
Proposal for C23
WG14 2973

Title: Qualifier-preserving standard library functions, v2
Author, affiliation: Alex Gilding, Perforce
Date: 2022-04-15
Proposal category: Feature enhancement
Target audience: Library developers, library users

Abstract
Proposal to improve type safety of existing C Standard library functions by preventing the ability to
silently remove const-qualification without a cast. This introduces a suggested new notation for

qualifier-generic functions, and aims to slightly reduce the difference between the C and C++
Standard libraries.

Qualifier-preserving standard library
functions, v2
Reply-to: Alex Gilding (agilding@perforce.com)
Document No: N2973
Revises Document No: N2603
Date: 2022-04-15

Summary of Changes

N2973

• Simplify notation to avoid possible ambiguity of nil-expansion

• Ensure external pointer type is specified and underlying functions are addressable

• Improve example implementation to preserve object type

• Clarify which qualifiers are supported/abstracted explicitly

N2603

• original proposal

Introduction
The C Standard Library contains twelve "qualifier-losing" search functions:

bsearch
bsearch_s
memchr
strchr
strpbrk
strrchr
strstr
wcschr
wcspbrk
wcsrchr
wcsstr
wmemchr

These functions accept a const-qualified pointer to a buffer to be searched, but return the pointer

to the found element without const-qualification.

This proposal suggests that the library should specify that these functions return a found result
element with the same qualification as the input buffer, as provided by the user. This avoids the risk
of inadvertently "casting away" constness on an input buffer when this is not desired.

This proposal is extracted from n2522, "a common C/C++ core specification", by Jens Gustedt.

Rationale
The existing APIs were designed and added to the library before C11 introduced the ability to
define generic and overloaded functions. Therefore the existing signatures are by-design, so that
they can be used to search both const and mutable buffers - since const-qualification can be

added implicitly, the input parameter is able to accept both kinds of buffer. If the functions are used
correctly, the missing qualification on the return will be restored in the same way on assignment to
an appropriately-qualified result pointer. This makes the search functions provide a primitive form
of genericity.

Unfortunately this relies on the user to manually check that the variable for the returned pointer to
the found element is of the correct type. If the user searches a const-qualified buffer but assigns

the result to a pointer to a mutable object, the API has no way to directly communicate that this is a
type error. An implementation may be able to warn anyway but this would require a hardcoded
knowledge of the library functions and their contracts beyond what is communicated in-language.

For example:

wchar_t const buf[] = L"Hwæt! wē Gār-Dena in gēar-dagum þēod-cyningaþrym
gefrūnon";
wchar_t const * thr = wcschr (buf, L'þ'); // const implicitly restored
wchar_t * ans = wcschr (buf, L'æ'); // currently assignment not wrong;
const lost
// ...
*thr = L't'; // constraint violation
*ans = L'a'; // currently no error, runtime undefined behaviour

The const-loss is purely an API-accommodation for the fact that in C99 and earlier revisions, it

was not obvious how to express qualifier-generic functions in-language. There is no valid use case
for this lossiness (intentionally passing a const-qualified buffer and receiving the element without

restoring the qualification), because casting away const-qualification explicitly is already a

feature of the language. If the user really needs a non-const-qualified pointer into a const-

qualified array, they can still communicate that this is an intentional decision, by casting the
const-qualification from the pointer to the buffer before passing it as an input argument to the

search API.

wchar_t * ans = wcschr ((wchart *)buf, L'æ'); // explicitly strip
constness

Unlike the strerror function and others discussed in n2526, there is no scope for a library

implementation to provide additional mutability features, because the returned pointer is into a
buffer controlled and provided completely by the user, not to some piece of library-internal state
which may have other uses, or access points elsewhere in an extended API.

This vulnerability has already been fixed in C++, which is able to resolve an overloaded version of
each function with the appropriate returned pointer type, based on the const-qualification of the

buffer passed as the argument. This therefore reduces the footprint of differences between the two
langauges' Standard libraries.

Proposal
We propose that each of these 12 functions be defined as a generic function, parameterized so that
the qualification of the buffer pointed to by the first argument is the same as the qualification of the
pointed to the found element.

