
Proposal	for	C23	
WG14	N2880	
	
Title:	 	 	 overflow	and	underflow	definitions	(N2805	update)	
Author,	affiliation:	 C	FP	group	
Date:	 	 	 2021-12-23	
Proposal	category:	 Technical	
Reference:	 	 N2596,	N2746,	N2805	
	
This	document	updates	N2805	(which	updated	N2746).	N2805	was	approved	at	the	
November	2021	WG	14	meeting.		
	
1.	This	update	broadens	the	overflow	definition	to	allow	an	overflow	threshold	
beyond	the	largest	normalized	floating-point	number.	This	change	accommodates	
the	extra	full-precision	range	of	double-double	formats.		
	
2.	This	update	also	loosens	the	current	requirement	to	return	the	value	of	the	
HUGE_VAL	macro	of	the	type	when	the	result	overflows	by	allowing	functions	to	
return	a	number	with	reduced	precision	instead.	This	change	accommodates	the	
extra	reduced-precision	range	in	some	double-double	implementations	and	allows	
returning	the	best	result	(for	those	implementations)	on	overflow.	The	alternative	
of	raising	the	overflow	threshold	(to	allow	reduced-precision	results	without	an	
overflow)	is	not	desirable	because	it	might	silently	undermine	reasonable	user	
expectations	about	precision.	
	
3.	Considerations	in	item	2	highlighted	an	ambiguity	in	the	specification	of	the	
HUGE_VAL	macros,	one	that	is	particularly	troublesome	for	double-double	
implementations	with	extra	reduced-precision	range.	It	is	unclear	how	these	
implementations	could	define	the	HUGE_VAL	macros. 7.12	#5,	where	the	
HUGE_VAL	macros	are	introduced,	does	not	explicitly	specify	a	value	for	them.	
7.12.1	#5,	7.22.1.5	#10,	and	7.29.4.1.1	#10	implicitly	specify	the	value	to	be	the	
value	returned	when	a	library	function	result	overflows	under	the	default	rounding	
mode.	Some	(most?)	users	believe	the	HUGE_VAL	macros	give	the	largest	number	in	
the	type	(infinity	or	the	value	of	type_MAX).	(Thus,	the	meaning	of	the	HUGE_VAL	
macros	is	unclear.	Is	it	the	overflow	result	for	the	default	rounding	mode,	or	is	it	the	
maximum	number	in	the	type.	Reduced-precision	overflow	results	(see	item	2)	
would	vary	from	cases	to	case,	depending	on	the	severity	of	overflow.	However,	the	
implicit	specification	for	the	macro	values	relies	on	overflow	results	being	fixed	
under	the	default	rounding	mode.	Another	problematic	case	(unrelated	to	double-
double)	for	the	current	specification	of	the	HUGE_VAL	macros	occurs	if	library	
function	results	are	rounded	toward	zero	but	the	maximum	number	in	the	type	is	
infinity.	The	suggested	changes	below	address	this	issue.	
	
4.	The	specifications	for	the	nextup	(7.12.11.5)	and	nextdown	(7.12.11.6)	
functions	refer	to	the	HUGE_VAL	macros,	though	the	intention	of	the	functions	—	to	

step	through	representable	values	—	is	not	related	to	overflow	or	rounding	mode.	A	
suggested	editorial	change	below	expresses	the	intention	of	the	specification	
without	referring	to	the	HUGE_VAL	macros.		
	
5.	The	definition	of	“correctly	rounded”	in	3.9	is	incorrect	in	the	case	of	overflow	if	
the	result	format	contains	infinity.	The	suggested	editorial	change	below	adds	a	note	
to	address	this	case.	
	
Suggested	changes	(change	marks	relative	to	N2596):	
		
NOTE	At	the	end	we	show	the	new	changes	suggested	by	this	document	relative	to	
N2596	+	N2805.	
	
Change	in	3.9:	
	

[3]	Note	2	to	entry:	IEC	60559	or	implementation-defined	rules	apply	for	
extreme	magnitude	results	if	the	result	format	contains	infinity.	

	
Changes	in	7.12.1:	
	

[5]	A	floating	result	overflows	if	the	a	finite	result	value	with	ordinary	
accuracy*)	would	have	magnitude	(absolute	value)	of	the	mathematical	
result	is	finite	but	so	large	that	the	mathematical	result	cannot	be	
represented	without	extraordinary	roundoff	error	too	large	for	
representation	with	full	precision	in	the	specified	type.	A	result	that	is	an	
exact	infinity	does	not	overflow.	If	a	floating	result	overflows	and	default	
rounding	is	in	effect,	then	the	function	returns	the	value	of	the	macro	
HUGE_VAL,	HUGE_VALF,	or	HUGE_VALL	according	to	the	return	type,	with	
the	same	sign	as	the	correct	value	of	the	function;	however,	for	types	with	
reduced-precision	representations	of	numbers	beyond	the	overflow	
threshold,	the	function	may	return	a	representation	of	the	result	with	less	
than	full	precision	for	the	type.	If	a	floating	result	overflows	and	if	the	integer	
expression	math_errhandling & MATH_ERRNO	is	nonzero,	the	integer	
expression	errno	acquires	the	value	ERANGE;.	If	a	floating	result	overflows	
and	if	the	integer	expression	math_errhandling & MATH_ERREXCEPT	
is	nonzero,	the	"overflow"	floating-point	exception	is	raised.	
.	…	

