
ISO/IEC JTC 1/SC 22/WG14
WG 21, SG 22

2022-2-15

N2935 v8
P2311R2

Make false and true first-class language features
proposal for C23

Jens Gustedt
INRIA and ICube, Université de Strasbourg, France

In its London 2019 meeting, WG14 has found consensus to elevate false and true to proper keywords.

Changes in v2: WG14 was not sympathetic to force these keywords also to be macros, so we remove
the text corresponding to this idea. WG14 also was not in favor of the parts that proposed to introduce

recommended practice and to add future language directions, so these are also removed.
Changes in v3: It was then observed in a discussion on the reflector, that the possible use of these

predefined constants in the preprocessor needs some more precautions.

Changes in v4: Now that the type change has been integrated into C23, it remains to integrate the new
keywords properly into all translation phases.

Changes in v5:

— Make it clear that the constants count as integer constant expressions.

— Synchronize the handling in the preprocessor with C++.

— Explicitly mark the macro __bool_true_false_are_defined as obsolescent and keep it as last remaining
content in <stdbool.h>.

Changes in v6:

— Simplify the approach that makes them integer constant expressions.

— Synchronize the possible definition as predefined macro with N2934.
— Use the change to the bool type that previously was an alternate form. WG14 chose that one.

— Move the special promotion rules for the constants where they belong, namely to the definition of integer

promotion.
— Make an optional proposal for a change for integer promotions of type bool.
Changes in v7:

— After some discussion on the WG14 reflector is was found that making the text for preprocessing similar

to C++ would introduce more problems than it solves. In C, all relational operators have type int, so

the question how bool expressions during preprocessing convert does never occur. So we don’t need to
introduce the concept of bool, there. Consequently for preprocessor conditionals we fall back to a simple

replacement of the keywords by 0 and 1, respectively.

— Add an option to force the width of bool to 1.
Changes in v8: Wording as decided by WG14

— Don’t make the header obsolescent.

1. INTRODUCTION

The integration of Boolean constants false and true as proper language constructs, is
meant to provide a better feedback to programmers for the use of these constants by the
translantor or from debuggers. In particular, diagnostics will hopefully be provided when
they are used in arithmetic or used contrary to the intent, e.g as null pointer constants.

2. IMPACT

A possible impact of changing false and true to keywords could be the use of these con-
stants in preprocessing conditional expressions. Currently preprocessing arithmetic sees the
existing macros from <stdbool.h> as signed values, and thus the result of expressions is
merely consistent between the preprocessor and the rest of the language. When changing
to keywords we should ensure that false and true may still be used in the preprocessor
with the same semantics as before. This is done by enforcing that in preprocessor condi-
tionals true is replaced by 1; false is replaced as any other identifier that remains in such
a conditional by 0. This ensures that preprocessor arithmetic uses signed values for these
constants and that results of such arithmetic remain the same between C17 and C23.

© 2022 by the author(s). Distributed under a Creative Commons Attribution 4.0 International License

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2934.pdf


N2935
P2311R2

:2 Jens Gustedt

3. REFERENCE IMPLEMENTATION

To add minimal support for the proposed changes, an implementation that does not yet
want to implement false and true as full-featured keywords would have to add definitions
that are equivalent to the following lines to their startup code:

#define false ((bool)+0)
#define true ((bool)+1)

Notice that these do not use the literals 0U or 1U because with that arithmetic with these
constants in the preprocessor would be performed as unsigned integers. This would have
the consequence that something like -true would result to UINTMAX_MAX in the preprocessor
and -1 otherwise.

4. CHANGES

We assume that the non-optional part of N2934 has been integrated into C23, otherwise
the present paper is obsolete. Predefined constants need a little bit more effort for the
integration, than the other keywords in N2934, because up to now C did not have named
constants on the level of the language.

4.1. Syntax

We propose to integrate these constants by means of a new syntax term predefined
constant. The text itself is then integrated as a specific clause.

Change 1. Add false and true into the alphabetic order of 6.4.1.

Change 2. Add a new syntax item predefined-constants to the end of 6.4.4 p1, Con-
stants.

Change 3. Add a new clause 6.4.4.5 as follows.