This can be expressed with three choices of notation. Their relative merits, or lack thereof, may
provide input to a related discussion about standardizing C's notation for generic library functions.

In all three cases the notation is proposed for the API description in the Standard only, and does not
propose any new syntax for use in C code itself. (This was a point of confusion in the first round of
discussion: the notation is not proposed C syntax.)

The concrete type of all functions is fully specified and therefore this proposal leaves the greater
definition of generic function unaddressed, because it is not needed. In the case of every listed
function a concretely-typed external declaration is fully specified, and the new signature
descriptions only impose any constraints upon the functions’ immediate uses. Unlike in the previous
version of the proposal, there is no ambiguity about name redeclaration or the type of pointers to the
underlying functions; it is not strictly necessary that a macro layer is implemented by the library at
all, so expansion-suppression is not considered a problem or source of ambiguity.

Parameterizing only the qualifier:
char Q * strchr (char Q * s, int c);
void Q * memchr (void Q * s, int c, size_t n);

(following existing convention, Q would be italicized or otherwise marked)

The advantage of this notation is that it limits the scope of the constraint to the qualification and
leaves the object type either explicitly typed, or void. This retains the explicit typing of those

functions that examine characters, and does not place additional restrictions on how objects found
in opaque buffers should be interpreted.

WG14 rejected the use of this notation.

Parameterizing the entire pointed-to type, including qualifier and object
components:

C * strrchr (C * s, int c);
W * wcsrchr (W * s, wchar_t c);
C * strpbrk (C * s1, char const * s2);

The advantage of this convention is that the entire pointed-to type is parameterized, which may be
visually clearer by communicating that the qualification is a preserved part of the complete derived
type. It also does not imply that there is necessarily any qualification at all (i.e. Q can be empty /
missing). However, by removing the explicit mention of the qualifier it also removes the focus on
the fact that it is preserved.

This highlights an advantage: other pseudo-generic parameters (such as the int or wint_t second

parameters) can potentially be marked as sharing the parameterized type. This indicates that the
search key and the array of elements to examine are expected to be the same type of object. For
bsearch, this might look like:

E * bsearch (E const * key, E * ptr, size_t count, size_t size
 , int (*comp) (void const *, void const *));

However, this highlights several problems: the notation now makes it visually ambiguous whether
the parameter is supposed to include the qualification (the redundant qualification in E const *

ptr is consistent with typedef rules, but not necessarily clear), and the fact that the comp

parameter actually does need to be strongly-typed to accept void pointers means it cannot be written
using the parameters. In addition, in the case of the strchr group, the key parameter does not

have the same object representation, using int as a generic character key instead.

For the string search functions, this does show the possibility for further modification to the API, to
unify the wide and narrow character searches into a single non-prefixed API. This would be a more
intrusive change than proposed here. (see Future Directions, Generic functions)

For bsearch, this shows that simple parameterization in the signature is not sufficient to combine

with void pointers used by higher-order function types. A more powerful mechanism for

describing strongly-typed void pointers in generic higher-order functions is required. (see Future

Directions, void-which-binds)

Overload lists:
char const * strstr (char const * s1, char const * s2);
char * strstr (char * s1, char const * s2);

wchar_t const * wmemchr (wchar_t const * s, wchar_t c, size_t n);
wchar_t * wmemchr (wchar_t * s, wchar_t c, size_t n);

This is consistent with C++, which actually does provide separate overloads.

However, this is misleading: this is not how overloading works or is implemented in C, and has no
connection at all to the declarations that would exist in the library.

In C++, each overload is also a completely separate function - this declaration communicates that
fact. In C, there is only ever one callable with a given name. If it exists as a non-macro entity, it has
a singular type and it has a single exported external symbol. The C++ syntax is therefore not
appropriate as it communicates a completely different set of assumptions about how the library
makes names visible.

