
n2859 – break break
Document #n2859

Date 10/15/2021
Author Eskil steenberg (eskil@quelsolaar.com)

Description:

Break and continue statements are very useful for flow control, but often they are slightly too
limited, becaus they can only exit one loop or switch. Therefore I propose the ability to have
multiple break statements in a row, or one or more break statements followed by a continue.

Consider:

for(i = 0; i < n; i++)
for(j = 0; j < n; j++)

if(something(i, j))
goto end;

end :

Many users want to avoid using goto, and would rather prefer to use a break. However a break
can only exit one loop/switch. Trying to avoid a goto, can produce some awkward code:

for(i = 0; i < n; i++)
{

for(j = 0; j < n; j++)
if(something(i, j))

break;
if(j < n)

break;
}

Compilers are able to detect that these are identical:
https://godbolt.org/z/K1KshY91r
https://godbolt.org/z/fq3W9Ezos



Instead I propose the ability to make a multi-break statement:

for(i = 0; i < n; i++)
for(j = 0; j < n; j++)

if(something(i, j))
break break;

I also propose that break statements can end with a continue statement. An example of this
would be:

for(i = 0; i < n; i++)
{

for(j = 0; j < n; j++)
if(something(i, j))

break continue;
something_else();

}

That would be equivalent to:

for(i = 0; i < n; i++)
{

for(j = 0; j < n; j++)
if(something(i, j))

break;
if(j < n) /* did we break? */

continue;
something_else();

}

Discussion:

-Why not just use goto?

goto has (somewhat undeservedly) a reputation of being bad style. Many users avoid goto, and
some style guides even forbid its use. Even if one does accept the use of goto, it has the
disadvantage that a goto label can be placed anywhere. break and continue statements are
localized and therefore easier to read, and less likely to be abused.



-Why not use a constant value to denote the number of loops/switches to exit? Along the lines
of break[2]; or continue(2);

A value would suggest that the break statement could have dynamic target. Multiple breaks is
clearly not dynamic. Having one or more break followed by a continue is also clearer than
having a continue with a index. Using multiple breaks doesn't break existing code, and doesn't
add new keywords that pollute the namespace. It is a feature that solves a common problem,
with a small change.

Proposed changes:

6.8.6 Jump statements
Syntax
1 jump-statement:
goto identifier ;
one or more opt break continue ;
additional opt break break ;
return expressionopt ;

6.8.6.2 The continue statement
Constraints
1 A continue statement shall appear only in or as a loop body. For each preceding
break, the statement must appear in an additional loop body.

Semantics
2 A continue statement causes a jump to the loop-continuation portion of the
smallest an enclosing iteration statement; that is, to the end of the loop body. More
precisely, in each of the statements unless the continue statement shown is in an
enclosed iteration statement (in which case it is



interpreted within that statement), it is equivalent to goto contin;

A continue statement without preceding break jumps to the smallest enclosing
iteration statement. For each preceding break, the jump reaches one further iteration
or switch statement out.

while (/* ... */) {
while (/* ... */) {
/* ... */
break continue;
}

/* ... */
contin:
}

while (/* ... */) {
switch (/* ... */) {
/* ... */
break continue;
}

/* ... */
contin:
}

6.8.6.3 The break statement
Constraints
1 A break statement shall appear only in or as a switch body or loop body. For each
preceding break, the statement must appear in an additional switch body or loop
body.

Semantics
2 A single break statement terminates execution of the smallest enclosing switch

or iteration statement. For each additional break contained in the statement, an
additional enclosing switch or iteration statement is terminated starting from the
innermost going outwards.

Question for the WG14
Does the wg14 want something along the lines of n2859, into c23?



References:
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3879.pdf


