
NWIP Outline Draft
WG14 2976

Title: TS proposal: C - Extensions to support pure functions
Author, affiliation: Alex Gilding, Perforce
Date: 2022-04-15
Proposal category: Technical Specification
Target audience: Compiler/tooling developers

Abstract
This Technical Specification aims to lay out common practice guidelines for features related to
extended pure function call support.

Two main feature areas are covered: extended constant expressions, and proper tail calls. These
extension features are of interest to application developers who want to take advantage of language-
level abstractions beyond the usual restrictions of translation and execution phases. In both cases
the concept of a function call is generalized to allow users to write readable code that uses C
features in an intuitive way, in places where it would not be accessible in the core language.

The first feature area is of relevance to the interop between C and C++, as it proposes to expand the
overlap between these two languages and thus improve header compatibility and the usefulness of
header definitions. This feature area is largely based on C feature proposal document N2917.

The second feature area is also of special relevance to the wider language community, by aiming to
improve interop between C and other languages already having a more generalized concept of
function calls that allows for in-place replacement. This feature area is largely based on C feature
proposal document N2920.

In both cases the intent is to codify common and unified practice.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2920.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2917.pdf

1. Scope
This Technical Specification specifies a series of extensions of the programming language C,
specified by the international standard ISO/IEC 9899:2023.

Each clause in this Technical Specification deals with a specific topic. The first subclauses of
clauses 4 and 5 contain a technical description of the features of the topic. These subclauses provide
an overview but do not contain all the fine details. The last subclause of each clause contains the
editorial changes to the standard necessary to fully specify the topic in the standard, and thereby
provides a complete definition.

Additional explanation and rationale are provided in the Annexes.

2. References
The following referenced documents are indispensable for the application of this document. For
dated references, only the edition cited applies. For undated references, the latest edition of the
referenced document (including any amendments) applies.

ISO/IEC 9899:2023 – Programming languages – C

C++11 (draft n3337)

C++20 (draft n4868)

R7RS Scheme

n2917 The constexpr specifier, v2

n2920 Tail-call elimination, v2

n2954 The constexpr specifier for object definitions

3. Conformance
This Technical Specification presents in two separate clauses specifications for two, in principle
independent, sets of functionality (clause 4: extended constant expressions, clause 5: tail-call
elimination). As this is a Technical Specification there are no conformance requirements and
implementers are free to select those specifications that they need. However, if functionality is
implemented from one of the clauses, implementers are strongly encouraged to implement that
clause in full, and not just a part of it.

The purpose of this Specification being to codify common practice, implementers are strongly
encouraged to document any deviations or omissions in order to establish which practices are of
more and less interest to the target audience.

If, at a later stage, a decision is taken to incorporate some or all of the text of this Technical
Specification into the C standard, then at that moment the conformance issues with respect to (parts
of) this text need to be addressed (conformance with respect to freestanding implementations etc.).

https://small.r7rs.org/attachment/r7rs.pdf
http://open-std.org/jtc1/sc22/wg21/docs/papers/2020/n4868.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3337.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2920.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2954.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2917.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2731.pdf

4. Extended Constant Expressions

Introduction

C requires that objects with static storage duration are only initialized with constant expressions.
The rules for which kinds of expression may appear as constant expressions are quite restrictive and
mostly limit users to using macro names for abstraction of values or operations. Users are also
limited to testing their assertions about value behaviour at runtime because static_assert is

similarly limited in the kinds of expressions it can evaluate at compile-time.

This Specification adds a new (old) specifier to C, constexpr, as introduced to C++ in C++11.

This specifier is added separately to functions separately from its addition to objects, and
intentionally keeps the functionality minimal to avoid undue burden on lightweight
implementations.

This feature was previously discussed during the January 2022 meeting of WG14, and the meeting
established some starting directions for the feature set:

• WG14 would like the constexpr specifier to be added to C23, for objects only;

• WG14 would like UB to be prohibited from constant expressions in general;

• there was not consensus to add any additional operators (element access) to the set that can
be used for constant expressions, for C23;

• there was not consensus to add the constexpr specifier for functions, to C23;

• there was strong consensus to add the full constexpr feature for objects, extended

operators (element access), and function definitions, in some future version of C after C23.