Committee feedback

Originally we proposed using the first option. In the first round of discussion the Committee found
this confusing because the qualifier variable might expand to nothing, which was not visually clear
from the notation. In addition there is no precedent anywhere in the document (or any existing
practice at all, for C23) for abstracting qualifiers, but not whole types. This is therefore a concept
with a distinct teach-ability disadvantage because it implicitly demands users to dive into the deep
end of type-operators and kindedness, in order to properly understand what should really be a very
simple signature.

Therefore the Committee settled on a preference for the second option, abstracting only whole types
in generic function notation. This reduces the barriers to establishing a type for generic functions
and reduces the complexity in the question of what a generic function “is” (luckily, outside of the
scope of this proposal as generic functions already exist in C11).

The rest of this document will use the second syntax option, parameterizing the entire pointed-to
type. We adopt a verbose naming scheme to make it clearer that the substituted types must match
only a restricted class (e.g. QChar implying a pointer to a char, rather than admitting any type),

and we do not extend the genericity to the key parameters in this proposal, instead leaving that to

future work.

Alternatives
An alternative would be to deprecate all twelve functions and to add new APIs with the qualifier-
preserving property. This has three major drawbacks:

• the new APIs would likely only be used by conscientious users who are less likely to make
the underlying error in the first place.

• new APIs do not fix existing erroneous uses of the unsafe APIs; any errors will still be
present and not elicit warnings.

• because C++ has already closed this loophole using its own in-language tools for these APIs,
introducing new function names would widen rather than narrow the divergence between the
two languages.

A potential heavier-weight alternative relying on future language directions would be to convert all
APIs to use typed void pointers, i.e. the void - which-binds . This would also allow the compiler to

enforce that the object type of the element is preserved and not just its qualification. This has the
significant disadvantage of not yet existing in-language.

However, this may demonstrate an initial use case for such a feature.

Impact

ABI

None. The existing functions already work correctly when used with the appropriate operands. All
this proposal does is alter the interpretation of the signature types to enable stricter checking of the
invocations. The Standard guarantees that the object representation of a pointer to T and a pointer to

T const are compatible, so the ABI must not change to accommodate the proposed change

(limited to qualifiers). A single underlying function body remains sufficient to implement the search
feature itself, without changes.

C++ already provides two overloads which correctly propagate qualification. This means that the
ABI problem would already be addressed in external linkage if two names are needed, and also that
any existing code which compiles as both C and C++ has already been checked for qualifier-
correctness by C++'s stricter library signatures. Therefore, user code in this category will be
unaffected by the change as it must already be qualifier-correct.

Compilation

Some existing user code should be expected to raise an error when it compiled cleanly before.
However, it seems that all such new warnings would indicate a legitimate design error - unlike the
strerror case, there is no valid use case for implicitly removing const-qualification from a

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2853.pdf

buffer that the user has ownership of. If they meant to do so, they can still strip the qualification
explicitly themselves, and communicate that intent. Therefore, this should be considered an API
safety improvement and the new errors would be desirable.

Implementation

A high-quality implementation should provide a macro wrapper around the calls to the
implementation function that re-applies correct qualification to the result type. The only impact of
this would be to introduce a compile-time implicit pointer type conversion between two compatible
pointer types, meaning that there is guaranteed to be no run-time cost.

An example of this implementation wrapper might be:

// string.h
// ...

#define IS_POINTER_CONST(P) _Generic(1 ? (P) : (void *)(P) \
 , void const *: 1 \
 , default: 0)

#define _STRING_SEARCH_QP(T, F, S, ...) \
 (IS_POINTER_CONST ((S)) ? (T const *) (F) ((S), __VA_ARGS__) \
 : (T *) (F) ((S), __VA_ARGS__)

#define memchr(S, C, N) _STRING_SEARCH_QP(void, memchr, (S), (C), (N))
#define strchr(S, C) _STRING_SEARCH_QP(char, strchr, (S), (C))
#define strpbrk(S1, S2) _STRING_SEARCH_QP(char, strpbrk, (S1), (S2))
#define strrchr(S, C) _STRING_SEARCH_QP(char, strrchr, (S), (C))
#define strstr(S1, S2) _STRING_SEARCH_QP(char, strstr, (S1), (S2))

(The previous version of this proposal suggested an implementation that would be back-portable to
C90 and C99, relying on the qualifier-combining effect of the ternary operator; this is less suitable
for C23 as it would risk exposing a void * return type for some arguments. In any case we expect

implementations would mostly use __builtin magic here rather than a portable query.)

