
Title: Unicode Length Modifiers

Author: Marcus Johnson 
Date: November 30th 2021

Document: n2875, updates N2761 
Proposal Category: New Feature

Reference: n2731 C2x Working Draft

Revision History:
• Added poll about incorporating the definitions.

• Added section about how conversions from Unicode to the execution character set are to be done,

and what happens when the execution character set is unable to represent a Unicode character.

• Removed mention of the Precision modifiers.

Abstract:
Let’s add support for char16_t and char32_t characters and strings to the formatted I/O functions.

Motivation:
I can’t print char16_t or char32_t characters or strings on MacOS or Windows (see Example Program at
the bottom), even when casting to the platform’s wchar_t type.

Feedback:
Feedback about using a leading U prefix was convincing; changing the modifier from l16/l32 to U16/U32
has one major benefit: It separates out the locale unaware conversions of plain c/s and lc/ls from the
new Unicode aware length modifiers with Unicode specific semantics. Making it easier to understand for
programmers.

Char8_t support was brought up during the meeting, I did mention it in a draft of this revision, but
noticed that char8_t hasn’t officially been made part of the standard as of n2731, so I dropped it.

Security Considerations:
Width modifiers operate exclusively on code points, not code units for the applicable arguments.

Conversion to Execution Character Set:
Conversion from UTF-16 to the execution character set shall be provided by a call to c16rtomb; if a code point is
not available in the execution character set, it shall be replaced with “U+” followed by the (uppercase) hex digits of
the code point, without any leading zeros; e.g. “🔥 ” is replaced with “U+1F525”.

Conversion from UTF-32 to the execution character set shall be provided by a call to c32rtomb; if a code point is
not available in the execution character set, it shall be replaced with “U+” followed by the (uppercase) hex digits of
the code point, without any leading zeros; e.g. “🔥 ” is replaced with “U+1F525”.

Suggested Changes:
Additions are marked in green, removals in red.

3.7.4: Code point
Any value in the Unicode codespace; that is, the range of integers from 0x0 to 0x10FFFF, Inclusive.

3.7.5: Code unit
The minimal bit representation that can represent a unit of encoded text for processing or interchange.

Page of 1 5

The Unicode Standard mandates at least 8-bit code units in the UTF-8 encoding form, 16-bit code units
in the UTF-16 encoding form, and 32-bit code units in the UTF-32 encoding form. 
 
The maximum number of code units per code point is as follows: 4 code units per code point for UTF-8;
2 code units per code point for UTF-16; 1 code unit per code point for UTF-32.

(WG14 should vote on incorporating the definitions into the standard separately from the other changes
in this proposal)

7.21.6.1 The fprintf function:

§7 The length modifiers and their meanings are:

U16 Specifies that a following c or s conversion specifier applies to a char16_t or char16_t* argument
respectively; width modifiers operate on code points.

U32 Specifies that a following c or s conversion specifier applies to a char32_t or char32_t* argument
respectively; width modifiers operate on code points.

§8 The conversion specifiers and their meanings are:

(c): If no l length modifiers is are present

If a U16 length modifier is present, the argument shall be a character of char16_t type. (The allowable range for
UTF-16 characters is 0x0-0xFFFF, except the Surrogate Range of 0xD800-0xDFFF, inclusive). Printing a lone
Surrogate is undefined behavior.

If an U32 length modifier is present the int argument is converted to a UTF-32 encoded code point of type char32_t.

For conversion to the execution character set, see Conversion To Execution Character Set section of this proposal.

(s): If no l length modifiers is are present

If a width is specified, no more than that many bytes are written, or code points for the char16_t* and char32_t*
types.

If an U16 length modifier is present, the argument shall be a pointer to storage of char16_t* type.

If an U32 length modifier is present, the argument shall be a pointer to storage of char32_t* type.

7.21.6.2: The fscanf function:

§11 The length modifiers and their meanings are:

U16 Specifies that a following c or s conversion specifier applies to a char16_t or char16_t* argument
respectively; width modifiers operate on code points.

U32 Specifies that a following c or s conversion specifier applies to a char32_t or char32_t* argument
respectively; width modifiers operate on code points.

Page of 2 5

§12 The conversion specifiers and their meanings are:

(c): Matches a sequence of characters or code points if a U16 or U32 length modifier is present of exactly the
number specified by the field width (1 if no field width is present in the directive).

