
ISO/IEC JTC 1/SC 22/WG14
WG 21, SG 22

2022-1-30

N2924 v5
P2306R4

Type-generic lambdas
proposal for C23

Jens Gustedt
INRIA and ICube, Université de Strasbourg, France

For the lambda expressions that were introduced in N2892, we propose the addition of auto parameters
that can be completed by the arguments (in a function call) or by the parameter types of target function

pointer (in a conversion).

Changes:

v5/R4. move handling of auto parameters from N2923

v4/R3. rebase relative to the changes in the other papers in this series
v3/R2. provide a proper motivation for type-generic macros

v2/R1.
— make primary expressions transparent for lambda expression operands
— force types to be the same when a tg lambda is converted

— specify which syntax verifications are necessary for lamda expressions in void expressions

I. MOTIVATION

Compared to the basic lambda feature introduced in N2892 the introduction of auto pa-
rameters the interest to make them type-generic is threefold. The first two are operational,
namely to provide function calls and function pointer conversions in a user-friendly way. The
third has to do with the notorious problem of exposing commas that stem from declaration
syntax in function-like macro calls.

I.1. Comfortable type-generic function calls

The first can be seen by replacing a “simple” macro-ized lambda that uses value captures
instead of parameters for type-genericity:

1 #define MAXIMUM0(X, Y) \
2 [MAXIMUM_A = X, MAXIMUM_B = Y](void){ \
3 auto const a = MAXIMUM_A; \
4 auto const b = MAXIMUM_B; \
5 return (a < 0) \
6 ? (b < 0) ? (a < b) ? b : a : b \
7 : (0 < b) ? (b < a) ? a : b : a; \
8 }()

Here, the fact of using captures MAXIMUM_A and MAXIMUM_B with inferred types ensures that
the lambda depends on the type of the macro arguments, and that the return type is inferred
as the common super-type of the two argument types.

So this technique already provides the possibility to have a fully generic definition that
would work with any pair of argument types that allow a comparison against each other
and against int (for the comparison to 0). Unfortunately it still has two of the drawbacks
of macro programming. First, the captures must have names that are guaranteed not to

© 2022 by the author(s). Distributed under a Creative Commons Attribution 4.0 International License

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2892.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2923.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2892.pdf

N2924
P2306R4

:2 Jens Gustedt

collide with any of the identifiers that might be used in expressions used as arguments. For
example for the following choices of a and b

1 double a = 34.0;
2 int b = 77;
3 auto c = MAXIMUM0(a+b, a-b);

the expansion of the capture clause as given would be

1 [MAXIMUM_A = (a+b), MAXIMUM_B = (a-b)]

If we had used a and b directly as capture names, it would have read instead

1 [a = (a+b), b = (a-b)]

where in the evaluation of (a-b) a would already refer to the capture a. Capture a would
be 111.0 as expected, but capture b would surprisingly not be -43.0 but 34.0.

Additionally, we need two declarations for the identifiers a and b that we really want to use
in the body of the lambda, and that might, if we need that, not be const qualified.

Compared to that, a type-generic lambda as proposed by this paper is simpler to program
and easier to understand

1 #define MAXIMUM2(X, Y) \
2 [](auto a, auto b){ \
3 return (a < 0) \
4 ? (b < 0) ? (a < b) ? b : a : b \
5 : (0 < b) ? (b < a) ? a : b : a; \
6 }(X , Y)

It avoids the invention of arbitrary capture names and their redefinition to local variables.
But other than that it has nothing fancy and can, within such a direct call, just be rewritten
to code as above. The only difference is that we delegate this rewriting to the compiler.

I.2. Multiple instantiations as function pointers

The second main feature that we propose is the conversion of type-generic function literals to
function pointers. To see that, consider the following lambda that uses the typeof operator
and then produces two function pointers with inferred types.

1 #define MAXY(X, Y) \
2 [](typeof(X) a, typeof(Y) b){ \
3 return (a < 0) \
4 ? (b < 0) ? (a < b) ? b : a : b \
5 : (0 < b) ? (b < a) ? a : b : a; \
6 }
7
8 double (*maxdd)(double , double) = MAXY(double , double);
9 unsigned (*maxsu)(signed , unsigned) = MAXY(signed , unsigned);

Using that macro directly in a call would look quite unconventional and would also be
errorprone because of the repetition or replacement of the arguments.

Type-generic lambdas
N2924
P2306R4

:3

auto c = MAXY(a+b, a-b)(a+b, a-b);
auto d = MAXY(unsigned , unsigned)(a+b, a-b);

In contrast to that, again, a type-generic lambda is simple to read and write:

1 #define MAXIMUM \
2 [](auto a, auto b){ \
3 return (a < 0) \
4 ? (b < 0) ? (a < b) ? b : a : b \
5 : (0 < b) ? (b < a) ? a : b : a; \
6 }
7
8 double (*maxdd)(double , double) = MAXIMUM;
9 unsigned (*maxsu)(signed , unsigned) = MAXIMUM;

The two expansions of MAXIMUM read

1 double (*maxdd)(double , double) = [](auto a, auto b){ ... };
2 unsigned (*maxsu)(signed , unsigned) = [](auto a, auto b){ ... };

They are internally rewritten by the compiler as if they had been specified as

1 double (*maxdd)(double , double) = [](double a, double b){
... };

2 unsigned (*maxsu)(signed , unsigned) = [](signed a, unsigned b){
... };

Still, a call to the type-generic lambda would be similar to a call to a conventional function.

auto c = MAXIMUM(a+b, a-b);

I.3. Composing declaration syntax and function-like macro calls

The technique that lead to macro MAXIMUM0 above is not only tedious to write, it also lacks
an important property that one would expect from a basic feature such as the computation
of a maximum value, namely composability. This is a problem that already occurs with
current function-like macros when their arguments are compound literals. Namely that a
comma in a compound literal can be exposed to the preprocessor as if it were a separator
for the arguments of the macro. This problem becomes much more severe when introducing
lambdas because of the unprotected comma separated list of the captures. In general, C’s
declaration syntax does not well behave in expressions that are processed by function-like
macros.