A check for specific inappropriate qualifiers is not required, as if the argument is more heavily
qualified than the signature of the underlying search function allows, it will fail to type check after
expansion.

A simpler implementation could continue to provide the APIs as they are and merely document that
the constraint now applies. This might introduce some inconsistencies if the result of a search
function is used with _Generic, but this is unlikely (the type is already one the user would not

expect to match).

Future directions
This proposal introduces a number of ideas for further library development:

• in n2522, the wide and narrow versions of the string searches are all unified under the
narrow-string names, and made generic in the character type. This would be a more intrusive
change.

◦ this would introduce the option for additional character types to be searchable by the
same set of function names.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2522.pdf

◦ this significantly simplifies user-side type-generic string processing. However, this does
not have precedent from C++, and would imply an ABI change. It is also unclear which
headers would provide the APIs, and how completely (for instance, should the wide
character searches be available from string.h, or should those "overloads" only

become visible when both string.h and wchar.h are included? Should wchar.h

still provide the explicit wide APIs?)

• the Embedded C TR 18037 introduces additional qualifiers to represent named address
spaces. Pointers to objects in these address spaces can round-trip through void, but may

have a different representation and can therefore not be examined by a generic pointer
readthrough.

◦ the _Atomic qualifier is already permitted to indicate different object layout

requirements, and is similarly inappropriate to use with these APIs. This is therefore
consistent with the idea that the overloads may restrict the set of qualifiers abstracted;
currently only to const.

◦ strongly-typed void pointers would be able to accommodate this when the read is only

achieved through a provided access callback, so this restriction could be lifted from
bsearch and bsearch_s in the presence of void - which-binds .

• Embedded C specifies that an implementation should provide some mechanism to declare
the new qualifiers. This could exist separately as a way to tag opaque types with user-side
meaningful data, without indicating an incompatible object representation (similar to
const).

◦ if such "tag qualifiers" were added to the language, it would be useful to allow them to
qualify the operands to these search functions and to be preserved as well. They should
be distinguished from qualifiers that may affect layout (address space, _Atomic) or the

nature of access (_Atomic and volatile), which are not appropriate to abstract.

• ideally, the object type should also be preserved, rather than allowing the result pointer to a
found element to be implicitly converted to a correctly-qualified pointer to an unrelated
object layout.

One proposal which would allow this to be communicated is void - which-binds ,

introducing the concept of "strongly-typed void" to function declarations via attributes:

#define Void(A) void [[bind_type (A)]]

Void(T) * memchr (Void(T) * s, int c, size_t n);

This proposal would require that all implicit conversions to or from a void pointer

component of a signature that are annotated with the same parameter name, bind to or from
the same object type. Therefore,

char const buf[] = "o menel aglar elenath";
char const * mp = memchr (buf, 'm', 21); // OK
int const * ip = memchr (buf, 'm', 21); // not OK if [[type(A)]] is
 // enforced

http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1169.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2853.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2853.pdf

This would allow typed parameterization of bsearch's key/buffer/result type without

losing the connection to the comp function:

Void(T) * bsearch (Void(T) const * key, Void(T) * ptr
 , size_t count, size_t size
 , int (*comp) (Void(T) const *, Void(T) const *));

The ABI is not changed at all because the parameters are still void pointers, but their

connection to a single element type is communicated.

• a unified notational convention for generic function signatures should be established for use
throughout the Standard library. This will build consensus for whether it is better to abstract
type components or whole pointed-to types, and will ensure that the signatures are easier to
understand because they follow a coherent pattern. At the moment there is no formal
convention because the needs of each library section are relatively distinct.

Committee consensus has not yet settled on what kind of entity a generic function “is”. The
eventual common notation should reflect this in a way that is clear and useful to the user and
communicates the concrete type of any underlying addressable object or function clearly.
The consensus was clear that abstracting only the qualifier component of a type did not
achieve this.