::::::::::::::::::::::::::::
6.4.4.5 Predefined constants

:::::::
Syntax

:
1
::::::::::::::::::
predefined-constant:

:::::::::::::::::::::
false

::::::::::::::::::::
true

::::::::::::
Description

:
2
:::::
Some

:::::::::
keywords

:::::::::
represent

:::::::::
constants

::
of

:
a
:::::::

specific
::::::
value

:::
and

::::::
type.

:
3
::::
The

:::::::::
keywords

:::::
false

::::
and

::::
true

:::
are

:::::::::
constants

::
of

:::::
type

::::
bool

:::::
with

:::::
value

:
0
:::
for

::::::
false

:::
and

::
1
:::
for

:::::
true.

:

::::::::::::::::
FOOTNOTE[The

:::::::::
constants

::::::
false

::::
and

::::
true

::::::::
promote

:::
to

:::::
type

::::
int,

::::
see

:::::::
6.3.1.1.

:::::
When

:::::
used

:::
for

:::::::::
arithmetic

:::
in

::::::::::
translation

:::::
phase

:::
4,

::::
they

:::
are

::::::
signed

::::::
values

::::
and

::::
the

:::::
result

::
of

:::::
such

:::::::::
arithmetic

::
is
::::::::::
consistent

::::
with

:::::::
results

::
of

:::::
later

::::::::::
translation

:::::::
phases.]

Also, the predefined constants should be constants of the right kind.

Change 4. Add to 6.6 p6:

6 An integer constant expression127) shall have integer type and shall only have
operands that are integer constants, enumeration constants, character constants,

:::::::::
predefined

::::::::::
constants, sizeof expressions whose results are integer constants,

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2934.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2934.pdf


Make false and true first-class language features
N2935
P2311R2

:3

alignof expressions, and floating constants that are the immediate operands of
casts. Cast operators in an integer constant expression shall only convert arith-
metic types to integer types, except as part of an operand to the sizeof or alignof
operator.

Change 5. Add to 6.6 p8:

8 An arithmetic constant expression shall have arithmetic type and shall only
have operands that are integer constants, floating constants, enumeration con-
stants, character constants,

:::::::::
predefined

:::::::::
constants, sizeof expressions whose re-

sults are integer constants, and alignof expressions. Cast operators in an arith-
metic constant expression shall only convert arithmetic types to arithmetic types,
except as part of an operand to a sizeof or alignof operator.

4.2. Interaction with legacy code

There is still some code in the field that redefines these keywords. When compiler versions
for C23 come out, it would be important that there is no silent redefinition of types or
values depending on which headers are included and in which order.

Change 6. Add the following to 6.10.8 p2:

None of these macro names, nor the identifiers defined or __has_c_attribute,
shall be the subject of a #define or a #undef preprocessing directive. Any other
predefined macro names shall begin with a leading underscore followed by an
uppercase letter or a second underscore or shall be any of the identifiers alignas,
alignof, bool,

:::::
false, or static_assert

:
,
::
or

::::::
true .

4.3. The bool type

Definitions of the bool type should now directly refer to the constants and make no fuzz
about zero or non-zero values anymore.

Change 7. In 6.2.5 (Types) make the following change to p2:

An object declared as type bool is large enough to store the values 0
:::::
false and

1
::::
true.

The current state of conversion to the type bool makes several implicit references back and
forth between conversions and the equality operator.1 The changes proposed here, give an
opportunity to improve that situation and WG14 has seen this favorably.

Change 8. In 6.3.1.2 (Boolean type) make the following change to p1 and remove the
corresponding footnote:

When any scalar value is converted to bool, the result is 0
:::::
false if the value

compares equal to 0
:
is

::
a
:::::

zero
:::::

(for
::::::::::
arithmetic

:::::::
types)

:::
or

:::::
null

::::
(for

::::::::
pointer

:::::
types);(FNT) otherwise, the result is 1

::::
true.

1The process of converting a long to bool is e.g as follows: 1L =⇒ (1L == 0) =⇒ (1L == 0L) =⇒ false.



N2935
P2311R2

:4 Jens Gustedt

4.4. Preprocessing

The token true needs a specific exception during preprocessing, such that constructs such
as the following do not have surprising results.