For the sake of the argument we extend the example as follows such that our feature operates
on pointers to values instead of the values themselves. First, we design a comparison macro
that operates on pointers to arithmetic objects and adds the convention that a null pointer
compares “less” than any pointer to a value.

1 #define ISPOINTLESS(X, Y) \
2 [ISPOINTLESS_A = X, ISPOINTLESS_B = Y](void){ \

N2924
P2306R4

:4 Jens Gustedt

3 auto const*const a = ISPOINTLESS_A; \
4 auto const*const b = ISPOINTLESS_B; \
5 if (!b) return false; \
6 else if (!a && b) return true; \
7 else return (*a < *b); \
8 }()

Then we encapsulate our maximum computation such that it uses that new comparison
and for which the result is the pointer to the maximum. (This only works if both pointers
have the same base type).

1 #define MAXAPOINTING(X, Y) \
2 [MAXAPOINTING_A = X, MAXAPOINTING_B = Y](void){ \
3 auto const*const a = MAXAPOINTING_A; \
4 auto const*const b = MAXAPOINTING_B; \
5 static int const zero = 0; \
6 return ISLESS(a, &zero) \
7 ? ISPOINTLESS(b, &zero) ? ISPOINTLESS(a, b) ? b : a : b \
8 : ISPOINTLESS (&zero , b) ? ISPOINTLESS(b, a) ? a : b : a; \
9 }()

In the following, the first line should compile fine, but the second is not valid and contains
a constraint violation.

1 auto* c = MAXAPOINTING (&x, &y);
2 auto* d = MAXAPOINTING(MAXAPOINTING (&x, &y), &z);

This is because after the expansion of the inner macro call the commas in the capture lists
of the expanded ISPOINTLESS macros are exposed to the scan for arguments of the outer
call.

This problem can be avoided by a cascade of parenthesis around macro arguments and
lambda expressions. But in general the syntax of such constructs is quite fragile, and type-
generic macros provide a better alternative that is more user-friendly because it does not
need function-like macros or captures.

1 #define ispointless \
2 [](auto const* a, auto const* b) { \
3 if (!b) return false; \
4 else if (!a && b) return true; \
5 else return (*a < *b); \
6 }
7 #define maxapointing \
8 [](auto const* a, auto const* b) { \
9 static int const zero = 0; \

10 return ispointless(a, &zero) \
11 ? ispointless(b, &zero) ? ispointless(a, b) ? b : a : b \
12 : ispointless (&zero , b) ? ispointless(b, a) ? a : b : a; \
13 }

Type-generic lambdas
N2924
P2306R4

:5

II. DESIGN CHOICES

We chose to follow C++ syntax and semantic as close a possible.

II.1. Permissible contexts for type-generic lambdas

It is the intent of this paper, to allow a value of a type-generic lambda type only in a context
where it will be completed, either by the arguments of a function call or by the parameter
types of a target function pointer to which a type-generic function literal is converted.
This is to ensure that compilers that implement this feature have to do no lookahead or
pre-compilation of code snippets with a lot of unknown types.

This is achieved by integrating types of type-generic lambdas into the terminology of the
standard as being incomplete types. Thereby it is not possible to define objects of such a
type. Because lambdas can only be declared in definitions by type inference, effectively such
lambdas cannot even be declared.

By these properties, the only possibility to specify a type-generic lambda that is re-usable
at different places of a source is textual, in particular by defining function-like macros. This
restriction is a deliberate choice for this proposal, here. If in a later phase (probably C26)
WG14 would also want to add objects of type-generic lambda type to the language or adopt
C++’s template functions, this could easily be achieved on top of what is done here.

II.2. Parameter type inference

Parameter type inference only leaves a design choice for array and function parameters. To
be in line with traditional function declarations, we extend the possibility of type inference
to such types and specify that these are to be re-written to pointers to form a valid function
prototype.

III. SYNTAX AND TERMINOLOGY

For all proposed wording see Section VII.

Syntax considerations for this feature are straight forward; we just have to allow the auto
feature to extend to the parameters of lambdas, 6.7.6.3.

In terms of terminology, we introduce the terms incomplete lambda type (6.2.5 p20) and
type-generic lambda (6.5.2.6 p9).

IV. SEMANTICS

The principal semantics of type-generic lambdas are described within three paragraphs.

— Paragraph 6.2.5.6 p9 specifies the possible use of type-generic lambdas.
— Paragraph 6.2.5.6 p10 provides the rules for the completion of such a lambda in a function

call.
— An insertion into 6.3.2.1 p5 describes the mechanism for conversions of type-generic

function literals to function pointers.

V. CONSTRAINTS AND REQUIREMENTS

This proposal constrains the possible uses of type-generic lambdas even further than for
simple lambdas, namely essentially to function calls and conversions to pointer-types. Even

N2924
P2306R4

:6 Jens Gustedt

though it would have been possible to formulate such a requirement as a constraint, we chose
not to do so because this might be an area for implementations to extend the C standard
and to implement some template feature for lambda values. Forcing them to diagnose such
constructs would be counter-productive and hinder progress in that area.

The only constraint that this proposal includes is in 6.5.2.6 p6, namely that a type-generic
lambda that is used in a conversion to a function pointer must have a return type that is
compatible to the one of the target function pointer type.

VI. QUESTIONS FOR WG14

(1) Does WG14 want type-generic lambdas for C23 along the lines of N2924?
(2) Does WG14 want to integrate the changes as specified in N2924 into C23?

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2924.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2924.pdf

Type-generic lambdas
N2924
P2306R4

:7

References

Jens Gustedt. 2021a. Function literals and value closures. Technical Report N2892. ISO. available at http:
//www.open-std.org/jtc1/sc22/wg14/www/docs/n2892.pdf.

Jens Gustedt. 2021b. Improve type generic programming. Technical Report N2890. ISO. available at http:
//www.open-std.org/jtc1/sc22/wg14/www/docs/n2890.pdf.

Jens Gustedt. 2021c. Lvalue closures. Technical Report N2737. ISO. available at http://www.open-std.org/
jtc1/sc22/wg14/www/docs/n2737.pdf.

