
ISO/IEC JTC 1/SC 22/WG14

April 8, 2022

N2957 v5

Add new optional time bases v5
Proposal for C23

Jens Gustedt
INRIA and ICube, Université de Strasbourg, France

We propose the inclusion of optional macros for time bases that are modeled after ISO 9945’s

CLOCK_MONOTONIC, CLOCK_PROCESS_CPU_ID, and CLOCK_THREAD_CPU_ID.
History: This is a follow-up of N2402, N2417 and N2460 or parts thereof. WG14 has already voted in favor

of the addition of TIME_MONOTONIC; TIME_ACTIVE and TIME_THREAD_ACTIVE so far found no consensus but didn’t
meet strong opposition, either.

Changes:

v4: (1) Improve reference to calendar time and emphasize on monotonicity. (2) Add dealing with
timespec_getres, since we have that now. (3) Emphasize more on the optional aspect of all the defini-

tions.

v5: (1) Remove provisions for possible implementation-defined changes to the calendar time (2) Address
some wording issues (execution environment, implementation) (3) Separate the optional features into more

bits, so WG14 may vote on them seperately.

1. INTRODUCTION

The interfaces in time.h to manipulate time values have grown mostly unattended over
the years and present several problems that could be easily avoided with more modern,
redesigned interfaces. This paper is concerned with the following problem:

— The standard allows implementations to add more time bases than TIME_UTC but gives no
guidance in which direction to go with such new base values.

— POSIX already provides normalized semantics for some other time bases than TIME_UTC,
and it would be good if we could avoid that practices with similar named time base emerge
that diverge from these.

1.1. Strategy

C11 and C17 left the addition of new time bases completely to the implementation. Al-
though it is a good principle to leave room for extensions, certain of them already have a
connotation in other normative context. In particular, ISO 9945 already provides specifica-
tions for four different time bases, two for elapsed time measurement (CLOCK_REALTIME and
CLOCK_MONOTONIC), and two for active processing (CPU) time (CLOCK_PROCESS_CPUTIME_ID
and CLOCK_THREAD_CPUTIME_ID).
C11’s timespec_get and TIME_UTC are modeled after ISO 9945’s clock_gettime and
CLOCK_REALTIME, so we propose not handle the latter, and to suppose that the specification
for TIME_UTC is sufficient. In particular, we do not intend to solve the divergence between
ISO 9899 (refering to other ISO standards concerning time) and ISO 9945 for universal time
measurements that seems to have emerged for taking into account (or not) leap seconds.
For the other three, we propose to add optional macros to the standard, such that the
names, if defined, bind implementations to a particular semantic. ISO 9945 and ISO 9899
differ slightly in their interfaces and have different terminology, so we propose to have macro
names according to C’s terminology with a prefix TIME:

— TIME_MONOTONIC for a time base that is not affected by changes to calendar time. The
intent is to provide a measure of time as perceived by the execution environment in its
current physical reference system. (This is in contrast to calendar time as measured by
TIME_UTC which is subject to normative and cultural adjustments.)

© 2022 by the author(s). Distributed under a Creative Commons Attribution 4.0 International License



N2957 :2 Jens Gustedt

— TIME_ACTIVE which is the active processing time that is accounted for the whole execution.
The intent is to provide a value that is consistent with the return of the clock function
as specified by the C standard.

— TIME_THREAD_ACTIVE which is the same, but accounted on a per thread base.

Since these macros will generally have different values from the ones provided by ISO 9945
(there the constants have the opaque type clockid_t) we can impose positive values without
invalidating components of ISO 9945.

1.2. Elapsed time

ISO 9945 has two different “clocks” for measurement of elapsed time, CLOCK_REALTIME and
CLOCK_MONOTONIC. They differ eventually in the starting point of the measurement (epoch
vs. boot time) and, more importantly, concerning their behavior when the system time is
set:

— CLOCK_REALTIME changes when the clock is set to a new value, e.g if a background time
daemon adjusts to a drift indicated by a time servers, or if calendar time is adjusted with
a leap second. This is the only clock in ISO 9945 that is mandatory, and as such plays a
similar role as TIME_UTC for ISO 9899.

— CLOCK_MONOTONIC is supposed not to be affected by such changes of the system clock and
to measure physical time as perceived by the execution environment.

We propose to model the latter by TIME_MONOTONIC and to modify 7.27.1 p2 as follows:

...
TIME_UTC

::::::::::::::
TIME MONOTONIC
which expands to an integer constants, that designates

:::
ing the UTC

::::::::
calendar

::::
time

::::
and

::::::::::
monotonic

::::
time base

:
s,

:::::::::::
respectively.

And then to add a new paragraph:

::
3′

::::
The

:::::::::
definition

:::
of

:::::::
macros

:::
for

:::::
time

:::::
bases

::::::
other

::::
than

:::::::::
TIME_UTC

::::
are

:::::::::
optional.

