get too close to C++, why is C there? Belief it is the small
semantic gap between the program and the machine.

 Discussion on how it is not practical to limit what proposals come in.

 (Scribe note: Picked up the discussion once more on another day)

 Discussion about not making an absolute focus for each release (bug fix vs new features). Just
have it as a focus (but not exclusive of everything else). Suggestion to have just bug fixes as
prioritized but features allowed for all releases. Mention that C++ does do the priority plans
without hard rules on what gets into a release.

 Further discussion about existing implementation support being needed.

 Discussion about how alternate releases allow ironing out issues between releases before things
pile up and how that would not be as big of an issue if the charter was followed regarding
implementation experience.

 Discussion about the size of the feature/specification not being important. It is how it interacts
with the rest of the language.

 Discussion about what the bug fixes are mattering. For example, the memory model.

7.15: N2931 (homework from CFP) updating N2849
 Straw poll: Put N2931 into C23?
 15/0/4. Put N2931 (type generic narrowing macros CFP) into C23

7.16: N2934 revised spelling of keywords (homework) updating N2850
 Straw poll: Put N2934 into C23?
 16/1/3. Put N2934 (revised spelling of keywords) into C23.

7.17: N2935 make false and true language features (homework)
 Straw poll: Put N2935 into C23?
 15/2/3. Put N2935 (make false and true language features) into C23.

8. Recommendations and Decisions reached
8.1 Review of Decisions Reached
 Put N2833 (new time functions) alternative 1 (with the typo of mktime->timegm in the returns
section fixed) into C23.
 Put N2836 (Unicode identifier syntax) in C23.
 Put N2810 (calloc wraparound) into C23 (modulo editorial corrections).
 Put N2797 (HAS_SUBNORM), the green text, in C23.
 Put N2754 (quantum exponent of NaN) into C23 (with "would be" changed to "is" in the
footnote).
 Put N2844 (remove default argument promotion for _FloatN) into C23.
 Put N2847 (numerically equivalent for quantum exponents) into C23.
 Put N2879 (floating point model categorization) into C23.
 Put N2880 (overflow/underflow update for double-double) into C23.
 Put N2881 (normal and subnormal classification) into C23.
 Put N2882 (max exponent macro update for double-double) into C23.
 Put N2762 (fixes for potentially reserved identifiers) without the footnote into C23.
 Put N2764 (noreturn attribute) into C23.
 Put N2775 (bit-precise literal suffixes) into C23.
 Put N2927 (typeof) into C23.
 Add @, $ and ` to the source and execution character sets as single bytes in C23 as per N2701.
 Put N2841 (remove function declarators without prototypes) into C23.
 Put N2840 (call_once) into C23.
 Put the macro version of unreachable as per N2826 in stddef.h into C23.

 Put N2818 (blocks as grammar, rebased onto the current working draft [N2937]) into C23.
 Put N2819 (lifetime of compound literals) into C23.
 Put N2653 (char8_t) into C23.
 Put N2829 (assert macro change) into C23.
 Put N2828 (Unicode sequence > 21 bits) into C23.
 Put N2900 ({} initialization) without the optional change into C23.
 Put N2931 (type generic narrowing macros CFP) into C23
 Put N2934 (revised spelling of keywords) into C23.
 Put N2935 (make false and true language features) into C23.

 WG14 to decide what to do about the Strasbourg meeting in the May or July 2022 meeting.

 WG14 wishes to see TS6010 (memory object model) working draft (N2676 or something
similar) in some future version of the standard.
 WG14 sees TS6010 (memory object model) working draft (N2676 or something similar) as
important for C23.
 WG14 is willing to move TS6010 (memory object model) to DTS ballot as it stands now if
requested.
 WG14 wishes to address thread specific runtime constraint handling in Annex K.
 WG14 wishes for something along the lines of N2923 for auto objects in C23.
 WG14 wants lambdas for a future C standard.
 WG14 wants wide pointers in a future C standard.
 WG14 wishes for something along the lines of alternative 1 in N2918 (query pointer alignment)
in C23.
 WG14 wishes for something along the lines of N2919 (relax varargs leading argument
requirement) for C23.
 WG14 wishes for a new way to break out of multiple loops (N2859) in a future C standard.
 WG14 wishes for the constexpr object features for C23.
 WG14 wishes for something along the lines of N2917 (constexpr) in a future version of C.
 WG14 wishes to make any UB in constexpr (in an evaluated part) a constraint violation for
C23.
 WG14 prefers stddef.h for unreachable (N2826) in C23.
 WG14 wants something like TIME_MONOTONIC as in N2647 in C23.
 WG14 wants something like TIME{_THREAD}_ACTIVE as in N2647 in C23.
 WG14 wants composition of attributes as in N2887 (unsequenced functions) as a generally
applicable rule for attributes.
 WG14 wants something along the lines of [[unsequenced]] as in N2887 (unsequenced
functions) in C23.
 WG14 wants something along the lines of [[reproducible]] as in N2887 (unsequenced
functions) in C23.
 WG14 is generally in favor of some solution to the forward declaration problem.
 WG14 has weak sentiment to have forward parsing to solve the forward declaration problem.
(Scribe's interpretation of the vote)
 WG14 wants something along the lines of N2906 (consistency of arrays as parameters) in C23.
 WG14 wants something along the lines of N2906 (consistency of arrays as parameters) typedef
redeclaration with type compatibility in C23.

 WG14 has weak sentiment for new signed-count rotate functions (bit utilities) into C23.
 WG14 wants something along the lines of N2903 (bit utilities) into C23.
 WG14 wants the embed parameter specification as shown in N2898.