Jens Gustedt. 2021d. Type-generic lambdas. Technical Report N2924. ISO. available at http://www.
open-std.org/jtc1/sc22/wg14/www/docs/n2924.pdf.

Jens Gustedt. 2021e. Type inference for variable definitions and function return. Technical Report N2923.
ISO. available at http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2923.pdf.

VII. PROPOSED WORDING

The proposed text is given as diff against N2892.

— Additions to the text are marked as
::::::
shown.

— Deletions of text are marked as shown.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2892.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2892.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2890.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2890.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2737.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2737.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2924.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2924.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2923.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2892.pdf

lambda-identifier.. § 6.2.5, working draft — January 29, 2022 CORE 202101 (E)

20 Any number of derived types can be constructed from the object and function types, as follows:

— An array type describes a contiguously allocated nonempty set of objects with a particular
member object type, called the element type. The element type shall be complete whenever the
array type is specified. Array types are characterized by their element type and by the number
of elements in the array. An array type is said to be derived from its element type, and if its
element type is T, the array type is sometimes called "array of T". The construction of an array
type from an element type is called "array type derivation".

— A structure type describes a sequentially allocated nonempty set of member objects (and, in
certain circumstances, an incomplete array), each of which has an optionally specified name
and possibly distinct type.

— A union type describes an overlapping nonempty set of member objects, each of which has an
optionally specified name and possibly distinct type.

— A function type describes a function with specified return type. A function type is characterized
by its return type and the number and types of its parameters. A function type is said to
be derived from its return type, and if its return type is T, the function type is sometimes
called "function returning T". The construction of a function type from a return type is called
"function type derivation".

— A lambda type is a complete
:::
an object type that describes the value of a lambda expression. A

::::::::
complete lambda type is characterized but not determined by a return type that is inferred from
the function body of the lambda expression, and by the number, order, and type of parameters
that are expected for function calls, and by the lexical position of the lambda expressions in
the program. ;

:
The

:::
the function type that has the same return type and list of parameter types

as the lambda is called the prototype of the lambda. A lambda type has no syntax derivation50)

and the lexical position of the originating lambda expression determines its scope of visibility.
Objects of such a type shall only be defined as a capture (of another lambda expression) or by
an underspecified declaration for which the lambda type is inferred.51) An object of lambda
type shall only be modified by simple assignment (6.5.16.1).

:::
A

:::::::
lambda

::::::::::
expression

::::
that

::::
has

:::::::::::::
underspecified

:::::::::::
parameters

:::
has

:::
an

::::::::::
incomplete

:::::::
lambda

::::
type

::::
that

::::
can

::
be

::::::::::
completed

:::
by

::::::::
function

:::
call

:::::::::::
arguments,

::
or,

::
if

::
it

:::
has

:::
no

:::::::::
captures,

::
in

:
a
::::::::::
conversion

:::
to

:
a
::::::::
function

:::::::
pointer.

— A pointer type may be derived from a function type or an object type, called the referenced type. A
pointer type describes an object whose value provides a reference to an entity of the referenced
type. A pointer type derived from the referenced type T is sometimes called "pointer to T".
The construction of a pointer type from a referenced type is called "pointer type derivation".
A pointer type is a complete object type.

— An atomic type describes the type designated by the construct _Atomic(type-name). (Atomic
types are a conditional feature that implementations need not support; see 6.10.8.3.)

These methods of constructing derived types can be applied recursively.

21 Arithmetic types and pointer types are collectively called scalar types. Array and structure types are
collectively called aggregate types.52)

22 An array type of unknown size is an incomplete type. It is completed, for an identifier of that type,
by specifying the size in a later declaration (with internal or external linkage). A structure or union
type of unknown content (as described in 6.7.2.3) is an incomplete type. It is completed, for all
declarations of that type, by declaring the same structure or union tag with its defining content later
in the same scope.

50)Not even a typeof type specifier with lambda type can be formed. So there is no syntax to make a lambda type a choice
in a generic selection other than default

51)Another possibility to create an object that has an effective lambda type is to copy a lambda value into allocated storage
via simple assignment.

52)Note that aggregate type does not include union type because an object with union type can only contain one member at
a time.

Language modifications to ISO/IEC 9899:2018, § 6.2.5 page 33

1

lambda-identifier.. § 6.3.2.1, working draft — January 29, 2022 CORE 202101 (E)

the object. A modifiable lvalue is an lvalue that does not have array type, does not have an incomplete
type, does not have a const-qualified type, and if it is a structure or union, does not have any
member (including, recursively, any member or element of all contained aggregates or unions) with
a const-qualified type.

2 Except when it is the operand of the typeof specifier, the sizeof operator, the unary & operator,
the++ operator, the-- operator, or the left operand of the . operator or an assignment operator, an
lvalue that does not have array type is converted to the value stored in the designated object (and is
no longer an lvalue); this is called lvalue conversion. If the lvalue has qualified type, the value has the
unqualified version of the type of the lvalue; additionally, if the lvalue has atomic type, the value has
the non-atomic version of the type of the lvalue; otherwise, the value has the type of the lvalue. If the
lvalue has an incomplete type and does not have array type, the behavior is undefined. If the lvalue
designates an object of automatic storage duration that could have been declared with the register
storage class (never had its address taken), and that object is uninitialized (not declared with an
initializer and no assignment to it has been performed prior to use), the behavior is undefined.

3 Except when it is the operand of the typeof specifier, the unary sizeof operator, or the unary &
operator, or is a string literal used to initialize an array, an expression that has type "array of type" is
converted to an expression with type "pointer to type" that points to the initial element of the array
object and is not an lvalue. If the array object has register storage class, the behavior is undefined.

4 A function designator is an expression that has function type. Except when it is the operand of the
typeof specifier, the sizeof operator,72) or the unary & operator, a function designator with type
"function returning type" is converted to an expression that has type "pointer to function returning
type".

5 A
:::::
Other

:::::
than

::::::::
specified

:::
in

:::
the

::::::::::
following,

:::::::
lambda

::::::
types

:::::
shall

:::
not

:::
be

:::::::::
converted

:::
to

::::
any

:::::
other

::::::
object

::::
type.