:
If
::::::::

defined,
::::

the
:::::::::::::
corresponding

:::::
time

:::::
bases

::::
are

:::::::::
supported

:::
by

:::::::::::::
timespec_get

:::::
and

::::::::::::::::
timespec_getres,

:::
and

:::::
their

::::::
values

::::
are

:::::::
positive.

For timespec_get we then add text to the end of 7.27.2.5 p3:

:::
The

::::::::
optional

:::::
time

::::
base

:::::::::::::::
TIME_MONOTONIC

::
is
::::

the
::::::
same,

:::
but

::::
the

::::::::
reference

:::::
point

:::
is

::
an

::::::
imple

::::
men

:::
ta

::::::::::
tion-defined

:::::
time

:::::
point;

::::::::
different

::::::::
program

::::::::::
invocations

:::::
need

:::
not

:::
to

::::
refer

:::
to

:::
the

:::::
same

:::::::::
reference

:::::::::::
points.FNT1

::::
For

::::
the

:::::
same

::::::::
program

::::::::::
invocation,

::::
the

::::::
results

::
of

::::
two

:::::
calls

:::
to

:::::::::::::
timespec_get

::::
with

:::::::::::::::
TIME_MONOTONIC

:::::
such

:::::
that

:::
the

:::::
first

:::::::
happens

::::::
before

:::
the

:::::::
second

::::
shall

::::
not

:::
be

::::::::::
decreasing.

::
It
:::

is
::::::
imple

::::
men

::
ta

:::::::::::
tion-defined

:
if
:::::::::::::::
TIME_MONOTONIC

::::::::
accounts

:::
for

:::::
time

::::::
during

::::::
which

:::
the

:::::::::
execution

:::::::::::
environment

:::
is

::::::::::::::
suspended.FNT2

With the attached footnotes:

::::

FNT1
::::::::::
Commonly.

::::
this

::::::::
reference

:::::
point

::
is

:::
the

::::
boot

::::
time

:::
of

:::
the

::::::::
execution

::::::::::::
environment

::
or

:::
the

:::::
start

::
of

::::
the

:::::::::
execution.

::::

FNT2
::::
The

:::::::::
execution

:::::::::::
environment

:::::
may

:::
for

::::::::
example

::::
not

::
be

::::
able

:::
to

:::::
track

::::::::
physical

::::
time

::::
that

:::::::
elapsed

::::::
during

::::::::::
suspension

:::
in

:
a
::::
low

::::::
power

:::::::::::
consumption

::::::
mode.

Question 1. Shall we adopt TIME_MONOTONIC as proposed in N2957 section 1.2?



Add new optional time bases v5 N2957 :3

1.3. Active processing time

In C17, active processing time during a program invocation can be measured by means of
the clock function. Unfortunately this functions has several problems, the most sever being
that it may overflow without notice after a relatively short execution time, for example after
36 minutes on systems with a signed clock_t of width 32 and a CLOCKS_PER_SEC value of
1 million. Another disadvantage of clock is that there is one legacy C implementation that
gets this function fundamentally wrong when compared to the C standard: it accounts for
elapsed time instead of active processing time. Repeatedly, this leads to confusion when
code is ported from or to conforming implementations. For these reasons we think that
clock is best deprecated and replaced by an appropriate time base for timespec_get. For
the time being, we also propose to adapt the wording of for the clock function to make its
purpose more clear.
ISO 9945 has two such “clocks”, namely CLOCK_PROCESS_CPUTIME_ID and
CLOCK_THREAD_CPUTIME_ID, which we propose to adapt to the needs of the C stan-
dard, named TIME_ACTIVE and TIME_THREAD_ACTIVE. The rationale for this choice of
naming is that the C standard neither defines the terms processor nor CPU, and that
we want to emphasize that the measured time omits times of inactivity of the executed
program.
Because implementations might need to dynamically distinguish different values for these
bases for concurrent program invocations (processes) or threads, the specifications of the
values exempts them from being compile time constants (append to 7.27.1 p2):

... .
:
;
:::
and

:::::::::::
TIME ACTIVE

:::::::::::::::::
TIME THREAD ACTIVE

::::::
which,

::
if

:::::::
defined,

:::::::
expand

:::
to

:::::::
integer

:::::::
values,

:::::::::::
designating

::::::
overall

:::::::::
execution

:::::
and

::::::::::::
thread-specific

::::::
active

:::::::::
processing

:::::
time

::::::
bases,

::::::::::
respectively.

and we add in 7.25.1 p3:

:
If
::::::::

defined,
:::
the

::::::
value

::
of

:::
the

::::::::
optional

::::::
macro

::::::::::::
TIME_ACTIVE

:::::
shall

:::
be

::::::::
different

:::::
from

:::
the

:::::::::
constants

:::::::::
TIME_UTC

::::
and

:::::::::::::::
TIME_MONOTONIC

::::
and

:::::
shall

::::
not

::::::
change

:::::::
during

::::
the

::::
same

::::::::
program

::::::::::
invocation.