P2: If no l length modifiers is are present

If a U16 length modifier is present, the argument shall be a character of char16_t type. (The allowable range for
UTF-16 characters is 0x0-0xFFFF, except the Surrogate Range of 0xD800-0xDFFF, inclusive) Printing a lone
Surrogate is undefined behavior.

If a U32 length modifier is present, the argument shall be a character of char32_t type.

For conversion to the execution character set, see Conversion To Execution Character Set section of this proposal.

(s):

P2: If no l length modifiers is are present

If a U16 length modifier is present, the argument shall be a character of char16_t* type.

If a U32 length modifier is present, the argument shall be a string of char32_t* type.

([):
P2: If no l length modifiers is are present

If a U16 length modifier is present, the argument shall be a string of char16_t* type.

If a U32 length modifier is present, the argument shall be a string of char32_t* type.

7.29.2.1 The fwprintf function:

§4p3: or the maximum number of wide characters or code points when a U16 or U32 length modifier is present to
be written for s conversions.

§7 The length modifiers and their meanings are:

U16 Specifies that a following c or s conversion specifier applies to a char16_t or char16_t* argument
respectively; width modifiers operate on code points.

U32 Specifies that a following c or s conversion specifier applies to a char32_t or char32_t* argument
respectively; width modifiers operate on code points.

For conversion to the execution character set, see Conversion To Execution Character Set section of this proposal.

§8 The conversion specifiers and their meanings are:

(c): If no l length modifiers is are present

Page of 3 5

If a U16 length modifier is present, the argument shall be a character of char16_t type. (The allowable range for
UTF-16 characters is 0x0-0xFFFF, except the Surrogate Range of 0xD800-0xDFFF, inclusive) Printing a lone
Surrogate is undefined behavior.

If a U32 length modifier is present, the argument shall be a character of char32_t type.

(s): If no l length modifiers is are present

If a U16 length modifier is present, the argument shall be a string of char16_t* type.

If a U32 length modifier is present, the argument shall be a string of char32_t* type.

7.29.2.2 The fwscanf function

§11 The length modifiers and their meanings are:

U16 Specifies that a following c or s conversion specifier applies to a char16_t or char16_t* argument
respectively; width modifiers operate on code points.

U32 Specifies that a following c or s conversion specifier applies to a char32_t or char32_t* argument
respectively; width modifiers operate on code points.

For conversion to the execution character set, see Conversion To Execution Character Set section of this proposal.

§12 The conversion specifiers and their meanings are:

(c): If no l length modifiers is are present

If a U16 length modifier is present, the argument shall be a character of char16_t type. (The allowable range for
UTF-16 characters is 0x0-0xFFFF, except the Surrogate Range of 0xD800-0xDFFF, inclusive) Printing a lone
Surrogate is undefined behavior.

If an U32 length modifier is present, the argument is of type char32_t.

(s): If no l length modifiers is are present

If a U16 length modifier is present, the argument shall be a pointer to storage of char16_t* type.

If a U32 length modifier is present, the argument shall be a pointer to storage of char32_t* type.

([): If no l length modifiers is are present

If a U16 length modifier is present, the argument shall be a string of char16_t* type.

If a U32 length modifier is present, the argument shall be a string of char32_t* type.

Example Program (Tested with Xcode 13.1 and Visual Studio 2019):
#include <stdint.h>
#include <stdio.h>
#include <wchar.h>
#if defined(__has_include) && __has_include(<uchar.h>)

Page of 4 5

#include <uchar.h>
#else
typedef uint_least16_t char16_t;
typedef uint_least32_t char32_t;
#endif
int main(int argc, const char *argv[]) {
#if (WCHAR_MAX <= 0xFFFF)
 char16_t *Fire = u"\U0001F525";
#elif (WCHAR_MAX <= 0xFFFFFFFF)
 char32_t *Fire = U"\U0001F525";
#endif
 printf("%ls\n", (wchar_t*) Fire);
 return 0;
}

Page of 5 5

	Revision History:
	Added poll about incorporating the definitions.
	Added section about how conversions from Unicode to the execution character set are to be done, and what happens when the execution character set is unable to represent a Unicode character.
	Abstract:
	Motivation:
	Feedback:
	Security Considerations:
	Conversion to Execution Character Set:
	Suggested Changes:
	Example Program (Tested with Xcode 13.1 and Visual Studio 2019):