:::
A

:::::::::
complete

:
function literal with a type "lambda with prototype P" can be converted im-

plicitly or explicitly to an expression that has type "pointer to Q", where Q is a function type
that is compatible with P.73)

:::
For

::
a
:::::::::::
type-generic

::::::::
function

::::::
literal

::::::::::
expression,

::::::
types

::
of

::::::::::::::
underspecified

::::::::::
parameters

:::::
shall

::::
first

::
be

::::::::::
completed

:::::::::
according

:::
to

:::
the

::::::::::
parameters

:::
of

:::
the

::::::
target

:::::::::
prototype,

::::
that

:::
is,

:::
for

::::
each

::::::::::::::
underspecified

:::::::::
parameter

:::::
there

:::::
shall

::
be

::
a
::::
type

::::::::
specifier

::
of

::
a

::::::
unique

:::::
type

::
as

:::::::::
described

::
in

::::::
6.7.11

::::
such

::::
that

::::
the

::::::::
adjusted

::::::::::
parameter

:::::
type

::
is

:::
the

::::::
same

::
as

::::
the

::::::::
adjusted

::::::::::
parameter

:::::
type

::
of

::::
the

::::::
target

:::::::
function

::::::
type;

:::::
after

::::
that,

::::
the

:::::::::
prototype

::
P
:::
of

:::
the

:::::
thus

::::::::::
completed

:::::::
lambda

::::::::::
expression

:::::
shall

:::
be

::::
the

:::::
target

:::::::::
prototype

::
Q.74) The function pointer value behaves as if a function F of type P with internal

linkage, a unique name, and the same parameter list and function body as for λ, where uses of
identifiers from enclosing blocks in expressions that are not evaluated are replaced by proper types
or values, had been defined in the translation unit , and the function pointer had been formed by
function-to-pointer conversion of that function. The only difference is

:::::::::
differences

::::
are

::::
that,

::
if

:
λ
::
is
::::
not

::::::::::::
type-generic,

:::
the

::::::::
resulting

::::::::
function

:::::::
pointer

::
is

:::
the

:::::
same

:::
for

:::
the

::::::
whole

::::::::
program

::::::::::
execution

:::::::::
whenever

:
a
::::::::::
conversion

:::
of

:
λ
::
is
::::
met75)

:::
and

:
that the function pointer needs not necessarily to be distinct from

any other compatible function pointer that provides the same observable behavior.

Forward references: lambda expressions (6.5.2.6) address and indirection operators (6.5.3.2), assign-
ment operators (6.5.16), common definitions <stddef.h> (7.19), typeof specifier 6.7.9, initialization
(6.7.10), postfix increment and decrement operators (6.5.2.4), prefix increment and decrement opera-
tors (6.5.3.1), the sizeof and _Alignof operators (6.5.3.4), structure and union members (6.5.2.3).

:
,

::::
type

:::::::::
inference

:::::::
(6.7.11).

72)Because this conversion does not occur, the operand of the sizeof operator remains a function designator and violates
the constraints in 6.5.3.4.

73)It follows that lambdas of different type cannot be assigned to each other. Thus, in the conversion of a function literal to a
function pointer, the prototype of the originating lambda expression can be assumed to be known, and a diagnostic can be
issued if the prototypes do not aggree.

74)
:::
Thus

::
a
:::::::::
specification

::
of

:::
the

::::
target

:::::::
function

:::::
pointer

::::
type

::
in

:
a
::::::::
conversion

::::
from

:
a
::::::::::

type-generic
::::::
function

:::::
literal

::::::::
expression

:::
that

:::
uses

:::
the

:::
[*]:::::

syntax
::
for

:::
VM

:::::
types

:
is
::::::
invalid.

75)
:::
Thus

::
a
::::::
function

:::::
literal

:::
that

::
is

::
not

::::::::::
type-generic

:::
has

:::::::
properties

::::
that

::
are

::::::
similar

:
to
::

a
::::::
function

:::::::
declared

:::
with

::::::
static

:::
and

:

::::::
inline.

:
A
:::::::
possible

:::::::::::
implementation

::
of

:::
the

:::::
lambda

::::
type

:
is
::

to
::
be

:::
the

:::
the

::::::
function

:::::
pointer

::::
type

::
to

:::::
which

:::
they

::::::
convert.

Language modifications to ISO/IEC 9899:2018, § 6.3.2.1 page 41

2

CORE 202101 (E) § 6.5.2.6, working draft — January 29, 2022 lambda-identifier..

capture:
identifier

parameter-clause:
(parameter-listopt)

Constraints
2 An identifier shall appear at most once; either as a capture or as a parameter name in the parameter

list. The identifier of an identifier capture shall designate an object of automatic storage duration
that is defined in a scope that surrounds the lambda expression.

3 Within the lambda expression, identifiers (including captures and parameters of the lambda) shall be
used according to the usual scoping rules, but outside the assignment expression of a value capture
the following exceptions apply to identifiers that are declared in a block that strictly encloses the
lambda expression and that are not identifier captures:

— Objects or type definitions with variably modified type shall not be used.

— Objects with automatic storage duration shall not be evaluated.114)

4 The
:::::
After

::::::::::::
determining

::::
the

:::::
type

::
of

::::
all

::::::::
captures

::::
and

::::::::::::
parameters,

::::::
either

::::::::
directly

:::
or

::::::::
because

::
a

:::::::::::
type-generic

:::::::
lambda

::::::::
appears

::
in

:
a
::::::::::::
function-call

::
or

:::::::::::
conversion

::
to

::::::::
function

:::::::
pointer,

:::
the

:
function body

shall be such that a return type type according to the rules in 6.8.6.4 can be inferred.
:
If
::::
the

:::::::
lambda

::::::
occurs

::
in

::
a
::::::::::
conversion

:::
to

::
a

::::::::
function

:::::::
pointer,

::::
the

::::::::
inferred

::::::
return

::::
type

:::::
shall

:::
be

:::::::::::
compatible

::
to

::::
the

::::::::
specified

::::::
return

::::
type

:::
of

:::
the

::::::::
function

::::::::
pointer;

:
if
::::::::::::
additionally

:::
the

:::::::
lambda

::
is

::::::::::::
type-generic,

::::
the

::::::
return

::::
type

:::::
shall

::
be

:::
the

::::::
same

::
as

:::
the

::::::::
specified

:::::::
return

::::
type.