::::
The

::::::::
optional

::::::
macro

:::::::::::::::::::
TIME_THREAD_ACTIVE

:::::
shall

:::
not

:::
be

::::::
defined

::
if

:::
the

::::::::::::::
implementation

::::
does

::::
not

:::::::
support

:::::::
threads;

:::
its

:::::
value

::::
shall

:::
be

::::::::
different

::::
from

:::::::::
TIME_UTC,

:::::::::::::::
TIME_MONOTONIC

::::
and

:::::::::::::
TIME_ACTIVE,

::
it

:::::
shall

::
be

::::
the

:::::
same

::::
for

:::
all

:::::::::
expansions

:::
of

:::
the

:::::::
macro

:::
for

::::
the

:::::
same

:::::::
thread,

::::
and

::::
the

:::::
value

::::::::
provided

::::
for

::::
one

:::::
thread

:::::
shall

:::
not

:::
be

::::
used

:::
by

::
a

::::::::
different

::::::
thread

::
as

:::::
base

:::::::::
argument

::
of

:::::::::::::
timespec_get

::
or

::::::::::::::::
timespec_getres.

For timespec_get itself the text proposal in 7.27.2.5 is then quite simple:

:::
For

:::
the

::::::::
optional

:::::
time

:::::
bases

::::::::::::
TIME_ACTIVE

::::
and

::::::::::::::::::
TIME_THREAD_ACTIVE

::::
the

:::::
result

:::
is

:::::::
similar,

:::
but

::::
the

::::
call

::::::::
measures

::::
the

:::::::
amount

:::
of

::::::
active

:::::::::
processing

:::::
time

::::::::::
associated

::::
with

:::
the

:::::
whole

::::::::
program

::::::::::
invocation

::
or

:::::
with

:::
the

::::::
calling

:::::::
thread,

:::::::::::
respectively.

Calls with TIME_ACTIVE could replace calls of clock, now that we would also know how to
query the resolution of this time base with timespec_getres. Therefore we propose to add
a recommended practice at the end of 7.27.2.5:

:::::::::::::::::::::::
Recommended practice

:
5
:::

It
:::

is
:::::::::::::

recommended
:::::

that
:::::::

timing
:::::::

results
:::

of
::::::

calls
:::

to
:::::::::::::
timespec_get

::::::
with

::::::::::::
TIME_ACTIVE,

::
if
::::::::

defined,
::::

and
:::

of
:::::

calls
:::

to
::::::
clock

::::
are

:::
as

::::::
close

:::
to

:::::
each

::::::
other

::
as

:::::
their

::::::
types,

:::::
value

:::::::
ranges

::::
and

:::::::::::
resolutions

:::::::::
(obtained

:::::
with

::::::::::::::::
timespec_getres

:::
and

::::::::::::::::
CLOCKS_PER_SEC,

:::::::::::
respectively)

::::::
allow.

::::::::
Because

::
of

:::
its

::::::
wider

:::::
value

::::::
range

::::
and



N2957 :4 Jens Gustedt

::::::::
improved

::::::::::
indications

:::
on

:::::
error,

:::::::::::::
timespec_get

::::
with

:::::
time

::::
base

:::::::::::
TIME_ACTIVE

:::::::
should

::
be

::::
used

:::::::
instead

::
of

::::::
clock

:::
by

::::
new

::::
code

:::::::::
whenever

::::::::
possible.

Question 2. Shall we adopt TIME_ACTIVE and TIME_THREAD_ACTIVE as proposed in
N2957 section 1.3 ?

1.4. Adjust the clock

Optionally, we also propose to modify the wording for the clock function, 7.27.2.1 p3:

The clock function returns the implementation’s best approximation to the
processor time used by the program

::
of

:::
the

::::::
active

:::::::::
processing

:::::
time

:::::::::
associated

:::::
with

:::
the

:::::::
program

:::::::::
execution since the beginning of an implementation-defined era re-

lated only to the program invocation.

Question 3. Shall we change the wording for the clock function as proposed in
N2957 1.4?

In addition, it could be good to indicate the future direction for these interfaces. Therefore
we could add the following to “Future library directions”, 7.31.16 p1 (the current version is
missing the paragraph number):

:::
The

:::::
time

::::::
bases

:::::::::::::::
TIME_MONOTONIC,

:::::::::::::
TIME_ACTIVE

::::
and

:::::::::::::::::::
TIME_THREAD_ACTIVE

:::::
may

::::::
become

::::::::::
mandatory

:::
in

:::::
future

::::::::
versions

::
of
::::

this
:::::::::

standard.
:

and add a new paragraph after that.

:
2
::::
The

::::::::
function

::::::
clock

::
is

:::
an

::::::::::
obsolescent

:::::::
feature.

:

Question 4. Shall we add the wording for possible future requirement of
TIME_MONOTONIC, TIME_ACTIVE and TIME_THREAD_ACTIVE as proposed in N2957 1.4
the future library directions?

Question 5. Shall we add the wording for the obsolescence of clock as proposed in
N2957 1.4 the future library directions?

Acknowledgments

We thank Rajan Bhakta for feedback and discussions.


	Introduction
	Strategy
	Elapsed time
	Active processing time
	Adjust the `clock`