This Specification currently works from the assumption that the core C language as specified in
C23 will include a constexpr keyword and that this keyword can be applied as a storage-class

specifier to object declarations. (This may change before finalization of C23.)

The rationale for, and impact of, the inclusion of constexpr functions as well as constexpr

objects is explained and discussed in WG14 document n2917.

4.1 Overview of extended constant expressions and definitions

For the purpose of this Specification, a constexpr object is any object defined with the

constexpr specifier as part of its declaration specifiers. The value of a constexpr object may be

accessed as part of any kind of C constant expression (excluding in the preprocessor), assuming it
has appropriate type. constexpr objects are tentatively a feature of C23 and can be used in

expressions in the core language in a similar fashion (only) to the value of enumeration constants.

For the purpose of this Specification, a constexpr function is any function defined with the

constexpr function specifier. The constexpr keyword used to define constexpr objects is

reused, and given a second role as a function specifier. A constexpr function definition is subject

to stricter constraints than other function definitions, but is not subject to the constraint that forbids
them from being called from constant expressions.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2917.pdf

For the purpose of this Specification, a constant expression is one of: an integer constant
expression; an arithmetic constant expression; an address constant expression; a structure constant
expression; a null pointer constant; or any other form of constant expression accepted by the
implementation. Any form of constant expression may contain accesses to the value of any
constexpr object, member accesses to the elements of structure constant expressions, or calls to

constexpr functions with arguments that are themselves constant expressions.

A constant expression does not contain any diagnosable undefined behaviour. An expression
containing undefined behaviour in an evaluated branch is not a constant expression for any
purposes.

This Specification therefore generalizes C constant expressions of all kinds, to also include element
access to structure and array objects defined with the constexpr storage class, and to include

calls to functions defined with the constexpr function specifier.

4.1.1 constexpr aggregate element access

C23 admits objects of any type to be constexpr objects, but does not change the expression rules

to necessarily make these useful outside of initialization contexts.

For the purpose of this specification, all kinds of constant expression may also make use of the -
element access operators, . and []. Constant expressions may not make use of the * or ->

operators to access the value of an object because the identity and therefore storage class of the
object designated by such an expression is not necessarily traceable.

The . operator makes constexpr compound literals potentially useful. Since it requires an lvalue, it

represents a fixed filtering of a structure constant value to the value of one of its elements. The .

operator may only be used with a union operand if it accesses the single member that was
initialized; otherwise the expression is not a valid constant expression. An implementation must be
able to identify this misuse, and diagnose the result as not being valid as a constant expression.

The [] operator may be used with the added restriction that the array operand must be the name of

a defined constexpr object with array type. This is the sole exception to the rule that otherwise
prohibits the use of * to access the value of an object ([] is otherwise defined in terms of *). The

index operand must be an integer constant expression and its value must be within the fixed
dimension of the array. Therefore, the [] operator must have either a (possibly-parenthesized)

identifier as the leading postfix-expression, or an element access expression itself designating an
array element of either a structure object or a containing array, rather than a generalized address
constant expression of pointer type.

This is symmetrical with the relaxation on the use of the function call operator with a function name
in the postfix position.

4.1.2 constexpr functions

A function declared with the constexpr function specifier is subject to stricter restrictions than

other C functions, taken from the quite restrictive set of rules used by C++11 (ignoring those rules
that are not applicable to C). The function body may only contain:

• null statements (plain semicolons)
• static_assert declarations

• typedef declarations

...in addition to exactly one return statement which evaluates a constant-expression according to
these modified rules. The function must return a non-void value. The function may invoke itself

recursively in a conditionally-evaluated expression branch.

A constexpr function is implicitly also an inline function, allowing it to be defined in a

header. All other considerations for the use of the C inline specifier apply in the same way to C

constexpr functions (C++’s slightly different inline rules do not apply).