#if true
...
#endif

In contrast to that, false needs no special treatment, since identifiers that remain in pre-
processor conditionals after macro replacement are replaced with 0, anyhow. But to make
that behavior clear, we add false as an example for those identifiers that produce 0.

Change 9. In 6.10.1 p7, amend the following partial phrase:

... all remaining identifiers
::::
other

:::::
than

:::::
true (including those lexically identical

to keywords
::::
such

::
as

::::::
false) are replaced with the pp-number 0,

::::
true

::
is

::::::::
replaced

::::
with

:::
the

:::::::::::
pp-number

::
1, ...

Because transitionally these new keywords might still have predefined macro definitions, we
also add them to the list for which the spelling after preprocessing is unspecified.

Change 10. In 6.4.1 p2’ (as of N2934) make the following changes:

The spelling of these keywords
:
, and their alternate forms

:
,
:::
and

:::
of

:::::
false

::::
and

:::::
true

inside expressions that are subject to the # and ## preprocessing operators is
unspecified.

4.5. Changes to library clauses

Clause 7.18 <stdbool.h>

Change 11. Replace the content of clause 7.18 by

:::
The

::::::::::
header

:::::::::::::::
<stdbool.h>

::::::::::::
provides

::::::
the

::::::::::::::
obsolescent

::::::::::
macro

:::::::::::::::::::::::::::::
__bool_true_false_are_defined

::::::
which

:::::::
expands

:::
to

:::
the

:::::::
integer

::::::::
constant

::
1.

Update the corresponding entry for future library directions, the macros to which this
referred do no longer exist:

Change 12. Replace the content of clause 7.31.11 “Boolean type and values
<stdbool.h>” by

:::
The

::::::
macro

::::::::::::::::::::::::::::::
__bool_true_false_are_defined

::
is

:::
an

::::::::::
obsolescent

::::::::
feature.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2934.pdf


Make false and true first-class language features
N2935
P2311R2

:5

Clause 7.26 <threads.h>

This header has several functions or macros that return bool values.

Change 13. In 7.17.5.1, 7.17.7.4 and 7.17.8.1 change the specification of return values
to the keywords false and true where appropriate.

4.6. Integer promotions and width of bool.

Since the beginning, there has been an inconsistency in C that on some special architectures
the bool type is promoted to unsigned int instead of int, whereas bool bit-fields of width 1
and the symbolic constants false and true are always promoted to int. This is the case
for architectures where the types bool, unsigned char and unsigned short not only have
the same size as int but also the same width. On these architectures the representation of
a bool object could be manipulated to represent a value as large as UINT_MAX.
As an explicit choice by WG14, this paper changes this status quo. We make that change
for C23, because here we newly introduce the macros BOOL_WIDTH and BOOL_MAX. Users can
reasonably expect these to be stable over different versions of the C standard.
This is a normative change for those rare architectures described above that removes an
incompatibility with C++.

Change 14. Change the final sentence of 6.2.6.2 p1 (Integer types)

:::
The

:::::
type

::::
bool

:::::
shall

::::
have

::::
one

:::::
value

:::
bit

::::
and

:::::::::::::::::::::::::
sizeof(bool)*CHAR_BIT - 1

::::::::
padding

::::
bits.

::::::::::
Otherwise,

::
tThere need not be any padding bits; unsigned char shall not

have any padding bits.

Change 15. and add a footnote to the entry for BOOL_WIDTH in 5.2.4.2.1 p1

::::::::::::
FOOTNOTE)

:::::
This

:::::
value

::
is
::::::
exact.

5. QUESTION FOR WG14

Question. Does WG14 want to integrate the changes as proposed in N2935 into C23?

Acknowledgement

We thank Joseph Myers, JeanHeyd Meneide and Aaron Ballmann as well as the C/C++
liaison study group for feedback and discussions.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2935.pdf

	Introduction
	Impact
	Reference implementation
	Changes
	Syntax
	Interaction with legacy code
	The [basicstyle=]bool type
	Preprocessing
	Changes to library clauses
	Integer promotions and width of [basicstyle=]bool.

	Question for WG14