:

5
:::::
When

::
a
:::::::
lambda

::::::::::
expression

:::::
with

:::
an

::::::::::::::
underspecified

::::::::::
parameter

::
is

:::::::::
evaluated

:::
as

::
a

::::
void

:::::::::::
expression,

:::
the

:::::::
capture

::::::
clause

:::::
shall

:::::
fulfill

:::
the

:::::::::::
constraints

::
as

::::::::
specified

:::::::
above.

::::
The

:::::::::::::
parenthesized

::::::::::
parameter

:::
list

::::
shall

::::::::
provide

:
a
::::::

valid
:::
list

::
of

::::::::::::
declarations

::
of

:::::::::::
parameters,

:::::
only

::::
that

::::
one

::
or

::::::
more

::
of

:::::
these

:::::
may

:::::
have

::
an

::::::::::::::
underspecified

:::::
type.

:::::
After

:::::
that

::::
shall

:::::::
follow

:
a
::
{

::::::
token,

::
a

::::::::
balanced

::::::
token

::::::::
sequence

::::
(??),

::::
and

::
a
::
}

:::::
token.115)

Semantics
6 The optional attribute specifier sequence in a lambda expression appertains to the resulting lambda

type and to its function prototype. If the parameter clause is omitted, a clause of the form () is
assumed. A lambda expression without any capture is called a function literal expression, otherwise it
is called a closure expression. A lambda value originating from a function literal expression is called a
function literal, otherwise it is called a closure.

7 Similar to a function definition, a lambda expression forms a single block that comprises all of its
parts. Each capture and parameter has a scope of visibility that starts immediately after its definition
is completed and extends to the end of the function body. In particular, captures and parameters
are visible throughout the whole function body, unless they are redeclared in a depending block
within that function body. Value captures and parameters have automatic storage duration; in each
function call to the formed lambda value, a new instance of each value capture and parameter is
created and initialized in order of declaration and has a lifetime until the end of the call, only that
the addresses of value captures are not necessarily unique.

8
::
A

:::::::
lambda

::::::::::
expression

:::
for

::::::
which

::
at

::::
least

::::
one

::::::::::
parameter

::::::::::
declaration

::
in

:::
the

::::::::::
parameter

:::
list

::::
has

::
no

:::::
type

114)Identifiers of visible automatic objects that are not captures and that do not have a VM type, may still be used if they are
not evaluated, for example in sizeof expressions, in typeof specifiers (if they are not lambdas themselves) or as controlling
expression of a generic primary expression.
115)

:::
That

::::::
means,

:::::
besides

:::
the

::::::
validity

::
of

:::
the

::::::
capture

:::::
clause

:::
and

:::
the

::::::::
parameter

:::
list,

::
an

::::::::::::
implementation

:
is
::::

only
:::::::
required

::
to

::::
parse

:::
the

::::::
function

::::
body

::
as

:
a
:::::
token

:::::::
sequence

::
but

::
is
:::
not

::::::
required

::
to
:::::::
diagnose

::::::::
additional

::::::::
constraints,

::::
such

::
as

:::
the

::::::
validity

::
of

::
the

:::
use

::
of

::::::::
keywords

:
or
::::::::

identifiers
:::::
within

:::
the

::::::
function

:::::
body

:
if
::::
these

:::
are

::::::
possibly

:::::::
restricted

:::::::
through

:
a
:::::
syntax

::::::::
derivation

::
or

:::::::
additional

:::::::::
constraints.

modifications to ISO/IEC 9899:2018, § 6.5.2.6 page 66 Language

3

lambda-identifier.. § 6.5.2.6, working draft — January 29, 2022 CORE 202101 (E)

:::::::
specifier

::
is
::

a
:
type-generic lambda

::::
with

:::
an

:::::::::::
imcomplete

:::::::
lambda

:::::
type.

::
It
:::::
shall

:::::
only

::
be

::::::::::
evaluated

::
as

::
a

::::
void

::::::::::
expression,

:::
be

:::
the

:::::::
postfix

::::::::::
expression

::
of

:
a
::::::::
function

::::
call

:::
or,

:
if
:::
the

::::::::
capture

::::::
clause

:
is
:::::::
empty,

::
be

::::
the

:::::::
operand

:::
of

:
a
:::::::::::

conversion
::
to

::
a
:::::::
pointer

::
to

::::::::
function

:::::
with

:::::
fully

::::::::
specified

::::::::::
parameter

::::::
types,

:::
see

:::::::
6.3.2.1.

:::
For

::
a

::::
void

:::::::::::
expression,

::
it
::::
has

:::::
only

:::
the

::::
side

:::::::
effects

::::
that

::::::
result

:::::
from

:::
the

::::::::::
evaluation

:::
of

:::
the

::::::::
capture

:::::
clause

::::
and

:::::
shall

:::
be

::::::::::::
syntactically

::::::
correct

:::
as

::::::::
indicated

:::
in

:::
the

:::::::::::
constraints;

:::
the

::::::::::
translation

:::::
may

::::
fail,

::
if

:::
the

::::::::
function

:::::
body

::
is

::::
such

::::
that

:::
no

::::::::
possible

::::::::
function

:::
call

::::::::::
arguments

:::
or

::::::
target

:::::
types

:::
for

:
a
:::::::::::

conversion

:::::
could

:::::::::::
successfully

:::::::::
complete

:::
the

:::::::
lambda

:::::
type;

:::
the

::::::::
lambda

:::::::::
expression

:::::
shall

:::::::::
otherwise

:::
be

::::::::
ignored.