 No consensus to adopt N2834 (deprecate %n) with the 'obsolescent' alternative into C23 with
some changes.
 No consensus to put proposed wording 2 given in N2809 (Annex K repairs) into C23.
 No consensus to put proposed wording 1 given in N2809 (Annex K repairs) into C23.
 No consensus to put something along the lines of N2923 (updates N2891, auto) into C23.
 No consensus for basic lambdas with some return type invention.
 No consensus for basic lambdas with trailing return type.
 No consensus to put wide pointers (N2862) into C23.
 No consensus to put #once (N2896) in C23.
 No consensus to have constexpr member and array element access features for C23.
 No consensus to have constexpr function calls for C23.
 No consensus to put mandatory tail calls (N2920) into C23.
 No consensus reserve names of optional functions (N2860) into C23.
 No consensus to make stdalign.h obsolete (N2884) in C23.
 No consensus to make stdbool.h obsolescent as per N2922.
 No consensus to have attributes in N2887 (unsequenced functions) in positions beyond where
type attributes are now in the C standard.
 No clear consensus to have [[stateless, effectless, independent, idempotent]] attributes as in
N2887 (unsequenced functions) in C23.
 No consensus for the syntax variant for unreachable as in N2826.
 No consensus to initialize whole union then largest member for {} (N2900) into C23.
 No consensus to put something along the lines of forward declaration of parameters (N2780)
into C23.
 No consensus for memreverse and endian load/store to have CHAR_BIT = 8.

8.2 Review of Action Items
 Carry over action items:
 Aaron Ballman: Add N2761 to the papers-of-interest list. - Open - Stricken
 Ballman: That is not a paper we have voted into C23. No content for the paper. The meeting
minutes don't list it.
 Keaton: That paper is in error. There probably was a paper. I need to look for it.

 New action items:
 Keaton: Look into meeting in May 16-20 and July 18-22, 2022, virtually. - Done
 CFP: Look into _Float32x and _Decimal32x narrowing functions for N2849 for next week. -
Done
 Jens: Update N2884 for this meeting. - Done
 Jens: Update N2885 for this meeting. - Done
 Jens: Update N2818 to the latest C standard draft for next meeting. - Done
 JeanHeyd: Write a policy paper for naming of newly proposed identifiers for the standard.
 Keaton: Look into what paper to add to the papers-of-interest list.
 Keaton: Add C charter discussion for the next meeting.

9. PL22.11 Business (Friday, 18 February)
9.1 Approval of Previous PL22.11 Minutes [pl22.11-2021-00012] (PL22.11 motion)
 Motion: Aaron Ballman (Intel), Barry Hedquist (Perennial)
9.2 Identification of PL22.11 Voting Members
9.2.1 Members Attaining initial Voting Rights at this Meeting
 None.
9.2.2 Members who regained voting rights
 None.
9.3 PL22.11 Voting Members in Jeopardy
9.3.1 Members in jeopardy due to failure to vote on Letter Ballots
 Cisco (since 2020).
9.3.2 Members in jeopardy due to failure to attend Meetings
9.3.2.1 Members in jeopardy who retained voting rights by attending this meeting
 None.
9.3.2.2 Members in jeopardy who lost voting rights for failure to attend this meeting
 None.
9.4 PL22.11 Non-voting Members
9.4.1 Prospective PL22.11 Members Attending their First Meeting
 None.
9.4.2 Advisory members who are attending this meeting
 None.
9.5 Other Business
9.5.1 PL22.11 Meeting Votes

PL22.11 Action Item #0050

This action item is a request for members to review the committee scope. We are asking all the
committees to conduct this review to ensure the accuracy and completeness of the scope
statements. This review may lead to edits, refinements or improvements to the existing scope of
work. As a reminder, the scope of the committee is publicly available from www.INCITS.org
and also included in the marketing slide decks prepared last year. It is important that we have the
best descriptions available when engaging interested parties to highlight and promote the
important work that is done within the committees.

The current scope for INCITS/PL22.11 can be reviewed from
https://www.incits.org/committees/pl22.11.

That scope says:

Task Group PL22.11 (formerly J11), Programming Language C is responsible for the technical
development of the standard for C programming language. The goal, which J11 believes had
been successfully achieved, is to make it possible for C program to be portable among operating
systems and across a wide variety of computers. Extensive work has been done to make this
standard acceptable in both the National and International arenas.

PL22.16, C++ has the following item in its scope that says

"High level of compatibility with the ISO C standard and suitability for the International
community are two associated goals established by PL22.16 that will help to extend the useful
life of this standard and increase the audience of its users."

The proposed addition to the PL22.11 Scope is to similar words to the C Committee's scope
without turning C into C++:

MOTION: At the end of PL22.11 existing scope, add:

An appropriate level of compatibility with the ISO C++ standard and suitability for the
International community are two associated goals established by PL22.11 that will help to extend
the useful life of this standard and increase the audience of its users.

QUESTION: Are you in favor of adding the above scope to the existing PL22.11 statement of
its scope.

 Discussion about “appropriate” not being a good word. Arguments for include C having the
choice what to support, and mentioning “high level” implies we are trying to be C++. Arguments
against include the fact that C++ says “high level” and we should reciprocate.

Amendment: "A high level" as the first three words to the motion.
 Moved by: David Keaton (Keaton Consulting), Barry Hedquist (Perennial)
 No objections.
 Vote (one per member organization):
 For: 9
 Against: 2
 Abstain: 0
 Motion passes.

10. Thanks to Host
10.1 Thanks and apologies to Intel, the originally intended host
10.2 Thanks to ISO for supplying Zoom capabilities
11. Adjournment (PL22.11 motion)
 Motion: Robert Seacord (NCC), Clive Pygott (LDRA)
 Meeting adjourned.

