Proposal for C2x
WG14 N2930

WG21 P2541R0

Consider renaming remove_quals

Reply-to: Corentin Jabot (corentinjabot@gmail.com)
Document No: N2930 / P2541R0
Date: 2022-02-06

Abstract

N2927 Introduces typeof and remove_quals to the C standard. This is a great addition,
however the name remove_quals is somewhat inconsistent and impedes efforts of forward
compatibility of C with C++. We would like WG14 to consider renaming remove_quals.

Inconsistency

Both typeof and remove_quals accept either a type or an expression and produce a type.
While it is evident what typeof does from the label, it is not immediately clear that
remove_quals(<expression>) produces a type, or indeed that typeof and
remove_quals are related facilities. Symmetry in the names would improve the ergonomy of
the feature.

Compatibility with C++

N2927 argues that decltype was not suitable for C.
Indeed in C++,

e decltype(x) denotes the type of the variable x (let's assume it's an lvalue)
e decltype((x)) denotesthe type of the expression (x), which is an lvalue
reference.



Lacking references, C would produce the same type for both expressions, which according to
N2927 is an issue, as parentheses may be used to tame the preprocessor in C, and this is
arguably, an important use case.

typeof then is added to C, with the intent that if C++ ever adopts it, it would be consistent
with C: remove references and keep qualifiers. (Otherwise we would have the same problem
with typeof that are the motivation for not simply adopting decltype).

The same motivation exists for remove_quals: for that feature to be consistent in both
languages, such that C libraries compile consistently in either C or C++ (should C++ ever adopt
it) C++ would have to strip references.

But references are not qualifiers, and the name remove_quals would be confusing to a C++
developer.

And so either
e remove_quals is inconsistent across languages

e remove_quals remove references in C++, despite its name implying it doesn't.

Neither solution is great, which means that, under the current naming scheme, | would be
strongly opposed to a paper which would add these facilities to C++.

Name suggestions

But the solution is simple: We can pick a name for remove_quals which works well for both
Cand C++.

Originally, unqual_typeof was suggested, and this works: we know that typeof would
remove references, and unqual_typeof would also remove qualifiers.

I'd argue it is a better name for C independently of C++ compatibility concerns: it conveys that
both typeof and unqual_typeof are related facilities.

N2927 argues:

The only reason _Unqual_typeof would exist is to... well, remove qualifiers. It only makes
sense to just name it appropriately by using remove_quals as a keyword.

It is true that the only thing unqual_typeof does that typeof doesn'tis to remove
qualifiers. It does disservice to try to hide that fact by use of inconsistent names.



Any variation (unqual_typeof, unqualified_typeof, typeof_qualified,
typeof_unqual) would be equally suitable, and | have no strong preference.

Should C++ adopt this feature?

| don't know what WG21 will elect to do in this space. However, should they decide to adopt it
(or even if compilers decide to support this feature in C++ mode as an extension), having a
name that is suitable for both languages and (familiars to users of either) would avoid
unnecessary pain points.

Wording

Replace all instances of remove_quals in the wording added by N2927 with
unqual_typeof.

Acknowledgment

I'd like to thank JeanHeyd Meneide for their great work on N2927.

References

N2927 Not-so-magic - typeof for C - JeanHeyd Meneide

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2927.html



http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2927.html