A constexpr function, called with arguments that are all themselves constant expressions, is a

constant expression. A constexpr function may also be called with non-constant arguments, and

in that case behaves like any other function call. The address of a constexpr function may be

taken and used as any other function pointer can; this does not preserve the constexpr specifier,

which is not part of the function’s type (in the same way that inline is not part of the type).

All kinds of constant expression may therefore make use of the function call operator in addition to
the other operators permitted by C23 in a constant context, with the added restriction that the call
must be to the name of a defined constexpr function. Function pointers cannot be invoked in a

constant expression because the constexpr specifier is not preserved as part of a called function’s
type. Therefore, the function call operator must have a (possibly-parenthesized) identifier as the
leading postfix-expression, rather than a generalized address constant expression of pointer-to-
function type.

This is symmetrical with the relaxation on the use of the [] operator with an array name in the

postfix position.

Further discussion of the rationale for adopting the C++11 ruleset exactly (as far as relevant to C)
can be found in WG14 document n2917.

Of note is that this ruleset does not require any interpreter semantics to be added to the C translator,
as all value uses are pure and all function calls can be expanded essentially like macros. Any
implementation choosing to provide more feature-ful constexpr functions, as found in C++14 or

later (mutable local state, loops, etc.), is therefore strongly encouraged to also provide the user with
portability warnings.

4.2 Detailed changes to ISO/IEC 9899:2023

This section currently assumes constexpr objects and the constexpr storage class specifier

are a featured part of C23. Changes are relative to Working Draft n2731, but assume adoption of
WG14 document n2954.

The modifications are ordered according to the clauses of ISO/IEC 9899:2023 to which they refer.
If a clause of ISO/IEC 9899:2023 is not mentioned, no changes to that clause are needed. New
clauses are indicated with (NEW CLAUSE), however resulting changes in the existing numbering
are not indicated; the clause number mm.nna of new clause indicates that this clause follows
immediately clause mm.nn at the same level.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2917.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2731.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2954.htm

Add two new bulleted entries to 5.2.4.1 “Translation limits”, with values matching those in C++20:

- 512 nested constexpr function invocations
- 1048576 nested constant expressions within the evaluation of a single constant
expression

Modify 6.5.2, “Postfix operators” (NOTE subject to removal if n2955 is accepted):

Paragraph 1, add the constexpr specifier to compound literal syntax:

postfix-expression:
primary-expression
postfix-expression [expression]
postfix-expression (argument-expression-list opt)
postfix-expression . identifier
postfix-expression -> identifier
postfix-expression ++
postfix-expression --
(compound-name) { initializer-list }
(compound-name) { initializer-list , }

compound-name:
constexpr type-name
type-name

Modify 6.5.2.5, “Compound literals” (NOTE subject to removal if n2955 is accepted):

Modify paragraph 2:

If the type name is prefixed by the constexpr specifier, all the expressions in the
initializer list shall be constant expressions.

Modify paragraph 3:

A postfix expression that consists of a parenthesized type name, optionally prefixed by
constexpr, followed by a brace-enclosed list of initializers is a compound literal.

Modify 6.3.2.3 “Pointers”:

Modify paragraph 3:

An integer constant expression with the value 0, or such an expression cast to type
void *, or such an expression returned from a constexpr function, is called a null
pointer constant.

Add a forward reference:

equality operators (6.5.9), function specifiers (6.7.4), integer types capable of holding
object pointers (7.20.1.4)

Modify 6.6 "Constant expressions":

Paragraph 3, relax the constraint against function calls:

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2955.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2955.htm

Constant expressions shall not contain assignment, increment, decrement, or comma
operators, except when they are contained within a subexpression that is not evaluated.
If a function-call operator appears in an evaluated part of a constant expression,
the postfix-expression designating the function to call shall consist only of the
(possibly-parenthesized) identifier of a function declared with the constexpr
function specifier. The function to call shall be defined in the translation unit
before the evaluation of the outermost constant-expression containing the
(possibly-nested) call.