9
:::
For

::
a

::::::::
function

::::
call,

:::
the

:::::
type

:::
of

::
an

::::::::::
argument

:::::
(after

:::::::
lvalue,

:::::::::::::::
array-to-pointer

::
or

::::::::::::::::::
function-to-pointer

::::::::::
conversion)

:::
to

::
an

::::::::::::::
underspecified

:::::::::
parameter

:::::
shall

::
be

:::::
such

::::
that

::
it

:::
can

:::
be

::::
used

::
to

:::::::::
complete

:::
the

:::::
type

::
of

:::
that

::::::::::
parameter

::::::::::
analogous

::
to

::::::
6.7.11,

::::
only

::::
that

:::
the

::::::::
inferred

::::
type

:::
for

:::
an

:::::::::
parameter

::
of

::::::
array

::
or

::::::::
function

::::
type

::
is

::::::::
adjusted

:::::::::::
analogously

:::
to

::::::::
function

::::::::::
declarators

::::::::
(6.7.6.3)

::
to

::
a

::::::::
possibly

::::::::
qualified

::::::
object

:::::::
pointer

::::
type

::::
(for

::
an

::::::
array)

:::
or

::
to

:
a
::::::::
function

:::::::
pointer

:::::
type

:::
(for

::
a

::::::::
function)

:::
to

::::::
match

::::
type

::
of

::::
the

:::::::::
argument.

::::
For

:
a
::::::::::
conversion

::
of

::::
any

:::::::::::
arguments,

:::
the

::::::::::
parameter

:::::
types

:::::
shall

::
be

:::::
those

:::
of

:::
the

::::::::
function

:::::
type.

10 The assignment expression E in the definition of a value capture determines a value E0 with type T0,
which is E after possible lvalue, array-to-pointer or function-to-pointer conversion. The type of the
capture is T0 const and its value is E0 for all evaluations in all function calls to the lambda value. If,
within the function body, the address of the capture or one of its members is taken, either explicitly
by applying a unary & operator or by an array to pointer conversion,116) and that address is used to
modify the underlying object, the behavior is undefined.

11 The evaluation of the assignment expressions of value captures takes place during each evaluation of
the lambda expression. The evaluations for the value captures are sequenced in order of declaration;
an earlier capture may occur within an assignment expression of a later one. The evaluation of
a lambda expression is sequenced before any use of the resulting lambda value. For each call to
a lambda value, value captures (with type and value as determined during the evaluation of the
lambda expression) and then parameter types and values are determined in order of declaration.
Value captures and earlier parameters may occur within the declaration of a later one.

12 The object of automatic storage duration of the surrounding scope that corresponds to an identifier
capture shall be visible within the function body according to the usual scoping rules and shall be
accessible within the function body throughout each call to the lambda. If the definition of the object
uses the register storage class, the behavior is undefined. Access to the object within a call to the
lambda follows the happens-before relation, in particular modifications to the object that happen
before the call are visible within the call, and modifications to the object within the call are visible
for all evaluations that happen after the call.117)

13 For each lambda expression, the return type type is inferred as indicated in the constraints. A lambda
expression λ

:::
that

::
is
::::
not

:::::::::::
type-generic

:
has an unspecified lambda type L that is the same for every

evaluation of λ. As ;
:::
as a result of the expression, a value of type L is formed that identifies λ and the

specific set of values of the identifiers in the capture clause for the evaluation, if any. This is called a
lambda value. It is unspecified, whether two lambda expressions λ and κ share the same lambda type
even if they are lexically equal but appear at different points of the program. Objects of lambda type
shall not be modified other then by simple assignment.

14
::
A

:::::::
lambda

::::::::::
expression

:
λ

:::
that

:::
is

:::::::
generic

::::
has

:::
an

::::::::::
incomplete

::::::::
lambda

::::
type

:::::
that

::
is

::::::::::
completed

::::::
when

:::
the

::::::::::
expression

::
is
:::::

used
::::::::

directly
::
in

::
a
::::::::

function
::::

call
:::::::::::

expression
::
or

::::::::::
converted

::
to

::
a
::::::::

function
::::::::

pointer.

:::::
When

:::::
used

:::
in

:
a
::::::::

function
:::::

call,
:::
the

::::::::::
parameter

::::::
types

:::
are

::::::::
inferred

::
in

::::::
order

::
of

:::::::::::
declaration,

::::
but

:::::
after

:::
the

::::::::::
evaluation

::
of

:::
the

:::::::::::
assignment

:::::::::::
expressions

::
of

::::
the

:::::::
explicit

:::::
value

:::::::::
captures,

::::
after

::::::
which

::::
the

::::::
return

::::
type

::
of

:::
the

::::::::
lambda

:
is
::::::::
inferred

:::::
from

:::
the

::::::::
function

:::::
body.

::::
The

::
so

::::::::::
completed

:::::::
lambda

::::::
value

::
is

::::
then

:::::
used

::
in

:::
the

::::::::
function

:::
call

::::::
which

::
is
::::::::::
sequenced

:::::
after

:::
the

::::::::::
evaluation

::
of

:::
the

::::::::
lambda

::::::::::
expression.

:

15 NOTE 1 A direct function call to a function literal expression can be modeled by first performing a conversion of the function
literal to a function pointer and then calling that function pointer.

16 NOTE 2 A direct function call to a closure expression with parameters
:::::::
(possibly

::::::::::
type-generic)

116)The capture does not have array type, but if it has a union or structure type, one of its members may have such a type.
117)That is, evaluation of the identifier results in the same lvalue with the same type and address as for the scope surrounding

the lambda. In particular, it is possible that the value of such an object becomes indeterminate after a call to longjmp,
see 7.13.2.1.

Language modifications to ISO/IEC 9899:2018, § 6.5.2.6 page 67

4

lambda-identifier.. § 6.5.2.6, working draft — January 29, 2022 CORE 202101 (E)

...
double* ap = sortDouble(4, (double[]){ 5, 8.9, 0.1, 99, });
double B[27] = { /* some values ... */ };
sF(27, B); // reuses the same function
...
double* (*sG)(size_t nmemb, double[nmemb]) = SORTFUNC(double); // conversion

This code evaluates the macro SORTFUNC twice, therefore in total four lambda expressions are formed.

The function literals of the "comparison lambdas" are not operands of a function call expression, and so by conversion a
pointer to function is formed and passed to the corresponding call of qsort. Since the respective captures are empty, the
effect is as if to define two comparison functions, that could equally well be implemented as static functions with auxiliary
names and these names could be used to pass the function pointers to qsort.