Proposed wording
Changes are proposed against the wording in C23 draft n2731. Bolded text is new text.

bsearch

Modify 7.22.5.1 p1:

#include <stdlib.h>
QVoid *bsearch (const void *key, QVoid *base,
 size_t nmemb, size_t size,
 int (*compar)(const void *, const void *));

(make the return type and type of base qualifier-generic)

Modify the first sentence of 7.22.5.1 p2:

The bsearch generic function searches an array of ...

Modify the first sentence of 7.22.5.1 p4:

The bsearch generic function returns a pointer to ...

Add two new paragraphs after 7.22.5.1 p4:

The bsearch function is generic in the qualification of the type pointed to by the
argument to base. If this argument is a pointer to const-qualified void, the returned
pointer will also be a pointer to const-qualified void. Otherwise, the argument shall be
a pointer to unqualified void and the returned pointer will also be a pointer to
unqualified void.

The external declaration of bsearch has the concrete type: void * (const void
*, const void *, size_t, size_t, int (*) (const void *,
const void *)), which supports all correct uses.

7.24.5

Add three introductory paragraphs before the individual function descriptions, 7.24.5 p1:

The stateless search functions in this section (memchr, strchr, strpbrk,
strrchr, strstr) are generic functions. These functions are generic in the
qualification of the array to be searched and will return a result pointer to an element
with the same qualification as the passed array. If the array to be searched is const-
qualified, the result pointer will be to a const-qualified element. If the array to be
searched is not const-qualified, the result pointer will be to an unqualified element.

The external declarations of these generic functions have a concrete function type that
returns a pointer to an unqualified element (of type char when specified as QChar,
and void when specified as QVoid), and accepts a pointer to a const-qualified array
of the same type to search. This signature supports all correct uses.

The volatile and _Atomic qualifiers are not accepted on the elements of the array
to search.

memchr

Modify 7.24.5.1 p1:

#include <string.h>
QVoid *memchr (QVoid *s, int c, size_t n);

Modify the first sentence of 7.24.5.1 p2:

The memchr generic function locates the first occurrence of ...

Modify 7.24.5.1 p3:

The memchr generic function returns a pointer to ...

strchr

Modify 7.24.5.2 p1:

#include <string.h>
QChar *strchr (QChar *s, int c);

Modify the first sentence of 7.24.5.2 p2:

The strchr generic function locates the first occurrence of ...

Modify 7.24.5.2 p3:

The strchr generic function returns a pointer to ...

strpbrk

Modify 7.24.5.4 p1:

#include <string.h>
QChar *strpbrk (QChar *s1, const char *s2);

Modify the first sentence of 7.24.5.4 p2:

The strpbrk generic function locates the first occurrence in ...

Modify 7.24.5.4 p3:

The strpbrk generic function returns a pointer to ...

strrchr

Modify 7.24.5.5 p1:

#include <string.h>
QChar *strrchr (QChar *s, int c);

Modify the first sentence of 7.24.5.5 p2:

The strrchr generic function locates the last occurrence of ...

Modify 7.24.5.5 p3:

The strrchr generic function returns a pointer to ...

strstr

Modify 7.24.5.7 p1:

#include <string.h>
QChar *strstr (QChar *s1, const char *s2);

Modify the first sentence of 7.24.5.7 p2:

The strstr generic function locates the first occurrence in ...

Modify the first sentence of 7.24.5.7 p3:

The strstr generic function returns a pointer to ...

7.29.4.5

Add three introductory paragraphs before the individual function descriptions, 7.29.4.5 p1:

The stateless search functions in this section (wcschr, wcspbrk, wcsrchr,
wmemchr, wcsstr) are generic functions. These functions are generic in the
qualification of the array to be searched and will return a result pointer to an element
with the same qualification as the passed array. If the array to be searched is const-
qualified, the result pointer will be to a const-qualified element. If the array to be
searched is not const-qualified, the result pointer will be to an unqualified element.

The external declarations of these generic functions have a concrete function type that
returns a pointer to an unqualified element of type wchar_t, and accepts a pointer to a
const-qualified array of the same type to search. This signature supports all correct
uses.