Add a new paragraph after paragraph 3 explaining that aggregate elements can be constants:

An expression accessing an element of a structure or union type is a constant if the
structure or union object was declared with the constexpr storage-class
specifier, and the accessed element was previously initialized footnote). An
expression accessing an element of an array using the subscript operator is a
constant if the array was declared with the constexpr storage-class specifier, and
the subscript index is an integer constant expression designating an element within
the array.

footnote) therefore an expression accessing a union member is not constant if it
accesses a different member from the one that was initialized.

Paragraph 6, include function calls returning integer values:

An integer constant expression 127) shall have integer type and shall only have
operands that are integer constants, enumeration constants, character constants,
sizeof expressions whose results are integer constants, _Alignof expressions, calls
to constexpr functions that return a value with integer type, and floating
constants that are the immediate operands of casts. Cast operators in an integer constant
expression shall only convert arithmetic types to integer types, except as part of an
operand to the sizeof or _Alignof operator.

Paragraph 7, add a line:

an integer constant expression , or

• a structure or union object footnote) defined with the constexpr storage-
class specifier, or returned from a call to a constexpr function; or a
member of such a structure.

footnote) including compound literals.

Paragraph 8, include function calls:

An arithmetic constant expression shall have arithmetic type and shall only have
operands that are integer constants, floating constants, enumeration constants, character
constants, sizeof expressions whose results are integer constants, _Alignof
expressions, and calls to constexpr functions that return a value with arithmetic
type.

Paragraphs 6 and 8 do not need additional text to mention aggregate elements.

Paragraph 9, modify dereferencing rules to allow member/element access:

but the value of an object shall not be accessed by use of the * or -> operators
footnote1). A value may be accessed by use of the subscript operator if its postfix-
expression operand is an address constant designating a constexpr array with
static storage duration footnote2).

footnote1) therefore a constexpr function may receive an address constant as an
argument but may not dereference it using *.

footnote2) to designate a constexpr array, the array must have already been
defined and initialized before the subscript operator expression is evaluated,
because a constexpr object declaration is a definition.

Add two new paragraphs after paragraph 9:

An address constant may be returned from a constexpr function and if so
remains an address constant in the calling context.

A structure constant expression shall be a value of structure type whose elements
are all constant expressions. A structure constant expression is copied by value
from an initialized constant structure object, including compound literals.

Add a forward reference:

array declarators (6.7.6.2), function specifiers (6.7.4), initialization (6.7.9).

Modify 6.7.1 "Storage-class specifiers":

Add one new paragraphs after paragraph 5:

The constexpr specifier is treated as a function specifier when applied to a
function declaration.

Add a forward reference:

type definitions (6.7.8), function specifiers (6.7.4).

Modify 6.7.4 "Function specifiers":

Paragraph 1, add the constexpr specifier:

function-specifier:
inline
_Noreturn
constexpr

Add four new paragraphs after paragraph 3:

A function declared with the constexpr function specifier shall not have void
return type.

A function defined with the constexpr function specifier shall return a value,
and shall contain only:

• null statements

• static assertions
• typedef declarations
• a single return statement, which evaluates a constant-expression according

to the rules of 6.6, treating the parameters of the function as constant
primary identifier expressions within the return footnote).

footnote) the parameters are not treated as constant identifiers within any static
assertions, only within the return statement and within array sizes.

If any declaration of a function has a constexpr specifier, then all of its
declarations shall contain a constexpr specifier.

Any array types specified within the prototype or body of a constexpr function
shall not be variably-modified, except that the constant expression specifying the
array size may treat the function parameters as constant primary identifier
expressions.

Add five new paragraphs after paragraph 7:

A function declared with a constexpr function specifier is a constexpr function.
A call to a constexpr function identifier with arguments that are all constant
expressions is itself a constant expression of the same kind as its return expression,
and may be called in contexts such as static assertions or initialization of objects
with static storage duration after it has been defined.

