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Agenda 

Discussing the following papers: 

WG14 N2930 (http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2930.pdf) Consider renaming 

remove_quals 

WG21 P2215R1 (https://wg21.link/p2215r1) Undefined behavior and the concurrency memory model 

WG14 N2930 Consider renaming remove_quals 

Corentin: C23 introduces remove_quals (in addition to typeof), with the same semantics as typeof, 

except removing qualifiers. If C++ ever wants to adopt this, it will likely want to remove references, but 

the name is seriously confusing in that case. 

The paper proposes to use "unqual_typeof". 

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2930.pdf
https://wg21.link/p2215r1


JeanHeyd: I fully support this paper. This is fine for me. 

Philipp: Yes, they should rename it not to conflict with C++. Prefer typeof_unqual for symmetry. 

Martin, JeanHeyd: Agreed with typeof_unqual. 

Hubert: What's the proposed semantics for C++ if/when it happens? 

Corentin: We want that operator to remove references. C decided not to adopt decltype; the 

significance of parentheses for decltype might cause issues with macros. 

POLL: Does SG22 recommend that WG14 consider changing the name of remove_quals? 

Committee For Against Abstain Notes 

WG14 8 0 0 Unanimous consent 

WG21 7 0 0 Unanimous consent 

Overall: Unanimous consent 

WG21 P2215R1 Undefined behavior and the concurrency 

memory model 

Related proposal: Proposal "P1494 Partial program correctness" by Davis Herring, 

https://wg21.link/P1494R2 Failed to achieve consensus in WG21/EWG. 

Hans: Time-travel undefined behavior has bad interactions with concurrency. 

This is work in progress. 

Martin: C and C++ seem to have a slightly different understanding of undefined behavior. I failed to find 

actual examples of time-travel undefined behavior. 

No polls were taken. 

Wrapup 

Jens G: Can we pick a new time for meetings that's easier for Europeans? 

Aaron: I'll send out a Doodle poll and see when the group wants to meet for summer hours. 

 
End at 1:54pm EST 

 

 