The outer lambdas are again without capture. In the first case, for long, the lambda value is subject to a function call, and it is
unspecified if the function call uses a specific lambda type or directly uses a function pointer. For the second, a copy of the
lambda value is stored in the variable sortDouble and then converted to a function pointer sF. Other than for the difference
in the function arguments, the effect of calling the lambda value (for the compound literal) or the function pointer (for array
B) is the same.

For optimization purposes, an implementation may fold lambda values that are expanded at different points of the program
such that effectively only one function is generated. For example here the function pointers sF and sG may or may not be
equal.

:

20 EXAMPLE 3
::::::
Consider

:::
the

:::::::
following

::::::::::
type-generic

::::::
function

:::::
literal

:::
that

:::::::
computes

:::
the

::::::::
maximum

::::
value

::
of

:::
two

::::::::
parameters

::
X

:::
and

:
Y.
:

:
#
::::::
define

::::::::
MAXIMUM

:
(

:
X,

::
Y
:
)
: ::::::::::::::::::::::::::::: :

\

:::::::
[](

::::
auto

::
a

:
,

::::
auto

::
b
:
)
:
{
: ::::::::::::::::::::::::::: :

\

::::::::::::
return

::
(

:
a

::
<

::
0)

: :::::::::::::::::::::::::::::: :
\

::::::::::::::
?

:::
((b

::
<
: :::

0)
::
?
:::
((

:
a
::
<
::
b
:
)
::
?
::
b
::
:
::
a
:
)

::
:

::
b

:
)

::::
\

::::::::::::::
:

:::
((b

:::
>=

:::
0)

::
?
:::
((

:
a
::
<
::
b
:
)
::
?
::
b
::
:
::
a
:
)

::
:

::
a

:
)

:
;

:::
\

::::::
}(

:
X
::
,

::
Y

:
)

::::::::
auto

::
R

::
=

:::::::
MAXIMUM

::::
(-1,

:::
-1

:
U
:
)
:
;

::::::::
auto

::
S

::
=

:::::::
MAXIMUM

:::
(-1

:
U
:
,
:::
-1

:
L
:
)
:
;

::::
After

::::::::::
preprocessing,

:::
the

:::::::
definition

::
of

::
R,

::::::
becomes

:

::::
auto

::
R
::
=
::::
[](

::::
auto

:
a
:
,
:::::
auto

::
b
:
)
:
{

::::::::
return

::
(

:
a

::
<

:::
0)

::::::
?
:::
((

:
b

::
<

:: ::
0)

:
?
:::
((

:
a
::
<
::
b
:
)
::
?
::
b
::
:
::
a
:
)
::
:
::
b
:
)

::::::
:
:::
((

:
b

:::
>=

:::
0)

:
?
:::
((

:
a
::
<
::
b
:
)
::
?
::
b
::
:
::
a
:
)
::
:
::
a
:
)
:
;

:::::::
}(-1,

:::
-1

:
U

:
)

:
;

::
To

:::::::
determine

::::
type

:::
and

:::::
value

::
of

:
R,
::::

first
::
the

::::
type

::
of

:::
the

::::::::
parameters

::
in

:::
the

::::::
function

:::
call

:::
are

::::::
inferred

::
to

::
be

:::::::::
signed int

:::
and

:

:::::::::::
unsigned int,

:::::::::
respectively.

::::
With

:::
this

:::::::::
information,

:::
the

:::
type

::
of

::
the

::::::
return

::::::::
expression

::::::
becomes

:::
the

:::::::
common

:::::::
arithmetic

::::
type

:
of
:::

the
::::
two,

::::
which

::
is
:::::::::::
unsigned int.

::::
Thus

:::
the

:::::
return

:::
type

::
of

:::
the

::::::
lambda

:
is
:::
that

::::
type.

::::
The

::::::
resulting

::::::
lambda

::::
value

::
is

:::
the

:::
first

::::::
operand

::
to

::
the

:::::::
function

:::
call

::::::
operator

:::
().

::
So

:
R
:::
has

::
the

::::
type

:::::::::::
unsigned int

:::
and

:
a
::::
value

::
of

::::::::
UINT_MAX.

::
For

::
S,

:
a
::::::
similar

:::::::
deduction

:::::
shows

:::
that

:::
the

::::
value

:::
still

::
is

:::::::
UINT_MAX

:::
but

::
the

::::
type

::::
could

::
be

:::::::::::
unsigned int

::
(if

:::
int

:::
and

::::
long

::::
have

::
the

::::
same

:::::
width)

::
or
::::
long

::
(if

::::
long

::
is

::::
wider

::::
than

::::
int).

::
As

::::
long

:
as
::::

they
:::
are

::::::
integers,

::::::::
regardless

:
of
:::

the
::::::
specific

:::
type

::
of

:::
the

::::::::
arguments,

:::
the

:::
type

::
of
:::
the

::::::::
expression

:
is
::::::

always
::::
such

:::
that

::
the

::::::::::
mathematical

::::::::
maximum

::
of

:::
the

:::::
values

:::
fits.

::
So

::::::
MAXIMUM

:::::::::
implements

::
a

:::::::::
type-generic

::::::::
maximum

::::
macro

::::
that

:
is
::::::
suitable

:::
for

:::
any

:::::::::
combination

::
of

:::::
integer

::::
types.

21 EXAMPLE 4

void matmult(size_t k, size_t n, size_t m,
double const A[k][n], double const B[n][m], double const C[k][m]) {

// dot product with stride of m for B
// ensure constant propagation of n and m
auto const λ0 = [ν=n, µ=m](double const x[ν], double const B[ν][µ], size_t m0) {
double ret = 0.0;
for (size_t i = 0; i < ν; ++i) {
ret += x[i]*B[i][m0];

}

Language modifications to ISO/IEC 9899:2018, § 6.5.2.6 page 69

5

CORE 202101 (E) § 6.7.6.3, working draft — January 29, 2022 lambda-identifier..

}

Forward references: function declarators (6.7.6.3), function definitions (6.9.1), initialization (6.7.10).

6.7.6.3 Function declarators (including prototypes)
Constraints

1 A function declarator shall not specify a return type that is a function type or an array type.

2 The only storage-class specifier
::::::::
specifiers that shall occur in a parameter declaration is

:::
are

:::::
auto

::::
and

register.