A constexpr function whose return expression is an integer constant expression and
has an integer return type returns an integer constant expression. A constexpr
function whose return expression is an arithmetic constant expression and has an
arithmetic return type returns an arithmetic constant expression. A constexpr
function whose return expression is an address constant expression and has a
pointer return type returns an address constant expression. A constexpr function
whose return expression is a structure constant expression and has the same
structure return type returns a structure constant expression. A constexpr function
whose return expression is a null pointer constant and has the same return type
returns a null pointer constant.

An implementation may allow constexpr functions to return other kinds of
constant expression, consistent with any others it accepts (6.6).

A constexpr function does not modify any state, or observe any state outside of its
own argument values.

A constexpr function is implicitly also an inline function.

Add a NOTE:

NOTE: a constexpr function may also be called with non-constant values or have
its address taken, in which case it behaves like any other function. The type of the
function is not affected by the constexpr specifier.

NOTE: the constexpr specifier may be applied to a forward definition, but a call
to it is not a constant expression unless the definition is visible when the outermost
constant-expression containing the (possibly-nested) call is evaluated.

Add a Recommended Practice:

Recommended Practice

Implementations are encouraged to issue a diagnostic message when a constexpr
function is called with constant arguments and the definition is not visible.

No modifications are made to the Standard Library.

5. Tail-Call Elimination

Introduction

C's function activation records implicitly form a stack, regardless of the underlying implementation
of function calls or the depth of calls which the platform can support.

Keeping all activation records suspended but alive until their callees have returned prevents
programs from transferring control directly when a function's work is already done. This is not a
huge obstacle for hand-written C code, but is a major barrier for languages that compile to C (which
cannot then generally represent their function calls as native C function calls), or for interop with
languages that do support this feature.

This Specification adds the ability to explicitly, directly transfer control to another function without
returning, as an alternative to nested function calls.

This feature was previously discussed during the January 2022 meeting of WG14, and the meeting
established some starting directions for the feature set:

• there was not consensus to add the feature to C23;

• there was direction to continue gathering implementation experience;

• there was direction to establish what impact (if any) the feature has on existing ABIs.

The rationale and prior art for tail-call elimination on return statements is explained and discussed
in WG14 document n2920.

A deeper understanding of tail-call elimination in general can be obtained from the specification of
the Scheme programming language, which mandates its support.

5.1 Overview of tail-call elimination in C

For the purpose of this Specification, a tail-call is a call to a function that consists of the entire
(after stripping parentheses) operand to a return goto statement.

Although most of the research on tail-calls in C functions has been into identifying implicit tail-
calls for the purposes of optimization, this Specification is only concerned with explicit tail-calls
requested by means of the return goto statement. Tail-calls eliminated explicitly in this way

are not an optimization, and directly affect the program semantics in potentially-observable ways.

https://small.r7rs.org/attachment/r7rs.pdf
https://small.r7rs.org/attachment/r7rs.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2920.pdf

Entry to a tail-call ends the lifetime of the calling function’s activation record, and must free any
resources created by that function call. This moves the end of lifetime of automatic objects with
block scope defined within the caller to immediately before entry to the function being called in tail
position. This does not introduce any new undefined behaviours directly, but does mean that
pointers to objects in the calling activation record become invalid before the tail-call itself.

The expression in tail position must not require any additional work to be done after the function
returns within the body of the caller, because the caller will not be re-entered. This means that as
well as being a syntactic function call, the operand to return goto must have a type exactly

matching the return type of the calling function, without needing to undergo any implicit
conversions. Any implicit conversion, even if it would be a no-op, renders the operand an invalid
tail-call.

In order to fully enforce this, the function called in tail position must have identical type to the
callee. This ensures both that the return value does not require any conversion, and also that
argument passing space is available and calling convention (if relevant) is maintained.

The implication of the requirement that all resources allocated by the immediate caller are freed
right before entry is that any sequence of tail-calls will never overflow the implementation’s stack
or otherwise cause resource exhaustion because of the calls themselves. An infinite sequence of
tail-calls is analogous to an infinite loop – although it may do other work that uses resources, it
does not use resources itself by iterating.