The volatile and _Atomic qualifiers are not accepted on the elements of the array
to search.

wcschr

Modify 7.29.4.5.1 p1:

#include <string.h>
QWchar_t *wcschr (QWchar_t *s, wchar_t c);

Modify the first sentence of 7.29.4.5.1 p2:

The wcschr generic function locates the first occurrence of ...

Modify 7.29.4.5.1 p3:

The wcschr generic function returns a pointer to ...

wcspbrk

Modify 7.29.4.5.3 p1:

#include <wchar.h>
QWchar_t *wcspbrk (QWchar_t *s1, const wchar_t *s2);

Modify the first sentence of 7.29.4.5.3 p2:

The wcspbrk generic function locates the first occurrence in ...

Modify 7.29.4.5.3 p3:

The wcspbrk generic function returns a pointer to ...

wcsrchr

Modify 7.29.4.5.4 p1:

#include <wchar.h>
QWchar_t *wcsrchr (QWchar_t *s, wchar_t c);

Modify the first sentence of 7.29.4.5.4 p2:

The wcsrchr generic function locates the last occurrence of ...

Modify 7.29.4.5.4 p3:

The wcsrchr generic function returns a pointer to ...

wcsstr

Modify 7.29.4.5.6 p1:

#include <wchar.h>
QWchar_t *wcsstr (QWchar_t *s1, const wchar_t *s2);

Modify the first sentence of 7.29.4.5.6 p2:

The wcsstr generic function locates the first occurrence in ...

Modify the first sentence of 7.29.4.5.6 p3:

The wcsstr generic function returns a pointer to ...

wmemchr

Modify 7.29.4.5.8 p1:

#include <wchar.h>
QWchar_t *wmemchr (QWchar_t *s, wchar_t c, size_t n);

Modify the first sentence of 7.29.4.5.8 p2:

The wmemchr generic function locates the first occurrence of ...

Modify 7.29.4.5.8 p3:

The wmemchr generic function returns a pointer to …

bsearch_s

Modify K.3.6.3.1 p1:

#define __STDC_WANT_LIB_EXT1__ 1
#include <stdlib.h>
QVoid *bsearch_s(const void *key, QVoid *base, rsize_t nmemb,
 rsize_t size,
 int (*compar)(const void *k, const void *y, void
*context),
 void *context);

Modify the first sentence of K.3.6.3.1 p4:

The bsearch_s generic function searches an array of ...

Modify the first sentence of K.3.6.3.1 p6:

The bsearch_s generic function returns a pointer to ...

Add two new paragraphs after K.3.6.3.1 p6:

The bsearch_s function is generic in the qualification of the type pointed to by the
argument to base. If this argument is a pointer to const-qualified void, the returned
pointer will also be a pointer to const-qualified void. Otherwise, the argument shall
be a pointer to unqualified void and the returned pointer will also be a pointer to
unqualified void.

The external declaration of bsearch_s has the concrete type: void * (const
void *, const void *, rsize_t, rsize_t, int (*) (const void
*, const void *), void *), which supports all correct uses.

References
C17

n2731 C23 Working Draft

n2522 A Common C/C++ Core Specification rev 2

C++

Embedded C

n2526 use const for data from the library that shall not be modified

n2853 The void - which-binds : typesafe parametric polymorphism

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2731.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2176.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2522.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1169.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2526.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2853.pdf

	Abstract
	Qualifier-preserving standard library functions, v2
	Summary of Changes
	N2973
	N2603

	Introduction
	Rationale
	Proposal
	Parameterizing only the qualifier:
	Parameterizing the entire pointed-to type, including qualifier and object components:
	Overload lists:
	Committee feedback

	Alternatives
	Impact
	ABI
	Compilation
	Implementation

	Future directions
	Proposed wording
	bsearch
	7.24.5
	memchr
	strchr
	strpbrk
	strrchr
	strstr
	7.29.4.5
	wcschr
	wcspbrk
	wcsrchr
	wcsstr
	wmemchr
	bsearch_s

	References