3 An identifier list in a function declarator that is not part of a definition of that function shall be
empty.

::
A

:::::::::
parameter

:::::::::::
declaration

:::::::
without

:::::
type

::::::::
specifier

:::::
shall

:::
not

:::
be

:::::::
formed,

:::::::
unless

:
it
::::::::
includes

::::
the

::::::
storage

:::::
class

::::::::
specifier

:::::
auto

::::
and

::::::
unless

::
it

:::::::
appears

::
in

::::
the

:::::::::
parameter

:::
list

:::
of

:
a
:::::::
lambda

:::::::::::
expression.

4 After adjustment, the parameters in a parameter type list in a function declarator that is part of a
definition of that function shall not have incomplete type.

Semantics
5 If, in the declaration "T D1", D1 has the form

D (parameter-type-list)
or

D (identifier-listopt)

and the type specified for ident in the declaration "T D" is "derived-declarator-type-list T", then the
type specified for ident is "derived-declarator-type-list function returning the unqualified version of T".

6 A parameter type list specifies the types of, and may declare identifiers for, the parameters of the
function.

7 A
:::::
After

:::
the

:::::::::
declared

:::::
types

:::
of

:::
all

::::::::::
parameters

:::::
have

:::::
been

:::::::::::
determined

:::
in

:::::
order

:::
of

:::::::::::
declaration,

::::
any

declaration of a parameter as "array of type" shall be adjusted to "qualified pointer to type", where
the type qualifiers (if any) are those specified within the [and] of the array type derivation. If the
keyword static also appears within the [and] of the array type derivation, then for each call to
the function, the value of the corresponding actual argument shall provide access to the first element
of an array with at least as many elements as specified by the size expression.

8 A declaration of a parameter as "function returning type" shall be adjusted to "pointer to function
returning type", as in 6.3.2.1.

9 If the list terminates with an ellipsis (, ...), no information about the number or types of the
parameters after the comma is supplied.159)

10 The special case of an unnamed parameter of type void as the only item in the list specifies that the
function has no parameters.

11 If, in a parameter declaration, an identifier can be treated either as a typedef name or as a parameter
name, it shall be taken as a typedef name.

12 If the function declarator is not part of a definition of that function, parameters may have incomplete
type and may use the [*] notation in their sequences of declarator specifiers to specify variable
length array types.

13 The storage-class specifier in the declaration specifiers for a parameter declaration, if present, is
ignored unless the declared parameter is one of the members of the parameter type list for a function
definition.

14 An identifier list declares only the identifiers of the parameters of the function. An empty list in
a function declarator that is part of a definition of that function specifies that the function has no
parameters. The empty list in a function declarator that is not part of a definition of that function

159)The macros defined in the <stdarg.h> header (7.16) can be used to access arguments that correspond to the ellipsis.

modifications to ISO/IEC 9899:2018, § 6.7.6.3 page 104 Language

6

CORE 202101 (E) § 6.7.11, working draft — January 29, 2022 lambda-identifier..

struct S {
int i;
struct T t;

};

struct T x = {.l = 43, .k = 42, };

void f(void)
{

struct S l = { 1, .t = x, .t.l = 41, };
}

The value of l.t.k is 42, because implicit initialization does not override explicit initialization.

37 EXAMPLE 13 Space can be "allocated" from both ends of an array by using a single designator:

int a[MAX] = {
1, 3, 5, 7, 9, [MAX-5] = 8, 6, 4, 2, 0

};

38 In the above, if MAX is greater than ten, there will be some zero-valued elements in the middle; if it is less than ten, some of
the values provided by the first five initializers will be overridden by the second five.

39 EXAMPLE 14 Any member of a union can be initialized:

union { /* ... */ } u = {.any_member = 42 };

Forward references: common definitions <stddef.h> (7.19).

6.7.11 Type inference
Constraints

1 An underspecified declaration shall contain the storage class specifier auto.

2 For an identifier that is declared but not defined by an underspecified declaration, a prior definition
shall be be visible. For an underspecified declaration

:::::
which

::
is
::::
not

:::
the

::::::::::
declaration

:::
of

:
a
::::::::::
parameter,

:
an

init-declarator corresponding to the definition of an object shall have of one of the forms

declarator = assignment-expression
declarator = { assignment-expression }
declarator = { assignment-expression , }

such that the declarator does not declare an array.169) If the assignment expression has lambda type

:::
that

:::::
type

:::::
shall

::
be

:::::::::
complete, the declaration shall only declare one object and shall only consist of

storage class specifiers, qualifiers, the identifier that is to be declared, and the initializer.

3 Unless it is the definition of an object with an assignment expression of lambda type as above, prior
to an underspecified declaration there shall exist a typeof specifier type (that is, a type specifier that
is a typeof operator applied to an expression or type name) that if used to replace the auto specifier
makes the adjusted declaration a valid declaration;170) type shall not declare a tag or the contents of a
structure, union or enumeration (including at function prototype scope). If it is also the definition
of a function the return type shall be determined from return statements (or the lack thereof) as
specified in 6.9.1. Otherwise, type shall be such that for all defined objects the assignment expression
in the corresponding init-declarator, after possible lvalue, array-to-pointer or function-to-pointer
conversion, has the non-atomic, unqualified type of the declared object.

Description
4 Although there is no syntax derivation to form declarators of lambda type, a value λ of lambda

type L can be used as assignment expression to initialize an underspecified object declaration and as

169)The scope rules as described in 6.2.1 also prohibit the use of the identifier of the declarator within the assignment
expression.
170)The qualification of the type of an lvalue that is the assignment expression, or the fact that it is atomic, can never be used

to infer such a property of the type of the defined object.

modifications to ISO/IEC 9899:2018, § 6.7.11 page 114 Language

7

	Motivation
	Comfortable type-generic function calls
	Multiple instantiations as function pointers
	Composing declaration syntax and function-like macro calls

	Design choices
	Permissible contexts for type-generic lambdas
	Parameter type inference

	Syntax and terminology
	Semantics
	Constraints and requirements
	Questions for WG14
	References
	Proposed wording