	
[6]	The	result	underflows	if	the	a	nonzero	result	value	with	ordinary	
accuracy	would	have	magnitude	(absolute	value)	of	the	mathematical	result	
is	nonzero	and	less	than	the	minimum	normalized	number	in	the	type;	
however,	a	zero	result	that	is	specified	to	be	an	exact	zero	does	not	
underflow.	Also,	a	result	with	ordinary	accuracy	and	the	magnitude	of	the	
minimum	normalized	number	may	underflow.249)	…	

	

*)Ordinary	accuracy	is	determined	by	the	implementation.	It	refers	to	the	
accuracy	of	the	function	where	results	are	not	compromised	by	extreme	
magnitude.	
	
249)The	term	underflow	here	is	intended	to	encompass	both	"gradual	
underflow"	as	in	IEC	60559	and	also	"flush-to-zero"	underflow.	IEC	60559	
underflow	can	occur	in	cases	where	the	magnitude	of	the	rounded	result
(accurate	to	the	full	precision	of	the	type)	equals	the	minimum	normalized	
number	in	the	format.	

	
Change	7.12.1	#5:	

	
[5]	The	macro		
	

HUGE_VAL
	
expands	to	a	positive	double	constant	expression,	not	necessarily	
representable	as	a	float.,	whose	value	is	the	maximum	value	returned	by	
library	functions	when	a	floating	result	of	type	double	overflows	under	the	
default	rounding	mode,	either	the	maximum	finite	number	in	the	type	or	
positive	or	unsigned	infinity.	
		

In	7.12.11.5	#2,	change	the	last	sentence:	
	

nextup(HUGE_VAL)	is	HUGE_VAL.	If	x	is	the	positive	number	(finite	or	
infinite)	of	maximum	magnitude	in	the	type,	nextup(x)	is	x.	
	

In	7.12.11.6	#2,	change	the	last	sentence:	
	

nextdown(-HUGE_VAL)	is	-HUGE_VAL.	If	x	is	the	negative	number	(finite	
or	infinite)	of	maximum	magnitude	in	the	type,	nextdown(x)	is	x.	
	

	
Suggested	changes	(change	marks	relative	to	N2596	+	N2805):	
	
Change	in	3.9:	
	

[3]	Note	2	to	entry:	IEC	60559	or	implementation-defined	rules	apply	for	
extreme	magnitude	results	if	the	result	format	contains	infinity.	

	
Changes	in	7.12.1:	
	

[5]	A	floating	result	overflows	if	a	finite	result	value	with	ordinary	accuracy*)	
would	have	magnitude	(absolute	value)	larger	than	the	maximum	
normalized	numbertoo	large	for	representation	with	full	precision	in	the	

specified	type.	(A	result	that	is	an	exact	infinity	does	not	overflow.)	If	a	
floating	result	overflows	and	default	rounding	is	in	effect,	then	the	function	
returns	the	value	of	the	macro	HUGE_VAL,	HUGE_VALF,	or	HUGE_VALL	
according	to	the	return	type,	with	the	same	sign	as	the	correct	value	of	the	
function;	however,	for	types	with	reduced-precision	representations	of	
numbers	beyond	the	overflow	threshold,	the	function	may	return	a	
representation	of	the	result	with	less	than	full	precision	for	the	type.	If	a	
floating	result	overflows	and	if	the	integer	expression	math_errhandling
& MATH_ERRNO	is	nonzero,	the	integer	expression	errno	acquires	the	
value	ERANGE;.	If	a	floating	result	overflows	and	if	the	integer	expression	
math_errhandling & MATH_ERREXCEPT	is	nonzero,	the	"overflow"	
floating-point	exception	is	raised.	
	
.	…	

	
In	7.12.11.5	#2,	change	the	last	sentence:	
	

nextup(HUGE_VAL)	is	HUGE_VAL.	If	x	is	the	positive	number	(finite	or	
infinite)	of	maximum	magnitude	in	the	type,	nextup(x)	is	x.	
	

In	7.12.11.6	#2,	change	the	last	sentence:	
	

nextdown(-HUGE_VAL)	is	-HUGE_VAL.	If	x	is	the	negative	number	(finite	
or	infinite)	of	maximum	magnitude	in	the	type,	nextdown(x)	is	x.	

	