5.1.1 Calling conventions and ABI

No new ABI is introduced by this feature. Although the a function called from tail-position replaces
its syntactic caller, entry re-uses the same argument and return space that was set up for that caller.
Therefore, whether a function ends in a tail call is not generally observable from “outside”. Because
the called function must match the caller’s setup exactly, it must by definition have the same ABI
and is also callable from any non-tail position, making its potential status as a tail-call completely
private to the call context and not observable from its definition or declaration at all. The caller and
the callee may require a different static size for their activation records, but there does not appear to
be a target (where the stack discipline is actually implemented in a re-entrant way) where this would
be problematic (on targets with re-entrant stack disciplines, the top of the frame is always
necessarily set within the function body because it is not exposed by the type anyway; on those with
non-contiguous stacks a different object is used; etc.).

Any function which can be invoked by a tail-call may also be invoked by a function call in non-tail
position. Any function which terminates in a tail-call may also terminate in a conventional return
statement along a different conditional branch.

During the January 2022 WG14 meeting it was pointed out that some targets use different calling
conventions for the same function depending on whether the call is a “near call” (within the same
TU) or a “far call” (callee is in another TU). If a function ends with a tail-call to a “far” target, all
calls to the calling function themselves must become “far calls” so that it can be perfectly replaced
in-place. This means that a TU making tail-calls to other functions in other TUs would need to be
recompiled to ensure it contains no “near calls” to callers; however, the TU would also need to be
recompiled in order to make use of the explicit tail call syntax, as the return goto statement is

not present in C23. (From outside the TU, all entry to such a function would be by “far call”
anyway and therefore the ABI presented to other TUs would not change.)

Since a “near call” implies information from the function definition is visible to the compiler, no
annotation of functions ending in a return goto statement is required for them to rebuild such

TUs correctly. The lack of annotation or any type-based distinction for callers ending in a proper
tail-call is preserved and the detail remains semantically private.

The principal ABI impact is on functions that currently use workarounds such as trampolining in
order to emulate proper tail-calls. These functions incorporate the emulation into their ABI at
present (signatures that allow “return to next”). It is assumed that users of such functions actively
want their ABI to change and become seamless, once that becomes possible.

It is not generally possible to perform a tail-call between functions that have different calling
conventions. Although this is outside the scope of the Standard, by placing constraints on the type
of the callee function as a whole (rather than expressing separate constraints against its return type
and arguments), calling conventions will implicitly be constrained as well, because an
implementation already has to treat them as having distinct types, in order to emit correct code (i.e.
pointers to two functions with different conventions cannot be stored in the same pointer variable,
the compiler must make a type-based distinction). Because of this, specifics of the calling
convention (“caller cleanup” vs “callee cleanup”, and so on) are not considered; so long as the
constraint that the complete type of the function called in tail position matches exactly is respected,
these are expected to be respected by the callee.

5.2 Detailed changes to ISO/IEC 9899:2023

Changes are relative to Working Draft n2731.

The modifications are ordered according to the clauses of ISO/IEC 9899:2023 to which they refer.
If a clause of ISO/IEC 9899:2023 is not mentioned, no changes to that clause are needed. New
clauses are indicated with (NEW CLAUSE), however resulting changes in the existing numbering
are not indicated; the clause number mm.nna of new clause indicates that this clause follows
immediately clause mm.nn at the same level.

Modify 6.2.4 "Storage durations of objects" to clarify that some function calls do terminate
execution:

For such an object that does not have a variable length array type, its lifetime extends
from entry into the block with which it is associated until execution of that block ends
in any way. (Entering an enclosed block or calling a function suspends, but does not
end, execution of the current block footnote).)

footnote: unless the call explicitly terminates execution of the current block with
return goto.

Add a forward reference to (new section) 6.8.6.4.1 in 6.2.4:

Forward references: array declarators (6.7.6.2), compound literals (6.5.2.5), declarators
(6.7.6), function calls (6.5.2.2), tail calls (6.8.6.4.1), initialization (6.7.9), statements
(6.8), effective type (6.5).

Add a new footnote to 6.5.2.2 "Function calls" paragraph 10, immediately after 104:

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2731.pdf

with respect to the execution of the called function. 104) footnote)

footnote: if the called function is assuming direct control with the return goto
statement, then no further operations in the caller will be evaluated after it is
entered.

Modify 6.8.6 "Jump statements" paragraph 1:

jump-statement:
goto identifier ;
continue ;
break ;
return expression opt ;
return goto postfix-expression ;

(NEW CLAUSE) Add a new section, 6.8.6.4.1 "The return goto statement":

6.8.6.4.1 The return goto statement

Constraints

The expression shall be a function call, optionally enclosed in parentheses. No other
form of expression is permitted.

Within the function call expression, the postfix-expression designating the function to
call shall have a type compatible with the type of a pointer to the function whose
definition contains the statement.

Neither the function to call nor the containing function shall have a parameter list that
terminates with an ellipsis.

Semantics

A return goto statement is a special case of the return statement which
terminates execution of the current function and then passes direct control to the
function specified in the function call that constitutes its operand expression.

The value of that function call will be returned to the caller as in a simple return
statement. The return goto statement differs from the return statement in that it
terminates execution of the current function immediately after evaluating all operands to
the function call expression, and before entering the called function itself. The called
function will return directly to the current function's caller.

Because the execution of the current function is terminated, the lifetime of all objects
local to the function with automatic storage duration ends, immediately before the
called function is entered.

A function that has been terminated by the return goto statement does not continue
to use resources.

NOTE: a return goto statement may appear anywhere a return statement with
an expression may appear.

NOTE: if the address of a local object with automatic storage duration is passed to the
called function, its lifetime will have ended before the called function begins executing
and the pointer cannot be used.

EXAMPLE 1 This example violates the constraint that the expression must be a direct
call to a function returning the exact same type as the caller:

int foo (int, int);

int bar (int a, int b) {
 return goto foo (b, a) + 1; // WRONG: the +1 must be evaluated
} // after the result of foo()

float baz (int a, int b) {
 return goto foo (b, a); // WRONG: the result of foo() is followed
} // by an implicit conversion

EXAMPLE 2 In this example the address of a local object with automatic storage
duration is passed to a called function:

int foo (int * p); // uses p

int bar (int a) {
 return foo (&a); // OK, lifetime of a continues until foo()
completes
}
int baz (int b) {
 return goto (&b); // WRONG: using the address of an object whose
lifetime has ended
}
int * boo (int c) {
 return &c; // roughly analogous to the above
}

EXAMPLE 3 In this example, a function recurses endlessly but harmlessly because the
recursive call consumes no additional resources:

int foo (int a, int b) { // need space for locals...
 return goto foo (b, a); // ...but that ends here
}

This class of function cannot overflow the program stack by itself.

EXAMPLE 4 In this example only one of the two calls to foo() is in the tail position:

int foo (int a, int b);

int bar (int a, int b) {
 return goto foo (// will be evaluated after this caller's lifetime
ends
 foo (a, b), // will be evaluated within this caller's lifetime
 a + b
);
}

The first nested call takes place before termination of the calling function and therefore
must consider that its resources have not yet been released, exactly as for any other
function call that is not in tail position.

No modifications are made to the Standard Library.

	Abstract
	1. Scope
	2. References
	3. Conformance
	4. Extended Constant Expressions
	Introduction
	4.1 Overview of extended constant expressions and definitions
	4.1.1 constexpr aggregate element access
	4.1.2 constexpr functions
	4.2 Detailed changes to ISO/IEC 9899:2023
	5. Tail-Call Elimination
	Introduction
	5.1 Overview of tail-call elimination in C
	5.1.1 Calling conventions and ABI
	5.2 Detailed changes to ISO/IEC 9899:2023
	6.8.6.4.1 The return goto statement

